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Selfadjoint operator matrices with finite rows
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Dedicated to the memory of our Professor and Master W lodzimierz Mlak

Abstract. A generalization of the Carleman criterion for selfadjointness of Jacobi
matrices to the case of symmetric matrices with finite rows is established. In particular,
a new proof of the Carleman criterion is found. An extension of Jørgensen’s criterion
for selfadjointness of symmetric operators with “almost invariant” subspaces is obtained.
Some applications to hyponormal weighted shifts are given.

Introduction. Symmetric Jacobi type matrices with matrix entries ap-
pear in several branches of analysis (cf. [2]). In particular, certain unbounded
Toeplitz operators in the Segal–Bargmann space are induced by such ma-
trices (cf. [8]). One of the basic questions of the theory of Jacobi matrices is
when they induce selfadjoint operators. The classical criterion due to Carle-
man provides sufficient conditions for their selfadjointness in the scalar case
(cf. [2, 3, 12]).

In the present paper we propose a direct approach to the above question.
Our method of solving it works not only for Jacobi matrices but also for so
called locally band matrices (i.e. matrices with finite rows and columns). We
prove that a Carleman type condition is still sufficient for selfadjointness
of such martices provided that their nonzero entries are suitably located
(cf. Theorem 2.3). In particular, it is sufficient for selfadjointness of band
matrices (cf. Corollary 2.5); the latter is implicitly contained in [9] and [10]
(see Section 3 for more details).

Band matrices with scalar entries have been exploited in the theory of
splines (cf. [5]). Note that a special class of non-symmetric locally band
matrices has recently appeared in the context of locally finite decomposition
of spline spaces (cf. [4]).
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We should also mention the paper [11] of Professor Mlak devoted to
the study of “real” parts of unbounded weighted shifts, where the Carleman
criterion has been explicitly used. We extend his results to the case of “real”
parts of polynomials of unbounded hyponormal weighted shifts (which are
induced by band matrices).

1. Preliminaries. From now on:

• N = {0, 1, 2, . . .}, N1 = {1, 2, . . .}, R+ = {t ∈ R : t > 0},
• [a, b) = {t ∈ R : a ≤ t < b}, [a, b] = {t ∈ R : a ≤ t ≤ b}, −∞ < a, b

≤ ∞,
• χE is the indicator function of a set E,
• |E| is the cardinal number of a set E.

If X is a subset of a complex Hilbert space H, we denote by LINX the linear
span of X . If T is a linear operator in H, we denote by D(T ) its domain
and by N (T ) its kernel; T and T ∗ stand for the closure and the adjoint of
T , respectively. We say that a symmetric operator is essentially selfadjoint
if its closure is selfadjoint.

Let H =
∑∞
n=0⊕Hn be the orthogonal sum of complex Hilbert spaces

Hn, n ∈ N. Assume that we are given bounded linear operators Ai,j acting
from Hj into Hi, i, j ∈ N. Define A+

i,j = A∗j,i, i, j ∈ N. An operator ma-
trix [Ai,j ] is said to be symmetric if Ai,j = A+

i,j for all i, j ∈ N. We can
associate the operator A in H with the operator matrix [Ai,j ] as follows:
f =

∑∞
n=0⊕fn ∈ D(A) if and only if for each n ∈ N, the series

∑∞
k=0An,kfk

is weakly convergent and
∑∞
n=0 ‖

∑∞
k=0An,kfk‖2 <∞; for such f we define

Af =
∑∞
n=0⊕ (

∑∞
k=0An,kfk). Denote by A+ the operator associated with

the matrix [A+
i,j ]. In what follows F(H) stands for the linear space of all vec-

tors f =
∑∞
n=0⊕fn such that fn = 0 for all but a finite number of indices n.

In case F(H) ⊆ D(A) we set

A0 := A|F(H).

The following result, which is known in case of scalar matrices (cf. [12, 14]),
will be used in the proof of Theorem 2.3.

Theorem 1.1. (i) If
∑∞
j=0 ‖Aj,k‖2 < ∞ for every k ∈ N, then F(H) ⊆

D(A), A+ is closed and A∗ ⊆ A+ = A∗0.
(ii) If both sums

∑∞
j=0 ‖Aj,k‖2 and

∑∞
j=0 ‖Ak,j‖2 are finite for every

k ∈ N, then A is closed and densely defined.

P r o o f. (i) If f = fk ∈ Hk, then
∑∞
j=0An,jfj = An,kfk and

∞∑
n=0

∥∥∥ ∞∑
j=0

An,jfj

∥∥∥2

≤ ‖fk‖2
∞∑
n=0

‖An,k‖2 <∞.
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Thus F(H) ⊆ D(A). To prove that A+ ⊆ A∗0, take g ∈ D(A+). Then

(A0fk, g) =
∞∑
n=0

(An,kfk, gn) =
(
fk,

∞∑
n=0

A∗n,kgn

)
= (fk,A+g), fk ∈ Hk.

Hence (A0f, g) = (f,A+g) for all f ∈ F(H) and g ∈ D(A+). Consequently,
A+ ⊆ A∗0. To prove the opposite inclusion, take g ∈ D(A∗0). Then

(fk, QkA∗0g) = (A0fk, g) =
∞∑
n=0

(fk, A∗n,kgn), fk ∈ Hk,

whereQk is the orthogonal projection ofH ontoHk. Therefore
∑∞
n=0A

∗
n,kgn

= QkA∗0g (weak convergence) and
∞∑
k=0

∥∥∥ ∞∑
n=0

A∗n,kgn

∥∥∥2

= ‖A∗0g‖2 <∞,

which means that g ∈ D(A+) and

A∗0g =
∞∑
k=0

⊕QkA∗0g = A+g.

Since A0 ⊆ A, we get A∗ ⊆ A∗0 = A+.
(ii) Moreover, if for every i ∈ N

∑∞
j=0 ‖Ai,j‖2 < ∞, then

∑∞
j=0 ‖A

+
j,i‖2

< ∞. Applying (i) to the operator A+, we get F(H) ⊆ D(A+) and A =
(A+|F(H))∗. Hence A is closed and densely defined, as F(H) ⊆ D(A).

Corollary 1.2. If the matrix [Ai,j ] is symmetric and
∑∞
m=0 ‖Am,n‖2

<∞ for every n ∈ N, then the following conditions are equivalent :

(i) A0 is essentially selfadjoint ,
(ii) A0 = A,
(iii) A is selfadjoint ,
(iv) A is symmetric.

In case {en}∞n=0 is a fixed orthonormal basis of H and [ai,j ] is a scalar
matrix, we denote by A the operator associated with the operator matrix
[Ai,j ] (via the orthogonal decomposition H =

∑∞
n=0⊕C · en) defined by

Ai,j(ej) := ai,j · ei, i, j ∈ N.

Similarly we define A0. We do note indicate the dependence of A on the
orthonormal basis {en}∞n=0, hoping no confusion can arise.

2. Main result. In this section we present some sufficient conditions
for a symmetric locally band matrix with operator entries to be essentially
selfadjoint.
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Given a matrix [Ai,j ], we write Aj(n) := An,j+n for j, n ∈ N, and

γN = γN (A) = sup{‖Aj(n)‖ : j ≥ 1, N − j + 1 ≤ n ≤ N}
= sup{‖Ai,j‖ : 0 ≤ i ≤ N, j ≥ N + 1}

for N ≥ 0; here we adopt the convention that Aj(n) = 0 for n < 0. In other
words, {An(k)}∞k=0 is the nth upperdiagonal of the matrix [Ai,j ].

Definition 2.1. A matrix [Ai,j ] is said to be locally band if for each
i ∈ N, there exists k ∈ N such that Ai,j = Aj,i = 0 for every j ≥ k; [Ai,j ] is
said to be a band matrix (of width s ∈ N) if Ai,j = 0 for all i, j ∈ N such
that |i− j| > s.

We say that ω : N1 → N∪{∞} is a barrier of a symmetric matrix [Ai,j ] if

(2.1) Aj(n) = 0, n < ω(j), j ∈ N1.

Note that a symmetric matrix [Ai,j ] is locally band if and only if it has a
barrier ω such that limn→∞ ω(n) = ∞. If this is the case, one can always
find a barrier ω of [Ai,j ] of the form

(2.2) ω(j) =
∞∑
k=0

ωkχ[τk,τk+1)(j), j ∈ N1,

where {τk}∞k=0 and {ωk}∞k=0 are strictly increasing sequences in N with
τ0= 1. It is convenient to call any such pair ({τk}∞k=0, {ωk}∞k=0) a barrier
of [Ai,j ].

The problem of selfadjointness of symmetric matrices splits into two
disjoint cases: either γN = 0 for infinitely many N ’s or there exists N0 ≥ 0
such that γN > 0 for N ≥ N0. In the first case we have the following result.

Proposition 2.2. If [Ai,j ] is a symmetric matrix such that γN = 0
for infinitely many N ’s, then [Ai,j ] is locally band , A = A0 and A0 is
selfadjoint.

It is easy to check that the matrix [Ai,j ] in Proposition 2.2 must be
locally band. Its selfadjointness as well as the main result of the paper
(Theorem 2.3) will be proved together.

Theorem 2.3. Let [Ai,j ] be a symmetric matrix with a barrier ω and let
{σk}∞k=0 ⊆ R+ be a decreasing sequence such that (1)

(2.3)
∞∑
k=0

σk|ω−1(k)| supω−1(k) <∞.

(1) We adopt the convention that sup ∅ = 0.
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If there exists N0 ≥ 0 such that γN > 0 for N ≥ N0 and

(2.4)
∞∑

N=N0

σN/γN =∞,

then A = A0 and A0 is essentially selfadjoint.

P r o o f. It follows from (2.3) that [Ai,j ] is locally band. Hence, in virtue
of Corollary 1.2, it is sufficient to show that

(2.5) (Af, g) = (f,Ag), f, g ∈ D(A).

Take f, g ∈ D(A). Define αN = (Af,
∑N
j=0⊕gj) and βN = (

∑N
j=0⊕fj ,Ag)

for N ≥ 0. It is clear that

(2.6) |(Af, g)− (f,Ag)| = lim
N→∞

|αN − βN |.

Using the symmetry of [Ai,j ], one can check that

αN =
N∑
n=0

( ∞∑
j=1

(Aj(n− j)∗fn−j , gn)+(A0(n)fn, gn)+
∞∑
j=1

(Aj(n)fn+j , gn)
)
,

βN =
N∑
n=0

( ∞∑
j=1

(fn, Aj(n− j)∗gn−j)+(A0(n)fn, gn)+
∞∑
j=1

(fn, Aj(n)gn+j)
)
.

Changing the order of summation and regrouping terms suitably, we get

(2.7) αN − βN

=
∞∑
j=1

N∑
n=N−j+1

((Aj(n)fn+j , gn)− (fn, Aj(n)gn+j)), N ≥ 0.

By (2.5) and (2.6) we are reduced to proving that limN→∞ |αN − βN | = 0.
Suppose, contrary to our claim, that there exist r > 0 and N0 ≥ 1 such that

(2.8) |αN − βN | ≥ r, N ≥ N0.

Let ∆j,n = ‖fn‖ ·‖gn+j‖+‖fn+j‖ ·‖gn‖. It follows from (2.1) and (2.7) that

|αN − βN | ≤
∞∑
j=1

N∑
n=N−j+1

χ[ω(j),∞)(n)‖Aj(n)‖∆j,n

≤ γN
∞∑
j=1

N∑
n=N−j+1

χ[ω(j),∞)(n)∆j,n, N ≥ N0.

The above inequalities and (2.8) imply

(2.9) 0 < r ≤ γN
∞∑
j=1

N∑
n=N−j+1

χ[ω(j),∞)(n)∆j,n, N ≥ N0.
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Now there are two possibilities: either γN = 0 for infinitely many N ’s, which
contradicts (2.9), or γN > 0 for N large enough, say for N ≥ N0. The latter
and (2.9) imply, via the monotonicity of {σk}∞k=0, that

r

∞∑
N=N0

σN
γN
≤

∞∑
N=N0

∞∑
j=1

N∑
n=N−j+1

σNχ[ω(j),∞)(n)∆j,n

≤
∞∑
j=1

∞∑
N=0

N∑
n=N−j+1

σNχ[ω(j),∞)(n)∆j,n

=
∞∑
k=0

∑
j∈ω−1(k)

∞∑
N=0

N∑
n=N−j+1

σNχ[ω(j),∞)(n)∆j,n

=
∞∑
k=0

∑
j∈ω−1(k)

∞∑
n=0

∞∑
N=0

σNχ[k,∞)(n)χ[N−j+1,N ](n)∆j,n

=
∞∑
k=0

∑
j∈ω−1(k)

∞∑
n=k

∞∑
N=0

σNχ[n,n+j−1](N)∆j,n

=
∞∑
k=0

∑
j∈ω−1(k)

∞∑
n=k

n+j−1∑
N=n

σN∆j,n

≤
∞∑
k=0

∑
j∈ω−1(k)

∞∑
n=k

jσn∆j,n

≤
∞∑
k=0

( ∑
j∈ω−1(k)

j
)
σk

∞∑
n=k

(‖fn‖ · ‖gn+j‖+ ‖fn+j‖ · ‖gn‖)

≤
∞∑
k=0

( ∑
j∈ω−1(k)

j
)
σk

(√√√√ ∞∑
n=k

‖fn‖2

√√√√ ∞∑
n=k

‖gn+j‖2

+

√√√√ ∞∑
n=k

‖fn+j‖2

√√√√ ∞∑
n=k

‖gn‖2
)

≤ 2‖f‖ · ‖g‖
∞∑
k=0

σk|ω−1(k)| supω−1(k).

The next to last inequality is a consequence of the Cauchy–Schwarz inequal-
ity in `2. Hence, by (2.3), the series

∑∞
N=N0

σN/γN is convergent, which
contradicts our assumption (2.4). This completes the proof.

Corollary 2.4. Let [Ai,j ] be a symmetric matrix with a barrier
({τk}∞k=0, {ωk}∞k=0) and let {σk}∞k=0 ⊆ R+ be a decreasing sequence such
that
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(2.10)
∞∑
k=0

(τk+1 − τk)τk+1σωk
<∞.

If there exists N0 ≥ 0 such that γN > 0 for N ≥ N0 and

(2.11)
∞∑

N=N0

σN/γN =∞,

then A = A0 and A0 is essentially selfadjoint.

Our main result can be immediately applied to band matrices.

Corollary 2.5. Assume that [Ai,j ] is a symmetric band matrix. If there
exists N0 ≥ 0 such that γN > 0 for N ≥ N0 and

(2.12)
∞∑

N=N0

1/γN =∞,

then A = A0 and A0 is essentially selfadjoint.

P r o o f. Apply Theorem 2.3 with σ(n) = 1 for n ∈ N, ω(n) = 0 for
1 ≤ n ≤ s and ω(n) = ∞ for n > s, s being the width of the band matrix
[Ai,j ].

The Carleman criterion for selfadjointness of Jacobi matrices [3] as well
as the Berezanskĭı one for selfadjointness of operator Jacobi matrices [2] are
special cases of Corollary 2.5. All these criteria for essential selfadjointness
of operators induced by matrices are independent of their main diagonals.

3. Symmetric operators with “almost invariant” subspaces. In
this section we infer from our main result some criteria for essential selfad-
jointness of symmetric operators possessing a chain of “almost invariant”
subspaces. This part of the paper is closely related to some results of Jør-
gensen (cf. [9, 10]).

We begin with an observation that Corollary 2.5 is equivalent to a re-
sult of Jørgensen (cf. [9, Th. 2]), which can be formulated for symmetric
operators as follows.

Proposition 3.1. Assume that L is a symmetric operator in H with do-
main

⋃∞
j=0Kj , where {Kj}∞j=0 is an increasing sequence of closed subspaces

of H such that for some m ≥ 1, LKj ⊆ Kj+m for every j ≥ 0. If (2)

(3.1)
∞∑
n=0

1
‖P⊥n LPn‖

=∞,

(2) The condition (3.1) means that either ‖P⊥n LPn‖ = 0 for infinitely many n’s or
‖P⊥n LPn‖ > 0 for n ≥ n0 and

∑∞
n=n0 1/‖P⊥n LPn‖ =∞.
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then L is essentially selfadjoint (Pn being the orthogonal projection of H
onto Kn).

To explain the equivalence of Corollary 2.5 and Proposition 3.1 notice
that if L is as in Proposition 3.1, then L = A0, where A0 is the operator
associated with the band matrix [Ai,j ] of width m defined by Ai,j = QiL|Hj

;
here Qi is the orthogonal projection of H onto Hi := Ki 	 Ki−1 (Ai,j is
bounded by the closed graph theorem). Conversely, if [Ai,j ] is a band matrix
of width m ≥ 1, then L := A0 satisfies the condition LKj ⊆ Kj+m with
Kj =

∑j
i=0⊕Hi.

By the above one-to-one correspondence the operator P⊥n L|Kn
has the

operator m × m-matrix representation [An+i,n−m+j ]mi,j=1. Consequently,
there exists a constant Cm (depending only on m) such that

γn(A) ≤ ‖P⊥n LPn‖ ≤ Cmγn(A), n ∈ N.

Therefore, the conditions (2.12) and (3.1) are equivalent.
Notice that also Corollary 2.4 has its counterpart in Jørgensen’s lan-

guage.

Theorem 3.2. Let L be a symmetric operator in H with domain
⋃∞
j=0Kj ,

where {Kj}∞j=0 is an increasing sequence of closed subspaces of H such that

LKj ⊆ Kj+τk
, ωk ≤ j < ωk+1, k ∈ N,(3.2)

∞∑
k=0

(τk+1 − τk)τk+1σωk
<∞,(3.3)

for some decreasing sequence {σk}∞k=0 ⊆ R+ and for some strictly increasing
sequences {τk}∞k=0 ⊆ N1 and {ωk}∞k=0 ⊆ N with ω0 = 0. If (3)

(3.4)
∞∑
n=0

σn
‖P⊥n LPn‖

=∞,

then L is essentially selfadjoint (Pn being the orthogonal projection of H
onto Kn).

Let A0 be the operator associated with the locally band matrix [Ai,j ] de-
fined as in the paragraph following Proposition 3.1. Then ({νk}∞k=0, {ωk}∞k=0)
is the barrier of [Ai,j ] with νk = τk−1 + 1 for k ≥ 1 and ν0 = 1. One can
easily check that the series

∑∞
k=0(νk+1 − νk)νk+1σωk

is convergent. On the
other hand, γn(A) ≤ ‖P⊥n LPn‖, so the series

∑∞
n=0 σn/γn(A) is divergent.

Since L = A0, Theorem 3.2 follows from Corollary 2.4.
We conclude this section with an example which shows that Theorem 3.2

does not imply Corollary 2.4.

(3) See footnote (2).
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Example 3.3. Define a symmetric locally band matrix [Ai,j ] as follows:

Ak+1(j) =
{

0, 0 ≤ j < k3,
1, j ≥ k3,

k ∈ N,

and A0(j) = 1 for j ∈ N. Its barrier is given by τk = k+ 1 and ωk = k3. Set
σn = (n+1)−1. Then the series

∑∞
k=0 σk/γk(A) is divergent while the series∑∞

k=0(τk+1−τk)τk+1σωk
is convergent, so by Corollary 2.4, A is selfadjoint.

We claim that there is no decreasing sequence {σ̃n}∞n=0 ⊆ R+ such that
∞∑
k=0

(τk+1 − τk)τk+1σ̃ωk
<∞,(3.5)

∞∑
n=0

σ̃n
‖P⊥n LPn‖

=∞.(3.6)

For if not, we proceed as follows. Denote by Mk, k ∈ N1, the uppertrian-
gular k×k matrix given by (Mk)i,j = 1 for i ≤ j and (Mk)i,j = 0 otherwise.
Analyzing the form of the matrix Bn associated with P⊥n LPn one can easily
see that for k large enough, the matrix Bn always “contains” the right upper
triangle [(Mk)i,j ]i≤j of Mk, provided k3 ≤ n < (k + 1)3. This and the fact
that Bn has only 0, 1-entries imply that there is a constant c > 0 such that

(3.7) ‖P⊥n LPn‖ ≥
‖Mk(e)‖
c‖e‖

≥ k + 1
3c

, k ∈ N1, k
3 ≤ n < (k + 1)3,

where e = (1, . . . , 1). Applying (3.7), the monotonicity of {σ̃n}∞n=0 and (3.5),
we get

∞∑
n=1

σ̃n
‖P⊥n LPn‖

=
∞∑
k=1

(k+1)3−1∑
n=k3

σ̃n
‖P⊥n LPn‖

≤ 3c
∞∑
k=1

(k+1)3−1∑
n=k3

σ̃n
k + 1

≤ 3c
∞∑
k=1

(k + 1)3 − k3

k + 1
σ̃k3 ≤ 9c

∞∑
k=1

(k + 1)σ̃k3

≤ 9c
∞∑
k=1

(τk+1 − τk)τk+1σ̃ωk
<∞,

which contradicts (3.6).

R e m a r k 3.4. Notice that the operator A0 associated with a band ma-
trix [Ai,j ] is bounded if and only if supi,j ‖Ai,j‖ <∞; if this happens, then

‖A‖ ≤ (2s+ 1) sup
i,j
‖Ai,j‖,

where s is the width of [Ai,j ]. This is no longer true for locally band matri-
ces. Indeed, by (3.7), the matrix from Example 3.3 induces an unbounded
selfadjoint operator A, though its entries are uniformly bounded.
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4. Locally band matrices with tempered growth. It is clear that
the operator A0 associated with a symmetric locally band matrix [Ai,j ]
is always symmetric and A0(D(A0)) ⊆ D(A0). It turns out that every
symmetric operator with invariant domain in a separable Hilbert space has
a matrix representation which is locally band. Moreover, this matrix can be
chosen in such a way that its barrier is as good as we wish. The following
result has been inspired by [13] (see also [6, Problem 36]).

Proposition 4.1. Let S be a symmetric operator in a separable Hilbert
space H such that S(D(S)) ⊆ D(S). Take ω : N1 → N such that ω(1) = 0.
Then there is an orthonormal basis {en}∞n=0 ⊆ D(S) such that the matrix
ai,j := (Sej , ei) is locally band , ω is a barrier of [ai,j ] and S = A0.

P r o o f. We can assume thatH is infinite-dimensional. SinceH⊕H is sep-
arable, so is the graph Γ (S) of S. Hence, there is a sequence {hn}∞n=0⊆D(S)
such that {(hn, Shn)}∞n=0 is dense in Γ (S). Since the algebraic dimension of
F := LIN {hn}∞n=0 is ℵ0, we can apply the Schmidt ortonormalization pro-
cedure to get an orthonormal basis {fn}∞n=0 such that F = LIN {fn}∞n=0.
However, {(hn, Shn)}∞n=0 ⊆ Γ (S|F ) ⊆ Γ (S), so we have

(4.1) S = (S|F )−.

Modifying ω if necessary we may assume that ω is of the form (2.2),
where {ωk}∞k=0 ⊆ N is strictly increasing, ω0 = 0 and τk = k + 1, k ∈ N.

It is clear that if K is a finite-dimensional subspace ofD(S) and g ∈ D(S),
then there is e ∈ D(S) such that ‖e‖ = 1, e is orthogonal to K and g ∈
LIN (K∪{e}). Using repeatedly this fact and the induction procedure one can
construct (4) an orthonormal sequence {en}∞n=0 ⊆ D(S) such that e0 = f0,
fk ∈ LIN {e0, . . . , eωk+k} and Sem ∈ LIN {e0, . . . , em+k} for ωk−1 ≤ m < ωk
and k ∈ N1. Since {fn}∞n=0 ⊆ E := LIN {en}∞n=0, we conclude that {en}∞n=0

is an orthonormal basis of H and (S|F )− ⊆ (S|E)− ⊆ S, so, by (4.1), we
have

(4.2) S = (S|E)−.
It follows from the construction of {en}∞n=0 that the matrix [ai,j ] is locally
band and that ω is its barrier. It is easily seen that A0 = S|E , so by (4.2)
we have S = A0.

If S is a symmetric operator with invariant domain in a separable Hilbert
space, {τk}∞k=0 ⊂ N is a strictly increasing sequence with τ0 = 1 and
{σk}∞k=0⊂R+ is a decreasing sequence which is convergent to 0, then there
is a subsequence {σωk

}∞k=0 such that (2.10) holds and ω0 = 0. By Proposi-
tion 4.1, there is an orthonormal basis {en}∞n=0 ⊆ D(S) such that the matrix
ai,j := (Sej , ei) is locally band, ({τk}∞k=0, {ωk}∞k=0) is a barrier of [ai,j ] and

(4) See [6, Problem 36] for a special case of this construction.
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S = A0. In other words, for every such sequence {σk}∞k=0 we can always
find a matrix representation of S with a barrier satisfying (2.10); therefore
the question is whether (2.11) holds.

In general, it is not true that symmetric operators with invariant domains
in a separable Hilbert space have band matrix representations. This is a
consequence of the following

Proposition 4.2. If [ai,j ] is a band matrix of width s with scalar entries,
then the deficiency indices of A0 are both less than or equal to s. If moreover
ai,j ∈ R for all i, j ∈ N, then the deficiency indices of A0 coincide.

In the proof of Proposition 4.2 we use the following result of general
nature.

Lemma 4.3. Let f1, . . . , fk be linearly independent vectors in a Hilbert
space H and let {Tn}∞n=0 be a sequence of bounded linear operators in H
strongly convergent to the identity operator I. Then there is n0 ∈ N such
that for every n ≥ n0, the vectors Tnf1, . . . , Tnfk are linearly independent.

P r o o f. Suppose, contrary to our claim, that there is an infinite subset
E of N such that for every n ∈ E, the vectors Tnf1, . . . , Tnfk are linearly
dependent. Thus for every n ∈ E, there exists ~vn = (λn,1, . . . , λn,k) ∈ Sk
such that

(4.3)
k∑
j=1

λn,jTnfj = 0, n ∈ E,

where Sk is the unit sphere of Ck. Since Sk is compact, we can assume
without loss of generality (passing to a subsequence, if necessary), that the
sequence {~vn}n∈E is convergent to some ~v = (λ1, . . . , λk) ∈ Sk. This and
(4.3) imply that

∑k
j=1 λj fj = 0, which contradicts the linear independence

of f1, . . . , fk.

P r o o f o f P r o p o s i t i o n 4.2. Without loss of generality we may as-
sume that H = `2. Denote by Pn the orthogonal projection of `2 onto
Cn+1 ⊕ {0}. Then clearly {Pn}∞n=0 is strongly convergent to the identity
operator I.

Suppose, contrary to our claim, that dimN (A ± i I) = dimN (A∗0 ±
i I) ≥ s+ 1 (the equality follows from Theorem 1.1). By Lemma 4.3, there
is n ≥ 0 such that dimPn+sN (A ± i I) ≥ s + 1. However, Pn+sN (A ±
i I) ⊆ N (M±)⊕{0}, where M± = [ai,j ± i δi,j ]ni=0

n+s
j=0 (δi,j is the Kronecker

symbol). Consequently,

(4.4) dimN (M±) ≥ s+ 1.

Since the matrix [ai,j ]ni,j=0 is symmetric, we have rank [ai,j ± i δi,j ]ni,j=0 =
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n+1 and consequently rankM± = n+1. By the Kronecker–Capelli theorem
we obtain dimN (M±) = (n+s+1)−rankM± = s, which contradicts (4.4).

If ai,j ∈ R for all i, j ∈ N, then the antilinear operator J on `2 defined
by J({λn}∞n=0) = {λn}∞n=0 is a conjugation such that JA0 ⊆ A0J . Con-
sequently, JA0 ⊆ A0J , so by the von Neumann theorem, the deficiency
indices of A0 coincide.

By the above discussion, we may concentrate on symmetric locally band
matrices [Ai,j ] with operator entries and with a barrier ({τk}∞k=0, {ωk}∞k=0)
satisfying

(4.5) τk+1 − τk ≤ C, k ∈ N,

for some positive constant C. We show that if γn = O(n1−ε) with some
ε ∈ (0, 1] and {ωk}∞k=0 is of polynomial growth or if γn = O(n) and {ωk}∞k=0

is of exponential growth, then A is selfadjoint.

Proposition 4.4. Let ε ∈ (0, 1] and s > 2/ε. Suppose that (4.5) holds.
If [Ai,j ] is a symmetric matrix which satisfies

Aj(n) = 0, τk ≤ j < τk+1, n < ks,(i)
γn = O(n1−ε),(ii)

then A = A0 is selfadjoint.

P r o o f. Let ωk be the largest integer less than or equal to ks, k ∈ N,
and let σn = 1/(n+ 2)ε. Then ({τk}∞k=0, {ωk}∞k=0) is a barrier of [Ai,j ] and

∞∑
k=0

(τk+1 − τk)τk+1σωk
≤ C2

∞∑
k=0

k + 2
(k + 1)sε

<∞,

because sε > 2. It is easily seen that the series
∑∞
n=0 σn/γn is divergent.

Hence the conclusion follows from Corollary 2.4.

Proposition 4.5. Let ε > 0. Suppose that (4.5) holds. If [Ai,j ] is a
symmetric matrix which satisfies

Aj(n) = 0, τk ≤ j < τk+1, n < exp(k2+ε),(i)
γn = O(n),(ii)

then A = A0 is selfadjoint.

P r o o f. Let ωk be the largest integer less than or equal to exp(k2+ε),
k ∈ N, and let σn = 1/ ln(n + 1) for n ∈ N1. Then ({τk}∞k=0, {ωk}∞k=0) is a
barrier of [Ai,j ] and

∞∑
k=1

(τk+1 − τk)τk+1σωk
≤ C2

∞∑
k=1

k + 2
k2+ε

<∞.
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Since
∑∞
n=1 1/(n ln(n+ 1)) is divergent, so is

∑∞
n=0 σn/γn. Hence the con-

clusion follows from Corollary 2.4.
Note that for every symmetric matrix [Ai,j ] satisfying the growth con-

dition (2.12) and for all s ∈ N1, the operator B associated with the band
matrix [Bi,j ] given by Bk,l = Ak,l for |k− l| ≤ s and Bk,l = 0 for |k− l| > s
is selfadjoint (this is obvious by Corollary 2.5). Even more, we can cut out
from [Ai,j ] a symmetric locally band matrix of quite general form which also
induces a selfadjoint operator.

Proposition 4.6. Let [Ai,j ] be a symmetric matrix satisfying the condi-
tion (2.12) and let {τk}∞k=0 ⊆ N be a strictly increasing sequence with τ0 = 1.
Then there is a strictly increasing sequence (5) {ωk}∞k=0 ⊆ N such that the
operator B associated with the symmetric matrix [Bi,j ] defined by

Bj(n) =
{

0, n < ωk, τk ≤ j < τk+1, k ∈ N,
Aj(n), otherwise,

is selfadjoint.

P r o o f. It follows from (2.12) that there is a decreasing sequence {σn}∞n=0

⊆ R+ such that limn→∞ σn = 0 and
∑∞
n=N0

σn/γn = ∞. Since σn → 0,
there exists a subsequence {σωk

}∞k=0 such that (2.10) holds. It is clear that
({τk}∞k=0, {ωk}∞k=0) is a barrier of the symmetric matrix [Bi,j ]. Therefore the
conclusion follows from Corollary 2.4.

5.Weighted shifts. Let {en}∞n=0 be an orthonormal basis inH. Denote
by E the linear span of {en}∞n=0. Given a sequence {λn}∞n=0 ⊂ C, denote by
D the (normal) diagonal operator with the diagonal elements λn (Den =
λnen), and by U the (isometric) unilateral shift (Uen = en+1). The operator
S = UD is called the (unilateral) weighted shift with weights {λn}∞n=0. It is
clear that S is injective if and only if λn 6= 0 for all n. Recall that a densely
defined linear operator T in H is said to be hyponormal if D(T ) ⊆ D(T ∗)
and ‖T ∗f‖ ≤ ‖Tf‖ for f ∈ D(T ). It is well known that a weighted shift
is hyponormal if and only if the sequence {|λn|}∞n=0 is increasing. Thus
every hyponormal weighted shift S can be written as S0 ⊕ S1, where S0

is the zero operator and S1 is a hyponormal injective weighted shift (more
precisely, if S 6= 0 is not injective, then there is n ∈ N such that S0 acts on
LIN {e0, . . . , en}). Hence there is no loss of generality in assuming that all
hyponormal weighted shifts under consideration are injective.

Before stating the main result of this section, we prove a few selected
facts concerning powers of hyponormal weighted shifts.

(5) In fact, for each fixed n ≥ 0, its entries ω0, . . . , ωn can be chosen arbitrarily.
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Proposition 5.1. If m ≥ 1 and S is a hyponormal weighted shift with
weights {λn}∞n=0, then Sm is hyponormal and

D(Sm) =
{
f ∈ H :

∞∑
n=0

|(f, en)λn . . . λn+m−1|2 <∞
}
,(i)

Smf =
∞∑
n=0

(f, en)λn . . . λn+m−1en+m, f ∈ D(Sm),(ii)

D((Sm)∗) =
{
f ∈ H :

∞∑
n=0

|(f, en)λn−1 . . . λn−m|2 <∞
}
,(iii)

(Sm)∗f =
∞∑
n=0

(f, en)λn−1 . . . λn−men−m, f ∈ D((Sm)∗),(iv)

(Sm)∗ = (S∗)m,(v)
lim
n→∞

SmPnf = Smf, f ∈ D(Sm),(vi)

lim
n→∞

(Sm)∗Pnf = (Sm)∗f, f ∈ D((Sm)∗),(vii)

where Pn is the orthogonal projection of H onto LIN {e0, . . . , en}.

P r o o f. Since S is hyponormal, the sequence {|λn|}∞n=0 is increasing.
The latter can be used to show that Sm = UmDm, where Dm is the di-
agonal operator given by Dmek = λk . . . λk+m−1ek, k ∈ N. This directly
implies conditions (i) through (iv) (because (Sm)∗ = D∗mU

∗m). Exploiting
the monotonicity of {|λn|}∞n=0, we obtain D(Sm) ⊆ D((Sm)∗). Similarly, by
(ii) and (iv), we have ‖(Sm)∗f‖2 ≤ ‖Smf‖2 for f ∈ D(Sm), which proves
the hyponormality of Sm. The conditions (vi) and (vii) follow easily from
formulas (i) through (iv).

To prove (v) take f ∈ D((Sm)∗). Then, by the monotonicity of {|λn|}∞n=0,
there exists a positive constant C such that

∞∑
n=0

|(f, en)λn−1 . . . λn−j |2 ≤ C
∞∑
n=0

|(f, en)λn−1 . . . λn−m|2 <∞,

for j = 1, . . . ,m. Applying (iii) we get f ∈ D((S∗)m), which completes the
proof.

The next result concerns real parts of operators related to hyponormal
weighted shifts. Given a densely defined linear operator T in H such that
D(T ) ⊆ D(T ∗), we write ReT := (T + T ∗)/2. It is clear that ReT is sym-
metric. Below C[Z] stands for the algebra of all complex polynomials in one
variable Z.

Proposition 5.2. Let S be a hyponormal weighted shift. Then for every
nonzero p∈C[Z], we have D(p(S))⊂D(p(S)∗), D(Re p(S)) =D(Sdeg p) and
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(i) Re p(S)|E = Re p(S).

P r o o f. Let p =
∑m
j=0 αjZ

j with m = deg p. By Proposition 5.1, Sm is
hyponormal and (Sm)∗ = (S∗)m, so

D(p(S)) = D(Sm) ⊆ D((S∗)m) = D
( m∑
j=0

αj(S∗)j
)
⊆ D(p(S)∗).

Consequently, D(Re p(S)) = D(Sm).
To prove (i), take f ∈ D(p(S)). Then, by Proposition 5.1, SjPnf and

S∗jPnf tend to Sjf and S∗jf , respectively, as n → ∞ (j = 0, . . . ,m).
Therefore Re p(S)Pnf tends to Re p(S)f as n → ∞, which completes the
proof.

Here is an application of Corollary 2.5 to real parts of polynomials of
hyponormal weighted shifts.

Theorem 5.3. Let S be a hyponormal weighted shift with weights {λn}∞n=0.

(i) If
∑∞
n=0 |λn|−m =∞ for some m ≥ 1, then Re p(S) is selfadjoint for

all p ∈ C[Z] with deg p ≤ m.
(ii) If |λn| = O(lnn), then Re p(S) is selfadjoint for all p ∈ C[Z].

P r o o f. Since (ii) follows from (i), it is enough to prove (i). Considering,
if necessary, the hyponormal weighted shift tS and the polynomial p(t−1Z)
with suitable t ∈ C \ {0}, we may assume that λ0 = 1. Let p =

∑m
j=0 αjZ

j

be such that deg p ≥ 1. Adopting the convention that λj = 0 and ej = 0 for
j < 0, we get

p(S)en =
m∑
j=0

αjλn . . . λn+j−1en+j ,

p(S)∗en =
m∑
j=0

αjλn−1 . . . λn−jen−j

and consequently

2 Re p(S)en =
m∑
j=1

αjλn . . . λn+j−1en+j + 2 Reα0en

+
m∑
j=1

αjλn−1 . . . λn−jen−j .

It follows that [ai,j ] = [2(Re p(S)ej , ei)] is a symmetric band matrix of width
m with aj(n) = αjλn . . . λn+j−1, j = 1, . . . ,m. Since the sequence {|λn|}∞n=0



170 J. Janas and J. Stochel

is increasing and λ0 = 1, we get

γN ≤ max{|aj(n)| : 1 ≤ j ≤ m, N −m+ 1 ≤ n ≤ N}
≤ αmax{|λn+j−1|j : 1 ≤ j ≤ m, N −m+ 1 ≤ n ≤ N}
≤ α|λN+m−1|m, N ∈ N,

where α = max{|αj | : 0 ≤ j ≤ m}. This implies
∞∑
N=0

1
γN
≥ 1
α

∞∑
N=m−1

1
|λN |m

=∞.

Applying Proposition 5.2 and Corollary 2.5 we conclude that Re p(S) is
essentially selfadjoint.

The following result on Toeplitz operators in the Segal–Bargmann space
B1 has been proved by the first-named author in [7, Th. 3.4] using a different
method.

Corollary 5.4. If p ∈ C[Z] and deg p ≤ 2, then the Toeplitz operator
TRe p is essentially (6) selfadjoint in B1.

P r o o f. Let {fn}∞n=0 be the canonical orthonormal basis of B1 and let
P := LIN {fn}∞n=0. Then (cf. [1]) the Toeplitz operator Tz defined by

Tzf(w) = wf(w), w ∈ C, f ∈ D(Tz),

is a hyponormal weighted shift with weights λn =
√
n+ 1, i.e. Tzfn = λnfn.

Since TRe p|P = Re p(Tz)|P and
∑∞
n=0 |λn|−2 = ∞, Proposition 5.2 and

Theorem 5.3 imply that TRe p|P is essentially selfadjoint. However, TRe p is
symmetric, so TRe p is essentially selfadjoint and (TRe p)− = (TRe p|P)−.

Note that the restriction on degrees of polynomials appearing in Theo-
rem 5.3 cannot be removed. Indeed, consider the monomial p = Z3 and the
weighted shift S with weights λn =

√
n+ 1, n ≥ 0. Then

∑∞
n=0 |λn|−2 =∞

and Re p(S) is not essentially selfadjoint. In fact, one can check (compare
with Example 3.6 in [7]) that the deficiency indices of Re p(S)|E are equal
to (3, 3). However, by Proposition 5.2, Re p(S)|E = Re p(S), so Re p(S) is
not essentially selfadjoint.

Theorem 5.3 can be generalized as follows. Denote by P the algebra of all
complex polynomials in two noncommuting variables X and Y . Then there
is a unique involution ∗ in P such that X∗ = Y . Set S = {p ∈ P : p = p∗}.
Theorem 5.5.Let S be a hyponormal weighted shift with weights {λn}∞n=0.

(i) If
∑∞
n=0 |λn|−m = ∞ for some m ≥ 1, then p(S, S∗)|E is selfadjoint

for all p ∈ S with deg p ≤ m.
(ii) If |λn| = O(lnn), then p(S, S∗)|E is selfadjoint for all p ∈ S.

(6) If deg p = 2, then the operator TRe p may not be closed (cf. [8, Ex. 6.2]).
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P r o o f. Once again we can concentrate on the proof of (i). Since p = p∗,
the operator p(S, S∗)|E is symmetric. If S1, . . . , Sj ∈ {S, S∗}, 1 ≤ j ≤ m,
then

S1 . . . Sjen = µ1 . . . µj en+k

for some µ1, . . . , µj ∈ {λn, . . . , λn+m−1, λn−1, . . . , λn−m} and k = |{i :
Si = S}| − |{i : Si=S∗}|. It is clear that −j ≤ k ≤ j. It follows that

p(S, S∗)en =
m∑

k=−m

αn,ken+k,

where αn,k is some finite linear combination of products of the form µ1 . . . µj
(j ≤ m) with coefficients that do not depend on n and k. We can now repeat
estimates from the proof of Theorem 5.3 and then apply Corollary 2.5.

A careful inspection of proofs shows that Propositions 5.1 and 5.2, and
Theorems 5.3 and 5.5 hold for those injective weighted shifts whose weights
are increasing for indices large enough.

We conclude this paper with the following observation. If [ai,j ] is a sym-
metric locally band matrix with scalar entries, then ai,j = (2 Reϕ(U)ej , ei)
(or equivalently A0 = 2 Reϕ(U)), where ϕ is the formal power series∑∞
j=0 Z

jDj , Dj is the diagonal operator with diagonal {dj,n}∞n=0 given by

dj,n =
{
aj(n), j ∈ N1,
1
2a0(n), j = 0, n ∈ N,

(i.e. Djen = dj,nen) and ϕ(U) is defined on D(ϕ(U)) =: E by ϕ(U)en =∑∞
j=0 dj,nen+j . It is clear that Dj , j ∈ N, are commuting normal operators.

Moreover, ϕ∗(U∗) ⊆ ϕ(U)∗, where ϕ∗ is the formal power series
∑∞
j=0D

∗
jZ

j

and ϕ∗(U∗) is defined on D(ϕ∗(U∗)) := E by ϕ∗(U∗)en =
∑∞
j=0 dj,n−jen−j .

The matrix [ai,j ] is a band matrix of width s if and only if ϕ is a polynomial
of degree less than or equal to s, i.e. ϕ =

∑s
j=0 Z

jDj .
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