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On the joint spectral radius

by Vladiḿır Müller (Praha)

Abstract. We prove the `p-spectral radius formula for n-tuples of commuting Banach
algebra elements. This generalizes results of some earlier papers.

Let A be a Banach algebra with the unit element denoted by 1. Let
a = (a1, . . . , an) be an n-tuple of elements of A. Denote by σ(a) the Harte
spectrum of a, i.e. λ = (λ1, . . . , λn) 6∈ σ(a) if and only if there exist
u1, . . . , un, v1, . . . , vn ∈ A such that

n∑
j=1

(aj − λj)uj =
n∑
j=1

vj(aj − λj) = 1.

Let 1 ≤ p ≤ ∞. The (geometric) spectral radius of a is defined by

rp(a) = max{‖λ‖p : λ ∈ σ(a)},

where

‖λ‖p =
{

max1≤j≤n |λj | (p =∞),
(
∑n
j=1 |λj |p)1/p (1 ≤ p <∞);

see [10], cf. also [4].
If σ(a) is empty we put formally rp(a) = −∞.
Clearly, rp(a) depends on p. On the other hand, instead of the Harte

spectrum we can take any other reasonable spectrum (e.g. the left, right,
approximate point, defect, Taylor etc.) without changing the value of rp(a);
see [4], [9].

For a single Banach algebra element the just defined spectral radius
rp(a) does not depend on p and coincides with the ordinary spectral radius
r(a1) = max{|λ1| : λ1 ∈ σ(a1)}. By the well-known spectral radius formula
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we have in this case

r(a1) = lim
k→∞

‖ak1‖1/k = inf
k
‖ak1‖1/k.

The spectral radius formula for n-tuples of Banach algebra elements was
studied by a number of authors, see e.g. [1], [2], [6], [7], [8]. In this paper we
generalize results of [6], [7] and [10].

Let a = (a1, . . . , an) be an n-tuple of elements of a Banach algebra A.
Instead of powers of a single element it is natural to consider all possible
products of a1, . . . , an.

Denote by F (k, n) the set of all functions from {1, . . . , k} to {1, . . . , n}.
Let further

sk,p(a) =
( ∑
f∈F (k,n)

‖af(1) . . . af(k)‖p
)1/p

(1 ≤ p <∞)

and
sk,∞(a) = max

f∈F (k,n)
‖af(1) . . . af(k)‖.

Lemma 1. sk+l,p ≤ sk,p(a) · sl,p(a).

P r o o f. The statement is obvious for p =∞. For p <∞ we have

[sk,p(a) · sl,p(a)]p =
∑

f∈F (k,n)

‖af(1) . . . af(k)‖p ·
∑

g∈F (l,n)

‖ag(1) . . . ag(l)‖p

≥
∑
f,g

‖af(1) . . . af(k)ag(1) . . . ag(l)‖p = [sk+l,p(a)]p.

It is well known that the above lemma implies that limk→∞(sk,p(a))1/k

exists and it is equal to infk(sk,p(a))1/k.
Thus we may define

r′′p (a) = lim
k→∞

( ∑
f∈F (k,n)

‖af(1) . . . af(k)‖p
)1/(pk)

.

Similarly we define

(1) r′p(a) = lim sup
k→∞

( ∑
f∈F (k,n)

rp(af(1) . . . af(k))
)1/(pk)

(we write briefly rp(x) instead of (r(x))p).
In general, the limit in (1) does not exist. The limit exists if a1, . . . , an

are mutually commuting. This can be proved analogously as in Lemma 1 by
using the submultiplicativity of the spectral radius.

Theorem 2. Let a = (a1, . . . , an) be an n-tuple of elements of a Banach
algebra A. Let 1 ≤ p ≤ ∞. Then

rp(a) ≤ r′p(a) ≤ r′′p (a).
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P r o o f. The case p =∞ was proved in [7], Theorem 1.
Let p <∞. The second inequality is clear.
Let λ = (λ1, . . . , λn) ∈ σ(a). Denote by A0 the closed subalgebra of A

generated by the unit 1 and the elements a1, . . . , an. By [5], Proposition 2,
there exists a multiplicative functional h : A0 → C such that h(aj) = λj for
j = 1, . . . , n. Then∑

f∈F (k,n)

rp(af(1) . . . af(k)) ≥
∑

f∈F (k,n)

|h(af(1) . . . af(k))|p

=
∑

f∈F (k,n)

|λf(1)|p . . . |λf(k)|p

= (|λ1|p + . . .+ |λn|p)k = ‖λ‖pkp .
Thus ∑

f∈F (k,n)

rp(af(1) . . . af(k)) ≥ rpkp (a)

and r′p(a) ≥ rp(a).

If a = (a1, . . . , an) is an n-tuple of mutually commuting elements then a
better result can be proved.

We use the standard multiindex notation. Denote by Z+ the set of all
non-negative integers. For α = (α1, . . . , αn) ∈ Zn+ and m ∈ Z+ define |α| =
α1 + . . .+αn, α! = α1! . . . αn!, aα = aα1

1 . . . aαn
n and mα = (mα1, . . . ,mαn).

If k is an integer, k ≥ |α|, then let(
k

α

)
=

k!
α!(k − |α|)!

(for n = 1 this definition coincides with the classical binomial coefficients).
We shall use frequently the following formula (for commuting variables

xi):

(x1 + . . .+ xn)k =
∑
|α|=k

(
k

α

)
xα.

In particular, for x1 = . . . = xn = 1 we have
∑
|α|=k

(
k
α

)
= nk.

If a = (a1, . . . , an) is a commuting n-tuple of elements of a Banach
algebra A, then the definitions of r′p(a) and r′′p (a) assume a simpler form
(for 1 ≤ p <∞):

r′p(a) = lim
k→∞

[ ∑
|α|=k

(
k

α

)
rp(aα)

]1/(pk)
,

r′′p (a) = lim
k→∞

[ ∑
|α|=k

(
k

α

)
‖aα‖p

]1/(pk)
.
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Theorem 3. Let a = (a1, . . . , an) be an n-tuple of mutually commuting
elements of a Banach algebra A. Let 1 ≤ p ≤ ∞. Then

rp(a) = r′p(a) = r′′p (a).

P r o o f. For p =∞ the first equality was proved in [10] and the second
in [7], Theorem 2.

We assume in the following p <∞.
Recall that the number of all partitions of the set {1, . . . , k} into n parts

is equal to
(
k+n−1
n−1

)
≤ (k + n− 1)n−1.

We have

max
|α|=k

(
k

α

)
‖aα‖p ≤

∑
|α|=k

(
k

α

)
‖aα‖p ≤

(
k + n− 1
n− 1

)
max
|α|=k

(
k

α

)
‖aα‖p.

Note that

lim
k→∞

(
k + n− 1
n− 1

)1/k

= 1.

Thus

r′′p (a) = lim
k→∞

[ ∑
|α|=k

(
k

α

)
‖aα‖p

]1/(kp)
= lim
k→∞

max
|α|=k

[(
k

α

)
‖aα‖p

]1/(kp)
.

Similarly,

r′p(a) = lim
k→∞

max
|α|=k

[(
k

α

)
rp(aα)

]1/(kp)
.

We now prove the inequality r′p(a) ≤ rp(a):
Choose k and α ∈ Zn+, |α| = k. Let µ ∈ σ(aα) satisfy |µ| = r(aα). By the

spectral mapping property there exists λ = (λ1, . . . , λn) ∈ σ(a) such that
µ = λα1

1 . . . λαn
n . Then(
k

α

)
rpp(aα) =

(
k

α

)
|µ|p =

(
k

α

)
|λ1|α1p . . . |λn|αnp

≤
∑
|β|=k

(
k

β

)
|λ1|β1p . . . |λn|βnp

= (|λ1|p + . . .+ |λn|p)k = ‖λ‖pkp ≤ rpkp (a).

Thus

r′p(a) = lim
k→∞

max
|α|=k

[(
k

α

)
rp(aα)

]1/(kp)
≤ rp(a).

The remaining inequality r′′p (a) ≤ r′p(a) will be proved by induction on n.
For n = 1, Theorem 3 reduces to the well-known spectral radius formula

for a single element.
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Let n ≥ 2 and suppose that the inequality r′′p ≤ r′p is true for all com-
muting (n− 1)-tuples.

For each k there is α ∈ Zn+, |α| = k, such that(
k

α

)
‖aα‖p = max

|β|=k

(
k

β

)
‖aβ‖p.

Using the compactness of [0, 1]n we can choose a sequence

{α(i)}∞i=1 = {(α1(i), . . . , αn(i))}∞i=1 ⊂ Zn+
such that limi→∞ |α(i)| =∞,

(2)
(
|α(i)|
α(i)

)
‖aα(i)‖p = max

|β|=|α(i)|

(
|α(i)|
β

)
‖aβ‖p (i = 1, 2, . . .)

and the sequences {αj(i)/|α(i)|}∞i=1 are convergent for j = 1, . . . , n. Define
k(i) = |α(i)| and

tj = lim
i→∞

αj(i)
k(i)

∈ [0, 1] (j = 1, . . . , n).

By (2) we have

r′′pp (a) = lim
i→∞

[(
k(i)
α(i)

)
‖aα(i)‖p

]1/(k(i)p)
.

We distinguish two cases:

(a) tj = 0 for some j, 1 ≤ j ≤ n. Without loss of generality we may
assume that tn = 0. Define a′ = (a1, . . . , an−1), α′(i) = (α1(i), . . . , αn−1(i))
∈ Zn−1

+ and k′(i) = |α′(i)| = k(i) − αn(i). Clearly limi→∞ k′(i)/k(i) = 1.
We have ‖aα(i)‖ ≤ ‖a′α′(i)‖ · ‖an‖αn(i). Then

r′′p
p(a′) ≥ lim sup

i→∞

[(
k′(i)
α′(i)

)
‖a′α

′(i)‖p
]1/k′(i)

≥ L1 · L2 · L3,

where

L1 = lim sup
i→∞

[(
k′(i)
α′(i)

)/(
k(i)
α(i)

)]1/k′(i)

,

L2 = lim
i→∞

[(
k(i)
α(i)

)
‖aα(i)‖p

]1/k′(i)

and
L3 = lim

i→∞
‖an‖−αn(i)p/k′(i).

Since limi→∞ αn(i)/k′(i) = 0, we have L3 = 1.
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Further,

L2 = lim
i→∞

[[(
k(i)
α(i)

)
‖aα(i)‖p

]1/k(i)]k(i)/k′(i)

= r′′p
p(a).

Finally,

L1 = lim sup
i→∞

[
k′(i)! · αn(i)!

k(i)!

]1/k′(i)

≥ lim sup
i→∞

[
(αn(i)/3)αn(i)

k(i)αn(i)

]1/k′(i)

= lim sup
i→∞

(
αn(i)
3k(i)

)(αn(i)/k(i))·(k(i)/k′(i))

= 1

since limi→∞ k(i)/k′(i) = 1 and

lim
i→∞

(
αn(i)
3k(i)

)αn(i)/k(i)

= lim
x→0+

(
x

3

)x
= lim
x→0+

xx = lim
x→0+

ex ln x = 1.

Thus r′′p (a′) ≥ r′′p (a).
By the induction assumption r′′p (a′) = r′p(a

′) = rp(a′) and by the defini-
tion rp(a′) ≤ rp(a) = r′p(a). Hence r′′p (a) ≤ r′p(a).

(b) There remains the case tj > 0 (j = 1, . . . , n), with tj =
limi→∞ αj(i)/k(i). Choose ε>0, ε < min1≤j≤n tj/n. For i sufficiently large
we have

tj −
ε

4
≤ αj(i)

k(i)
≤ tj +

ε

4
.

We approximate t1, . . . , tn by rational numbers. Fix positive integers
c1, . . . , cn, d such that

tj −
ε

2
≤ cj

d
≤ tj −

ε

4
(j = 1, . . . , n).

Let γ = (c1, . . . , cn) ∈ Zn+ and u = aγ = ac11 . . . acn
n . For each i write

k(i) = m(i)d + z(i), where 0 ≤ z(i) ≤ d − 1. So, for i sufficiently large, we
have

cj
d
≤ αj(i)

k(i)
,

αj(i)
k(i)

− cj
d
≤ 3ε

4
and

αj(i)−m(i)cj = αj(i)−
k(i)− z(i)

d
· cj = k(i)

[
αj(i)
k(i)

− cj
d

]
+
z(i)cj
d

.

Thus αj(i)−m(i)cj ≥ 0 (1 ≤ j ≤ n) and

k(i)−m(i)|γ| =
n∑
j=1

(αj(i)−m(i)cj) ≤ k(i) · 3εn
4

+
n∑
j=1

z(i)cj
d
≤ εnk(i)

for i large enough. We have
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‖aα(i)‖ ≤ ‖am(i)c1
1 . . . am(i)cn

n ‖ · ‖a1‖α1(i)−m(i)c1 . . . ‖an‖αn(i)−m(i)cn

≤ ‖um(i)‖ ·Knεk(i),

where K = max{1, ‖a1‖, . . . , ‖an‖}. Then, since
(
m(i)|γ|
m(i)γ

)1/(m(i)|γ|)
≤ n, we

have

r′pp (a) ≥ lim sup
i→∞

[(
m(i)|γ|
m(i)γ

)
rp(am(i)γ)

]1/(m(i)|γ|)

= lim sup
i→∞

(
m(i)|γ|
m(i)γ

)1/(m(i)|γ|)

· r(u)p/|γ|

= lim sup
i→∞

[(
m(i)|γ|
m(i)γ

)
‖um(i)‖p

]1/(m(i)|γ|)

≥ L1 · L2 · L3,

where

L1 = lim inf
i→∞

[(
m(i)|γ|
m(i)γ

)/(
k(i)
α(i)

)]1/(m(i)|γ|)

,

L2 = lim inf
i→∞

[(
k(i)
α(i)

)
‖aα(i)‖p

]1/(m(i)|γ|)

and
L3 = lim inf

i→∞
K−nεpk(i)/(m(i)|γ|).

Since

1 ≤ k(i)
m(i)|γ|

≤ 1
1− nε

for i sufficiently large, we have L3 ≥ K−nεp/(1−nε).
Since

lim
i→∞

[(
k(i)
α(i)

)
‖aα(i)‖p

]1/k(i)
= r′′p

p(a),

we have L2 ≥ min{r′′pp(a), (r′′p
p(a))1/(1−nε)}.

To estimate L1, we use the well-known Stirling formula

l! = lle−l
√

2πl(1 + o(l)).

We have

(1− ε)
(
αj(i)
e

)αj(i)/(m(i)|γ|)

≤ (αj(i)!)1/(m(i)|γ|)

≤ (1 + ε)
(
αj(i)
e

)αj(i)/(m(i)|γ|)

for j = 1, . . . , n and for i sufficiently large. Similar estimates can be used for
(m(i)cj)!, (m(i)|γ|)! and |α(i)|!. Thus, for i sufficiently large, we have (to
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simplify the expressions we write m, k and α instead of m(i), k(i) and α(i))[(
m|γ|
mγ

)/(
k

α

)]1/(m|γ|)
=
[

(m|γ|)!α1! . . . αn!
k!(mc1)! . . . (mcn)!

]1/(m|γ|)
≥
(

1− ε
1 + ε

)n+1

× m|γ| · αα1/(m|γ|)
1 . . . α

αn/(m|γ|)
n · ek/(m|γ|) · ec1/|γ| . . . ecn/|γ|

e · eα1/(m|γ|) . . . eαn/(m|γ|) · kk/(m|γ|) · (mc1)c1/|γ| . . . (mcn)cn/|γ|

=
(

1− ε
1 + ε

)n+1(
α1

mc1

)c1/|γ|
. . .

(
αn
mcn

)cn/|γ|

× α(α1−mc1)/(m|γ|)
1 . . . α(αn−mcn)/(m|γ|)

n · m|γ|
kk/(m|γ|)

≥
(

1− ε
1 + ε

)n+1

·
(
α1

k

)(α1−mc1)/(m|γ|)

. . .

(
αn
k

)(αn−mcn)/(m|γ|)

· m|γ|
k

.

Then

L1 ≥
(

1− ε
1 + ε

)n+1

(1− nε)(t1 . . . tn)ε/(1−nε).

Hence

r′pp (a) ≥
(

1− ε
1 + ε

)n+1

(1− nε)(t1 . . . tn)ε/(1−nε)

×K−nεp/(1−nε) ·min{r′′pp(a), (r′′p
p(a))1/(1−nε)}.

Since ε was an arbitrary positive number, we conclude that r′p(a) ≥ r′′p (a).
Theorem 3 is proved.

We now apply the previous result to the case of n-tuples of operators.
Let T = (T1, . . . , Tn) be an n-tuple of bounded operators in a Banach

space X. Define

‖T‖p = sup
x∈X
‖x‖=1

( n∑
j=1

‖Tjx‖p
)1/p

.

Equivalently, ‖T‖p is the norm of the operator T̃ : X → Xn
p , where Xn

p is the
direct sum of n copies of X endowed with the `p-norm, ‖x1 ⊕ . . . ⊕ xn‖ =
(
∑n
j=1 ‖xj‖p)1/p, and T̃ x = T1x ⊕ . . . ⊕ Tnx (for p = ∞ the definitions

are changed in the obvious way). Let T = (T1, . . . , Tn) ∈ B(X)n and S =
(S1, . . . , Sm) ∈ B(X)m. Denote by TS the mn-tuple

TS = (T1S1, . . . , T1Sm, T2S1, . . . , T2Sm, . . . , TnS1, . . . , TnSm).
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Further, let T 2 = TT and T k+1 = T · T k. With this notation we can state
the spectral radius formula in the familiar way:

Theorem 4. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting
operators in a Banach space X, and let 1 ≤ p ≤ ∞. Then

rp(T ) = lim
k→∞

‖T k‖1/kp .

P r o o f. We have

‖T k‖p = sup
‖x‖=1

[ ∑
|α|=k

(
k

α

)
‖Tαx‖p

]1/p
and

rp(T ) = lim
k→∞

[ ∑
|α|=k

(
k

α

)
‖Tα‖p

]1/(kp)
= lim
k→∞

max
|α|=k

[(
k

α

)
‖Tα‖p

]1/(kp)

= lim
k→∞

max
|α|=k

sup
‖x‖=1

[(
k

α

)
‖Tαx‖p

]1/(kp)
= lim
k→∞

sup
‖x‖=1

max
|α|=k

[(
k

α

)
‖Tαx‖p

]1/(kp)
= lim
k→∞

sup
‖x‖=1

[ ∑
|α|=k

(
k

α

)
‖Tαx‖p

]1/(kp)
= lim
k→∞

‖T k‖1/kp .

R e m a r k. For p = 2 and Hilbert space operators the previous result
was proved in [6]; cf. also [3].
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