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An attraction result and an index theorem
for continuous flows on Rn × [0,∞)

by Klaudiusz Wójcik (Kraków)

Abstract. We study the behavior of a continuous flow near a boundary. We prove
that if ϕ is a flow on E = Rn+1 for which ∂E = Rn × {0} is an invariant set and S ⊂ ∂E
is an isolated invariant set, with non-zero homological Conley index, then there exists an
x in E \ ∂E such that either α(x) or ω(x) is in S. We also prove an index theorem for a
flow on Rn × [0,∞).

1. Introduction. The aim of this paper is to present generalizations
of two theorems proved by Capietto and Garay (Ths. 1 and 2 of [Ca-Ga]).
These theorems apply only to flows generated by vector fields, whereas our
approach works for any continuous flow. It is based on the time-duality of
the Conley index proved by Mrozek and Srzednicki in [Mr-Srz]. Assume
E+ = Rn × [0,∞), ∂E = Rn × {0} and ϕ is a flow on E+ such that ∂E is
invariant. We are interested in the behavior of ϕ in a small vicinity of ∂E.
In many applications, subsets of ∂E which are ω-limit sets of points lying in
E+ \∂E play an important role. The motivation for the considered problem
comes from permanence theory. For more details, we refer the reader to [Ho],
[Ho1], [Ho-Si] and [Ca-Ga]. We also prove that if ϕ is a flow on E = Rn+1 for
which ∂E is invariant and S ⊂ ∂E is an isolated invariant set with respect
to the flow ϕ on E, with non-zero homological Conley index, then there
exists x in E \ ∂E such that either α(x) or ω(x) is in the set S.

2. Isolating blocks and the Conley index. We first give a brief
account of the Conley index. Let X be a locally compact, metric space and
T denote R or one of its subgroups of the form Zt0 for some t0 > 0. By a
dynamical system on X we mean a continuous function

ϕ : X × T 3 (x, t)→ xt ∈ X
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such that x0 = x and x(s + t) = (xs)t. The backward dynamical system is
defined as the map

X × T 3 (x, t)→ x(−t) ∈ X.
We call ϕ a flow if T = R, otherwise ϕ is called a discrete dynamical system.
If ϕ is a flow, then the restriction of ϕ to X × Zt is a discrete dynamical
system. If f : X → X is a homeomorphism then its iterates define a discrete
dynamical system

X × Z 3 (x, n)→ fn(x) ∈ X.
A set S⊂X is called invariant if ST = S. If N ⊂X, then the set S(N) =
{x ∈ N : xT ⊂ N} is the maximal invariant set contained in N . The set
N is called an isolating neighborhood if S(N) ⊂ intN . An invariant set S
is said to be isolated if there exists an isolating neighborhood N such that
S = S(N). If ϕ is a flow and S ⊂ X is compact, then by Th. 1 of [Mr2], S
is an isolated invariant set with respect to ϕ iff S is an isolated invariant set
with respect to ϕt = ϕ(∗, t) for all t > 0.

The definition of the Conley index is based on the notion of the index
pair (or isolating block for a flow). The pair P = (P1, P2) of closed subsets
of a neighborhood N isolating S is called an index pair if the following three
conditions are satisfied:

(1) x ∈ Pi, x[0, t] ⊂ N ⇒ x[0, t] ⊂ Pi for i = 1, 2;
(2) if x ∈ Pi, t > 0, and xt is not in N then there exists t1 < t such that

x[0, t1] ⊂ N and xt1 ∈ P2;
(3) S ⊂ int(P1 \ P2).

This definition was introduced in the continuous case by Conley in [Co]
and in the discrete case by Mrozek in [Mr1]. Assume H∗ is the Alexander–
Spanier cohomology functor with real coefficients. We recall that in the
continuous case H∗(P1, P2) depends only on the isolated invariant set S
and it is by definition the cohomological Conley index of S. In the discrete
case it was proved in [Mr1] that L(H∗(P1, P2), I(P1,P2)) depends only on
S, where L is the Leray functor and I(P1,P2) is the index map (introduced
in [Mr1]). By Mrozek’s results (see [Mr2]) if ϕ is flow on X, f = ϕt for
some t > 0 and S is an isolated invariant set with respect to ϕ, then the
distinguished isomorphism in the Conley index of S with respect to f is the
identity and the cohomological Conley index of an isolated invariant set of
a flow ϕ coincides with the corresponding index with respect to the discrete
dynamical system ϕt for any t > 0.

Now we describe the notion of an isolating block (for a flow). Recall that
a set Σ ⊂ X is called a δ-section provided Σ(−δ, δ) is an open set in X and
the map

Σ × (−δ, δ) 3 (x, t)→ xt ∈ Σ(−δ, δ)



An attraction result and an index theorem 205

is a homeomorphism. Let B be a compact subset of X. B is called an
isolating block if there exists a δ > 0 and two δ-sections Σ+ and Σ− such
that

(i) cl(Σ+ × (−δ, δ)) ∩ cl(Σ− × (−δ, δ)) = ∅,
(ii) B ∩ (Σ+(−δ, δ)) = (B ∩Σ+)[0, δ),

B ∩ (Σ−(−δ, δ)) = (B ∩Σ−)(−δ, 0],
(iii) ∀x ∈ ∂B\(Σ+∪Σ−) ∃µ < 0 < ν : xµ ∈ Σ+, xν ∈ Σ−, x[µ, ν] ⊂ ∂B.

We put B+ = B ∩ Σ+, B− = B ∩ Σ−, a+ = {x ∈ B+ : x[0,∞) ⊂ B}
and a− = {x ∈ B− : x(−∞, 0] ⊂ B}.

In particular, if B is an isolating block, and B− is the “exit” set, then
(B,B−) is an index pair.

Theorem 1. If S is an isolated invariant set , then each isolating neigh-
borhood of S contains a block , which is a neighborhood of S. If B1 and B2

are two blocks which isolate S then the homotopy types of the pointed spaces
(B1/B

−
1 , [B

−
1 ]) and (B2/B

−
2 , [B

−
2 ]) coincide.

For the proof see [Ch], [Co].
The homotopy type uniquely determined by Theorem 1 is denoted by

h(S) and is called the homotopy Conley index of S. IfH denotes an arbitrary
homology or cohomology functor, then H(h(S))∼=H(B,B−). This is proved
in [Ryb. p. 57]. By h∗(S) we denote the Conley index of S with respect to
the backward flow. Obviously, H(h∗(S)) ∼= H(B,B+).

Corollary 2. If S is an isolated invariant set in a Euclidean space (or
a half-space), then

Ȟ(h(S)) ∼= H∗(h(S)),
where Ȟ, H∗ denote the Čech and singular cohomology functors respectively
(with real coefficients).

P r o o f. Szymczak [Sz] showed that if f is a discrete dynamical system in
a Euclidean space then there exists an index pair (P1, P2) for S such that Pi

is an ENR. Since for ENR pairs the Čech, singular and Alexander–Spanier
cohomologies are isomorphic, our assertion follows from Mrozek’s results
(see [Mr2, Cor., p. 311]).

We need the notion of the index of rest points of a flow introduced by
Srzednicki [Srz]. Let X be an ENR and ϕ be a flow on X. Assume that U
is an open subset of X such that there are no rest points of ϕ on ∂U .

Definition. The index of rest points I(U,ϕ) of ϕ in U is given by

I(U,ϕ) = lim
ε→0+

ind(ϕt, U),

where ind denotes the fixed point index.
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We refer the reader to [Srz] for the main properties of the index of rest
points.

Definition. Assume that S is an isolated invariant set. The index of
rest points in S is defined as I(S, ϕ) = I(N,ϕ), where N is any isolating
neighborhood for S.

The excision property implies that I(S, ϕ) is well-defined.

R e m a r k 3. In [Srz] Srzednicki proved that if for an isolated invariant
set S there exists a block B such that B and B− are ENR’s then I(S, ϕ) =
χ(h(S)), where χ(h(S)) is the Euler characteristic of h(S) with respect to
the singular homology. We do not know whether there exists a block (B,B−)
consisting of ENR’s, but by Th. 3 of [Mr3] and Cor. 3 of [Mr4] we have the
following:

Corollary 4. If S is an isolated invariant set for the flow ϕ on the
ENR space X, then I(S, ϕ) = χ(h(S)).

R e m a r k 5. In case of a flow on a Euclidean space Szymczak’s result im-
plies that we may use the Čech or singular cohomology to compute ind(S, ϕ).

We recall that a nonempty compact invariant set S is called positively
asymptotically stable (PAS) if

(i) for each open neighborhood U of S there is an open neighborhood
V ⊂ U of S such that V [0,∞) ⊂ U ,

(ii) there is an open neighborhood W of S such that ω(x) ⊂ S for any
x ∈W .

The maximal set W which fulfils the condition (ii) is open and invariant.
It is called the region of attraction of S. If we change the sign + to− and ω(x)
to α(x) in (i) and (ii), we obtain the definition of a negatively asymptotically
stable set NAS. Note that asymptotically stable sets are isolated.

3. Main result. Let ϕ : Rn+1×R→Rn+1 be a continuous flow such that
the set Rn×{0} is invariant. For brevity, we write E = Rn+1, ∂E = Rn×{0}.

Theorem 6. Assume that S ⊂ ∂E is an isolated invariant set for ϕ such
that H(h∂E(S)) 6= 0 (H denotes the singular homology functor). Then there
exists an x ∈ E \ ∂E such that either α(x) ⊂ S or ω(x) ⊂ S.

P r o o f. Let BE be any block for S with respect to the flow ϕ. Then
B∂E = BE ∩ ∂E is a block for S with respect to ϕ|∂E (note that S is auto-
matically an isolated invariant set for ϕ|∂E). Suppose, contrary to our claim,
that a+

∂E = a+
E and a−∂E = a−E . Consider the following diagram, in which all

vertical maps are induced by inclusions and the rows are the Churchill exact
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sequences for S with respect to ϕ and ϕ|∂E , respectively:

→ Ȟq(BE , B
+
E ) → Ȟq(S) → Ȟq(a+

E) →
↓ ↓ ↓

→ Ȟq(B∂E , B
+
∂E) → Ȟq(S) → Ȟq(a+

∂E) →

It is a commutative diagram (this is easy to check by the construction of the
Churchill exact sequence; see Lemma 4.3, Prop. 4.6 and Th. 4.7 of [Ch]).
The Five Lemma shows that Ȟ(h∗E(S)) ∼= Ȟ(h∗∂E(S)). In the same manner
we can see that Ȟ(hE(S) ∼= Ȟ(h∂E(S)). From Corollary 2 we have

(1) dimHi(hE(S)) = dimHi(h∂E(S)).

Now, from the time-duality of the Conley index (see [Mr-Srz]), we obtain

(2) Hn+1−i(hE(S)) ∼= Ȟi(h∗E(S)) ∼= Ȟi(h∗∂E(S)) ∼= Hn−i(h∂E(S)).

Combining (1) with (2) we conclude that for all i ∈ Z,

dimHi(h∂E(S)) = dimHi−1(h∂E(S)),

hence dimHi(h∂E(S)) = 0 for all i and this contradicts our assumption.

4. Index theorem. This section was inspired by recent work of Capietto
and Garay. Let E = Rn+1, E+ = Rn × [0,∞), E− = Rn × (−∞, 0] and
∂E = Rn × {0}. Assume that ϕ : E+ × R → E+ is a continuous flow on
E+ (note that ∂E is automatically invariant). Following [Ca-Ga] we use
the notion of a saturated set. A compact isolated invariant set S ⊂ ∂E is
called an invariant set of type A (or saturated) for the flow ϕ if there is a
neighborhood N of S in E+ such that d(xt2, ∂E) < d(xt1, ∂E) whenever
x ∈ N \ ∂E, t1, t2 ∈ R and x[t1, t2] ⊂ N . Similarly, a set S is of type R if it
is of type A with respect to the backward flow.

R e m a r k 7. A set of type A or R is an isolated invariant set with respect
to the flow ϕ on E+.

Definition. The stable set W+(S) of an isolated invariant set S is
defined to be

{x ∈ E : ω(x) 6= ∅, ω(x) ⊂ S}
and the unstable set W−(S) is defined similarly in terms of α(x).

Note that we assume no special structure of S, W+(S) or W−(S), but
when E is a smooth manifold and S is hyperbolic, well-known results show
that W+(S) and W−(S) have a (local) manifold structure.

Definition. Let S ⊂ ∂E be an isolated invariant set with respect to the
flow ϕ on E+. S is called a set of type A1 iff W−(S) ⊂ ∂E. The notion of
the set of type R1 is defined by reversal of time.
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Proposition 8. (1) The set S of type A (resp. R) is also of type A1

(resp. R1).
(2) If S ⊂ ∂E is of type A1 then Ȟ(hE+(S)) ∼= Ȟ(h∂E(S)).

P r o o f. (1) Suppose that there exists an x0 ∈W−(S) \∂E. Since α(x0)
is contained in S there is a sequence tn → −∞ such that d(x0tn, ∂E)→ 0.
Let B be an isolating block for S in E+. We may assume that x0tn ∈ B for
all n. Suppose that x0(−∞, tk] ⊂ B for some k. The set S is of type A, so
for all n ≥ k we have

d(x0tn, ∂E) > d(x0tk, ∂E) = ε > 0,

a contradiction. So, we can choose a sequence t∗n→ −∞ such that x0t
∗
n ∈ ∂B

and this contradicts α(x0) ⊂ S.
(2) As in the proof of Theorem 6, a−E+ = a−∂E gives our statement by the

Five Lemma.

R e m a r k 9. If ϕ is a continuous flow on a locally compact, metric space
X and S ⊂ X is an isolated invariant set then by the same method as in
the proof of Prop. 8 we can show that Ȟ(hX(S)) ∼= Ȟ(hW−(S)(S)).

R e m a r k 10. Consider the equation

ẋ = x, ẏ = −y

on the Euclidean plane. Let ϕ be the flow generated by this equation. The
saddle point (0, 0) is of type A1 with respect to ϕ restricted to the upper
half-space E+. It is easy to compute that Ȟ0(h∗∂E+({(0, 0)})) ∼= R and
Ȟi(h∗E+({(0, 0)})) = 0 for all i ∈ Z. Hence, for a set S of type A1 it is not
necessarily true that Ȟ(h∗E+(S)) ∼= Ȟ(h∗∂E(S)).

Proposition 11. Assume S ⊂ ∂E is of type A1 and H(h∂E(S)) 6= 0.
Then there exists an x ∈ E+ \ ∂E such that ω(x) ⊂ S.

P r o o f. We define a map ψ : E × R → E such that ψ restricted to
E+ × R equals ϕ and if x ∈ E− then ψ(x, t) = s(ϕ(s(x), t)), where s : E 3
(x1, . . . , xn, xn+1) → (x1, . . . , xn,−xn+1) ∈ E. Obviously ψ is a flow on E.
Let BE be any isolating block for S with respect to ψ. Since W−(S) ⊂ ∂E,
we have a−E = a−∂E . As in the proof of Theorem 6, this shows that a+

∂E is not
a strong deformation retract of the set a+

E . Hence there exists an x ∈ BE\∂E
such that ω(x) ⊂ S.

R e m a r k 12. (1) An analogue of this result for a set of type R1 is also
valid (if we change ω(x) to α(x)).

(2) Proposition 11 was first proved by Hofbauer (see [Ho]) in the setting
of a flow induced by a C1 vector field. In [Ca-Ga] it was proved for dynamical
systems induced by a C0 vector field and for a set of type A. Capietto and
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Garay conjectured that it is also valid for any continuous flow, but their
approach does not work in the general case.

Corollary 13. Assume S ⊂ ∂E is of type A1. Then

(1) if S is an NAS set with respect to ϕ|∂E , then there is an x ∈ E+ \∂E
such that ω(x) ⊂ S,

(2) if S is a PAS set in ∂E, then S is a PAS set with respect to the flow
ϕ on E+.

P r o o f. (1) It is easy to check that H(h∂E(S)) 6= 0.
(2) Let B be any block for S in E+. By Th. 2.1 of [Srz], S is a PAS iff

a−E+ = ∅. We know that a−E+ = a−∂E = ∅, because S is a PAS set in ∂E.

We use the following:

Lemma 14. (1) If S ⊂ ∂E is an isolated invariant set , then

χ(h∂E(S)) = (−1)nχ(h∗∂E(S)).

(2) If S is of type A1, then
(a) χ(h∂E(S)) = χ(hE+(S)),
(b) χ(h∗E+(S)) = 0.

P r o o f. (1) It is a consequence of the time-duality of the Conley index.
(2) We first prove (a). Since a−∂E = a−E+ , Ȟ(h∂E(S)) ∼= Ȟ(hE+(S)) and

by Corollary 2 we get χ(h∂E(S)) = χ(hE+(S)). To prove (b) we consider a
flow ψ : E × R→ E defined as in the proof of Proposition 11. Assume BE

is a block for S with respect to ψ. We have the following Mayer–Vietoris
exact sequence (see [Do]):

. . .→ Ȟq(BE , B
+
E )→ Ȟq(BE+ , B+

E+)⊕ Ȟq(BE− , B
+
E−)

→ Ȟq(B∂E , B
+
∂E)→ . . .

where BX = BE∩X. Note that this exact sequence exists because the triads
(BE , BE+ , BE−), (B+

E , B
+
E+ , B

+
E−) are Čech excisive. Then we have

χ(h∗E+(S)) + χ(h∗E−(S)) = χ(h∗∂E(S)) + χ(h∗E(S)).

Since χ(h∗E−(S)) = χ(h∗E+(S)), by the time duality of the Conley index we
have

2χ(h∗E−(S)) = (−1)nχ(h∂E(S)) + (−1)n+1χ(hE(S)) = 0.

(The last equality follows from the fact that a−E = a−∂E implies that χ(hE(S))
= χ(h∂E(S)).)

Corollary 15. (1) If S is of type A1, then I(S, ϕ|∂E) = I(S, ϕ).
(2) If S is of type R1, then I(S, ϕ) = 0.
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Assume ϕ : E+×R→ E+ is a continuous flow. Let R(ϕ) denote the set
of rest points in E+. We also assume that

R(ϕ) ⊂
( p⋃

i=1

Ki

)
∪
( g⋃

j=1

Lj

)
∪
( r⋃

k=1

Mk

)
,

where Ki, Lj , Mk are pairwise disjoint, Ki ⊂ ∂E are sets of type A1,
Lj ⊂ ∂E are sets of type R1, and Mk ⊂ E+ \ ∂E are isolated invariant sets.

Theorem 16. Assume that ϕ is a dissipative flow (i.e. there exists a
compact subset K of E+ such that x[0,∞)∩K 6= ∅ for every x ∈ E+). Then

p∑
i=1

I(Ki, ϕ) +
r∑

k=1

I(Mk, ϕ) = 1

and
r∑

k=1

I(Mk, ϕ) =
g∑

j=1

I(Lj , ϕ|∂E).

P r o o f. Since ϕ is dissipative, by Th. 2.4 of [Srz] there exists a PAS set
S such that E+ is its region of attraction. If B is an isolating block for S
then by Cor. 4.5 of [Srz] we have

I(intB,ϕ) = χ(B) = χ(E+) = 1

and

I(intB ∩ ∂E, ϕ|∂E) = χ(∂E) = 1.

The additivity property of the rest point index implies that

1 =
p∑

i=1

I(Ki, ϕ) +
p∑

j=1

I(Lj , ϕ) +
g∑

k=1

I(Mk, ϕ)

and

1 =
p∑

i=1

I(Ki, ϕ|∂E) +
g∑

j=1

I(Lj , ϕ|∂E).

From Cor. 15, I(Ki, ϕ|∂E) = I(Ki, ϕ) and I(Lj , ϕ) = 0.

R e m a r k 17. (1) In the case a flow induced by a C0 vector field and sets
of types A and R, the above theorem was proved by Capietto and Garay,
but their proof fails in the general case (see Remark 3 of [Ca-Ga]).

(2) If it is true that for any isolated invariant set on a topological manifold
(with or without boundary) there exists a block which is an ENR, then the
similar conclusion can be drawn for a flow on a manifold with invariant
boundary.
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