ANNALES POLONICI MATHEMATICI LXV.3 (1997)

An attraction result and an index theorem for continuous flows on $\mathbb{R}^n \times [0,\infty)$

by KLAUDIUSZ WÓJCIK (Kraków)

Abstract. We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on $E = \mathbb{R}^{n+1}$ for which $\partial E = \mathbb{R}^n \times \{0\}$ is an invariant set and $S \subset \partial E$ is an isolated invariant set, with non-zero homological Conley index, then there exists an x in $E \setminus \partial E$ such that either $\alpha(x)$ or $\omega(x)$ is in S. We also prove an index theorem for a flow on $\mathbb{R}^n \times [0, \infty)$.

1. Introduction. The aim of this paper is to present generalizations of two theorems proved by Capietto and Garay (Ths. 1 and 2 of [Ca-Ga]). These theorems apply only to flows generated by vector fields, whereas our approach works for any continuous flow. It is based on the time-duality of the Conley index proved by Mrozek and Srzednicki in [Mr-Srz]. Assume $E^+ = \mathbb{R}^n \times [0, \infty), \ \partial E = \mathbb{R}^n \times \{0\}$ and φ is a flow on E^+ such that ∂E is invariant. We are interested in the behavior of φ in a small vicinity of ∂E . In many applications, subsets of ∂E which are ω -limit sets of points lying in $E^+ \setminus \partial E$ play an important role. The motivation for the considered problem comes from permanence theory. For more details, we refer the reader to [Ho], [Ho1], [Ho-Si] and [Ca-Ga]. We also prove that if φ is a flow on $E = \mathbb{R}^{n+1}$ for which ∂E is invariant and $S \subset \partial E$ is an isolated invariant set with respect to the flow φ on E, with non-zero homological Conley index, then there exists x in $E \setminus \partial E$ such that either $\alpha(x)$ or $\omega(x)$ is in the set S.

2. Isolating blocks and the Conley index. We first give a brief account of the Conley index. Let X be a locally compact, metric space and T denote \mathbb{R} or one of its subgroups of the form $\mathbb{Z}t_0$ for some $t_0 > 0$. By a dynamical system on X we mean a continuous function

$$\varphi: X \times T \ni (x, t) \to xt \in X$$

¹⁹⁹¹ Mathematics Subject Classification: 58G10, 54H20.

Key words and phrases: Conley index, fixed point index, permanence. Reserved by the KBN grant 2 P03A 040 10.

^[203]

K. Wójcik

such that x0 = x and x(s + t) = (xs)t. The backward dynamical system is defined as the map

$$X \times T \ni (x,t) \to x(-t) \in X.$$

We call φ a flow if $T = \mathbb{R}$, otherwise φ is called a *discrete dynamical system*. If φ is a flow, then the restriction of φ to $X \times \mathbb{Z}t$ is a discrete dynamical system. If $f: X \to X$ is a homeomorphism then its iterates define a discrete dynamical system

$$X \times \mathbb{Z} \ni (x, n) \to f^n(x) \in X$$

A set $S \subset X$ is called *invariant* if ST = S. If $N \subset X$, then the set $S(N) = \{x \in N : xT \subset N\}$ is the maximal invariant set contained in N. The set N is called an *isolating neighborhood* if $S(N) \subset \text{int } N$. An invariant set S is said to be *isolated* if there exists an isolating neighborhood N such that S = S(N). If φ is a flow and $S \subset X$ is compact, then by Th. 1 of [Mr2], S is an isolated invariant set with respect to φ iff S is an isolated invariant set with respect to $\varphi_t = \varphi(*, t)$ for all t > 0.

The definition of the Conley index is based on the notion of the index pair (or isolating block for a flow). The pair $P = (P_1, P_2)$ of closed subsets of a neighborhood N isolating S is called an *index pair* if the following three conditions are satisfied:

(1) $x \in P_i, x[0,t] \subset N \Rightarrow x[0,t] \subset P_i \text{ for } i = 1,2;$

(2) if $x \in P_i$, t > 0, and xt is not in N then there exists $t_1 < t$ such that $x[0, t_1] \subset N$ and $xt_1 \in P_2$;

(3) $S \subset \operatorname{int}(P_1 \setminus P_2).$

This definition was introduced in the continuous case by Conley in [Co] and in the discrete case by Mrozek in [Mr1]. Assume H^* is the Alexander– Spanier cohomology functor with real coefficients. We recall that in the continuous case $H^*(P_1, P_2)$ depends only on the isolated invariant set Sand it is by definition the cohomological Conley index of S. In the discrete case it was proved in [Mr1] that $L(H^*(P_1, P_2), I_{(P_1, P_2)})$ depends only on S, where L is the Leray functor and $I_{(P_1, P_2)}$ is the index map (introduced in [Mr1]). By Mrozek's results (see [Mr2]) if φ is flow on X, $f = \varphi_t$ for some t > 0 and S is an isolated invariant set with respect to φ , then the distinguished isomorphism in the Conley index of S with respect to f is the identity and the cohomological Conley index of an isolated invariant set of a flow φ coincides with the corresponding index with respect to the discrete dynamical system φ_t for any t > 0.

Now we describe the notion of an isolating block (for a flow). Recall that a set $\Sigma \subset X$ is called a δ -section provided $\Sigma(-\delta, \delta)$ is an open set in X and the map

$$\Sigma \times (-\delta, \delta) \ni (x, t) \to xt \in \Sigma(-\delta, \delta)$$

is a homeomorphism. Let B be a compact subset of X. B is called an *isolating block* if there exists a $\delta > 0$ and two δ -sections Σ^+ and Σ^- such that

(i) $\operatorname{cl}(\Sigma^+ \times (-\delta, \delta)) \cap \operatorname{cl}(\Sigma^- \times (-\delta, \delta)) = \emptyset$, (ii) $B \cap (\Sigma^+(-\delta, \delta)) = (B \cap \Sigma^+)[0, \delta)$, $B \cap (\Sigma^-(-\delta, \delta)) = (B \cap \Sigma^-)(-\delta, 0]$,

(iii) $\forall x \in \partial B \setminus (\Sigma^+ \cup \Sigma^-) \exists \mu < 0 < \nu : x\mu \in \Sigma^+, x\nu \in \Sigma^-, x[\mu, \nu] \subset \partial B.$

We put $B^+ = B \cap \Sigma^+$, $B^- = B \cap \Sigma^-$, $a^+ = \{x \in B^+ : x[0,\infty) \subset B\}$ and $a^- = \{x \in B^- : x(-\infty, 0] \subset B\}.$

In particular, if B is an isolating block, and B^- is the "exit" set, then (B, B^-) is an index pair.

THEOREM 1. If S is an isolated invariant set, then each isolating neighborhood of S contains a block, which is a neighborhood of S. If B_1 and B_2 are two blocks which isolate S then the homotopy types of the pointed spaces $(B_1/B_1^-, [B_1^-])$ and $(B_2/B_2^-, [B_2^-])$ coincide.

For the proof see [Ch], [Co].

The homotopy type uniquely determined by Theorem 1 is denoted by h(S) and is called the *homotopy Conley* index of S. If H denotes an arbitrary homology or cohomology functor, then $H(h(S)) \cong H(B, B^-)$. This is proved in [Ryb. p. 57]. By $h^*(S)$ we denote the Conley index of S with respect to the backward flow. Obviously, $H(h^*(S)) \cong H(B, B^+)$.

COROLLARY 2. If S is an isolated invariant set in a Euclidean space (or a half-space), then

$$\dot{H}(h(S)) \cong H^*(h(S)),$$

where H, H^* denote the Cech and singular cohomology functors respectively (with real coefficients).

Proof. Szymczak [Sz] showed that if f is a discrete dynamical system in a Euclidean space then there exists an index pair (P_1, P_2) for S such that P_i is an ENR. Since for ENR pairs the Čech, singular and Alexander–Spanier cohomologies are isomorphic, our assertion follows from Mrozek's results (see [Mr2, Cor., p. 311]).

We need the notion of the index of rest points of a flow introduced by Srzednicki [Srz]. Let X be an ENR and φ be a flow on X. Assume that U is an open subset of X such that there are no rest points of φ on ∂U .

DEFINITION. The index of rest points $I(U, \varphi)$ of φ in U is given by

$$I(U,\varphi) = \lim_{t \to +} \operatorname{ind}(\varphi_t, U),$$

where ind denotes the fixed point index.

K. Wójcik

We refer the reader to [Srz] for the main properties of the index of rest points.

DEFINITION. Assume that S is an isolated invariant set. The *index of* rest points in S is defined as $I(S, \varphi) = I(N, \varphi)$, where N is any isolating neighborhood for S.

The excision property implies that $I(S, \varphi)$ is well-defined.

R e m a r k 3. In [Srz] Srzednicki proved that if for an isolated invariant set S there exists a block B such that B and B^- are ENR's then $I(S, \varphi) = \chi(h(S))$, where $\chi(h(S))$ is the Euler characteristic of h(S) with respect to the singular homology. We do not know whether there exists a block (B, B^-) consisting of ENR's, but by Th. 3 of [Mr3] and Cor. 3 of [Mr4] we have the following:

COROLLARY 4. If S is an isolated invariant set for the flow φ on the ENR space X, then $I(S, \varphi) = \chi(h(S))$.

R e m a r k 5. In case of a flow on a Euclidean space Szymczak's result implies that we may use the Čech or singular cohomology to compute $\operatorname{ind}(S, \varphi)$.

We recall that a nonempty compact invariant set S is called *positively* asymptotically stable (PAS) if

(i) for each open neighborhood U of S there is an open neighborhood $V \subset U$ of S such that $V[0, \infty) \subset U$,

(ii) there is an open neighborhood W of S such that $\omega(x)\subset S$ for any $x\in W.$

The maximal set W which fulfils the condition (ii) is open and invariant. It is called the *region of attraction* of S. If we change the sign + to - and $\omega(x)$ to $\alpha(x)$ in (i) and (ii), we obtain the definition of a negatively asymptotically stable set NAS. Note that asymptotically stable sets are isolated.

3. Main result. Let $\varphi : \mathbb{R}^{n+1} \times \mathbb{R} \to \mathbb{R}^{n+1}$ be a continuous flow such that the set $\mathbb{R}^n \times \{0\}$ is invariant. For brevity, we write $E = \mathbb{R}^{n+1}$, $\partial E = \mathbb{R}^n \times \{0\}$.

THEOREM 6. Assume that $S \subset \partial E$ is an isolated invariant set for φ such that $H(h_{\partial E}(S)) \neq 0$ (H denotes the singular homology functor). Then there exists an $x \in E \setminus \partial E$ such that either $\alpha(x) \subset S$ or $\omega(x) \subset S$.

Proof. Let B_E be any block for S with respect to the flow φ . Then $B_{\partial E} = B_E \cap \partial E$ is a block for S with respect to $\varphi|_{\partial E}$ (note that S is automatically an isolated invariant set for $\varphi|_{\partial E}$). Suppose, contrary to our claim, that $a_{\partial E}^+ = a_E^+$ and $a_{\partial E}^- = a_E^-$. Consider the following diagram, in which all vertical maps are induced by inclusions and the rows are the Churchill exact

sequences for S with respect to φ and $\varphi|_{\partial E}$, respectively:

It is a commutative diagram (this is easy to check by the construction of the Churchill exact sequence; see Lemma 4.3, Prop. 4.6 and Th. 4.7 of [Ch]). The Five Lemma shows that $\check{H}(h_E^*(S)) \cong \check{H}(h_{\partial E}^*(S))$. In the same manner we can see that $\check{H}(h_E(S) \cong \check{H}(h_{\partial E}(S)))$. From Corollary 2 we have

(1)
$$\dim H_i(h_E(S)) = \dim H_i(h_{\partial E}(S))$$

Now, from the time-duality of the Conley index (see [Mr-Srz]), we obtain

(2)
$$H_{n+1-i}(h_E(S)) \cong H^i(h_E^*(S)) \cong H^i(h_{\partial E}^*(S)) \cong H_{n-i}(h_{\partial E}(S)).$$

Combining (1) with (2) we conclude that for all $i \in \mathbb{Z}$,

$$\dim H_i(h_{\partial E}(S)) = \dim H_{i-1}(h_{\partial E}(S)),$$

hence dim $H_i(h_{\partial E}(S)) = 0$ for all *i* and this contradicts our assumption.

4. Index theorem. This section was inspired by recent work of Capietto and Garay. Let $E = \mathbb{R}^{n+1}$, $E^+ = \mathbb{R}^n \times [0, \infty)$, $E^- = \mathbb{R}^n \times (-\infty, 0]$ and $\partial E = \mathbb{R}^n \times \{0\}$. Assume that $\varphi : E^+ \times \mathbb{R} \to E^+$ is a continuous flow on E^+ (note that ∂E is automatically invariant). Following [Ca-Ga] we use the notion of a saturated set. A compact isolated invariant set $S \subset \partial E$ is called an invariant set of *type* A (or *saturated*) for the flow φ if there is a neighborhood N of S in E^+ such that $d(xt_2, \partial E) < d(xt_1, \partial E)$ whenever $x \in N \setminus \partial E, t_1, t_2 \in \mathbb{R}$ and $x[t_1, t_2] \subset N$. Similarly, a set S is of *type* R if it is of type A with respect to the backward flow.

R e m a r k 7. A set of type A or R is an isolated invariant set with respect to the flow φ on E^+ .

DEFINITION. The stable set $W^+(S)$ of an isolated invariant set S is defined to be

$$\{x\in E: \omega(x)\neq \emptyset, \ \omega(x)\subset S\}$$

and the unstable set $W^{-}(S)$ is defined similarly in terms of $\alpha(x)$.

Note that we assume no special structure of S, $W^+(S)$ or $W^-(S)$, but when E is a smooth manifold and S is hyperbolic, well-known results show that $W^+(S)$ and $W^-(S)$ have a (local) manifold structure.

DEFINITION. Let $S \subset \partial E$ be an isolated invariant set with respect to the flow φ on E^+ . S is called a set of type A_1 iff $W^-(S) \subset \partial E$. The notion of the set of type R_1 is defined by reversal of time.

PROPOSITION 8. (1) The set S of type A (resp. R) is also of type A_1 (resp. R_1).

(2) If $S \subset \partial E$ is of type A_1 then $\check{H}(h_{E^+}(S)) \cong \check{H}(h_{\partial E}(S))$.

Proof. (1) Suppose that there exists an $x_0 \in W^-(S) \setminus \partial E$. Since $\alpha(x_0)$ is contained in S there is a sequence $t_n \to -\infty$ such that $d(x_0t_n, \partial E) \to 0$. Let B be an isolating block for S in E^+ . We may assume that $x_0t_n \in B$ for all n. Suppose that $x_0(-\infty, t_k] \subset B$ for some k. The set S is of type A, so for all $n \geq k$ we have

$$d(x_0 t_n, \partial E) > d(x_0 t_k, \partial E) = \varepsilon > 0,$$

a contradiction. So, we can choose a sequence $t_n^* \to -\infty$ such that $x_0 t_n^* \in \partial B$ and this contradicts $\alpha(x_0) \subset S$.

(2) As in the proof of Theorem 6, $a_{E^+}^- = a_{\partial E}^-$ gives our statement by the Five Lemma.

Remark 9. If φ is a continuous flow on a locally compact, metric space X and $S \subset X$ is an isolated invariant set then by the same method as in the proof of Prop. 8 we can show that $\check{H}(h_X(S)) \cong \check{H}(h_{W^-(S)}(S))$.

Remark 10. Consider the equation

$$\dot{x} = x, \quad \dot{y} = -y$$

on the Euclidean plane. Let φ be the flow generated by this equation. The saddle point (0,0) is of type A_1 with respect to φ restricted to the upper half-space E^+ . It is easy to compute that $\check{H}^0(h^*_{\partial E^+}(\{(0,0)\})) \cong \mathbb{R}$ and $\check{H}^i(h^*_{E^+}(\{(0,0)\})) = 0$ for all $i \in \mathbb{Z}$. Hence, for a set S of type A_1 it is not necessarily true that $\check{H}(h^*_{E^+}(S)) \cong \check{H}(h^*_{\partial E}(S))$.

PROPOSITION 11. Assume $S \subset \partial E$ is of type A_1 and $H(h_{\partial E}(S)) \neq 0$. Then there exists an $x \in E^+ \setminus \partial E$ such that $\omega(x) \subset S$.

Proof. We define a map $\psi : E \times \mathbb{R} \to E$ such that ψ restricted to $E^+ \times \mathbb{R}$ equals φ and if $x \in E^-$ then $\psi(x,t) = s(\varphi(s(x),t))$, where $s : E \ni (x_1, \ldots, x_n, x_{n+1}) \to (x_1, \ldots, x_n, -x_{n+1}) \in E$. Obviously ψ is a flow on E. Let B_E be any isolating block for S with respect to ψ . Since $W^-(S) \subset \partial E$, we have $a_E^- = a_{\partial E}^-$. As in the proof of Theorem 6, this shows that $a_{\partial E}^+$ is not a strong deformation retract of the set a_E^+ . Hence there exists an $x \in B_E \setminus \partial E$ such that $\omega(x) \subset S$.

Remark 12. (1) An analogue of this result for a set of type R_1 is also valid (if we change $\omega(x)$ to $\alpha(x)$).

(2) Proposition 11 was first proved by Hofbauer (see [Ho]) in the setting of a flow induced by a C^1 vector field. In [Ca-Ga] it was proved for dynamical systems induced by a C^0 vector field and for a set of type A. Capietto and

Garay conjectured that it is also valid for any continuous flow, but their approach does not work in the general case.

COROLLARY 13. Assume $S \subset \partial E$ is of type A_1 . Then

(1) if S is an NAS set with respect to $\varphi|_{\partial E}$, then there is an $x \in E^+ \setminus \partial E$ such that $\omega(x) \subset S$,

(2) if S is a PAS set in ∂E , then S is a PAS set with respect to the flow φ on E^+ .

Proof. (1) It is easy to check that $H(h_{\partial E}(S)) \neq 0$.

(2) Let B be any block for S in E^+ . By Th. 2.1 of [Srz], S is a PAS iff $a_{E^+}^- = \emptyset$. We know that $a_{E^+}^- = a_{\partial E}^- = \emptyset$, because S is a PAS set in ∂E .

We use the following:

LEMMA 14. (1) If $S \subset \partial E$ is an isolated invariant set, then

$$\chi(h_{\partial E}(S)) = (-1)^n \chi(h_{\partial E}^*(S)).$$

(2) If S is of type A_1 , then (a) $\chi(h_{\partial E}(S)) = \chi(h_{E^+}(S))$, (b) $\chi(h_{E^+}^*(S)) = 0$.

Proof. (1) It is a consequence of the time-duality of the Conley index.

(2) We first prove (a). Since $a_{\partial E}^- = a_{E^+}^-$, $\check{H}(h_{\partial E}(S)) \cong \check{H}(h_{E^+}(S))$ and by Corollary 2 we get $\chi(h_{\partial E}(S)) = \chi(h_{E^+}(S))$. To prove (b) we consider a flow $\psi : E \times \mathbb{R} \to E$ defined as in the proof of Proposition 11. Assume B_E is a block for S with respect to ψ . We have the following Mayer–Vietoris exact sequence (see [Do]):

$$\dots \to \check{H}^q(B_E, B_E^+) \to \check{H}^q(B_{E^+}, B_{E^+}^+) \oplus \check{H}^q(B_{E^-}, B_{E^-}^+) \to \check{H}^q(B_{\partial E}, B_{\partial E}^+) \to \dots$$

where $B_X = B_E \cap X$. Note that this exact sequence exists because the triads $(B_E, B_{E^+}, B_{E^-}), (B_E^+, B_{E^+}^+, B_{E^-}^+)$ are Čech excisive. Then we have

$$\chi(h_{E^+}^*(S)) + \chi(h_{E^-}^*(S)) = \chi(h_{\partial E}^*(S)) + \chi(h_E^*(S)).$$

Since $\chi(h_{E^-}^*(S)) = \chi(h_{E^+}^*(S))$, by the time duality of the Conley index we have

$$2\chi(h_{E^{-}}^{*}(S)) = (-1)^{n}\chi(h_{\partial E}(S)) + (-1)^{n+1}\chi(h_{E}(S)) = 0.$$

(The last equality follows from the fact that $a_E^- = a_{\partial E}^-$ implies that $\chi(h_E(S)) = \chi(h_{\partial E}(S))$.)

COROLLARY 15. (1) If S is of type A_1 , then $I(S, \varphi|_{\partial E}) = I(S, \varphi)$. (2) If S is of type R_1 , then $I(S, \varphi) = 0$. Assume $\varphi: E^+ \times \mathbb{R} \to E^+$ is a continuous flow. Let $\mathcal{R}(\varphi)$ denote the set of rest points in E^+ . We also assume that

$$\mathbf{R}(\varphi) \subset \left(\bigcup_{i=1}^{p} K_{i}\right) \cup \left(\bigcup_{j=1}^{g} L_{j}\right) \cup \left(\bigcup_{k=1}^{r} M_{k}\right),$$

where K_i , L_j , M_k are pairwise disjoint, $K_i \subset \partial E$ are sets of type A_1 , $L_j \subset \partial E$ are sets of type R_1 , and $M_k \subset E^+ \setminus \partial E$ are isolated invariant sets.

THEOREM 16. Assume that φ is a dissipative flow (i.e. there exists a compact subset K of E^+ such that $x[0,\infty) \cap K \neq \emptyset$ for every $x \in E^+$). Then

$$\sum_{i=1}^{p} \mathrm{I}(K_i,\varphi) + \sum_{k=1}^{r} \mathrm{I}(M_k,\varphi) = 1$$

and

$$\sum_{k=1}^{r} \mathrm{I}(M_k, \varphi) = \sum_{j=1}^{g} \mathrm{I}(L_j, \varphi|_{\partial E})$$

Proof. Since φ is dissipative, by Th. 2.4 of [Srz] there exists a PAS set S such that E^+ is its region of attraction. If B is an isolating block for S then by Cor. 4.5 of [Srz] we have

$$I(\operatorname{int} B, \varphi) = \chi(B) = \chi(E^+) = 1$$

and

$$I(\operatorname{int} B \cap \partial E, \varphi|_{\partial E}) = \chi(\partial E) = 1$$

The additivity property of the rest point index implies that

$$1 = \sum_{i=1}^{p} \mathbf{I}(K_i, \varphi) + \sum_{j=1}^{p} \mathbf{I}(L_j, \varphi) + \sum_{k=1}^{g} \mathbf{I}(M_k, \varphi)$$

and

$$1 = \sum_{i=1}^{p} \mathbf{I}(K_i, \varphi|_{\partial E}) + \sum_{j=1}^{g} \mathbf{I}(L_j, \varphi|_{\partial E}).$$

From Cor. 15, $I(K_i, \varphi|_{\partial E}) = I(K_i, \varphi)$ and $I(L_j, \varphi) = 0$.

R e m a r k 17. (1) In the case a flow induced by a C^0 vector field and sets of types A and R, the above theorem was proved by Capietto and Garay, but their proof fails in the general case (see Remark 3 of [Ca-Ga]).

(2) If it is true that for any isolated invariant set on a topological manifold (with or without boundary) there exists a block which is an ENR, then the similar conclusion can be drawn for a flow on a manifold with invariant boundary.

210

References

- [Ca-Ga] A. Capietto and B. M. Garay, Saturated invariant sets and boundary behavior of differential systems, J. Math. Anal. Appl. 176 (1993), 166–181.
 - [Ch] R. C. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330–352.
 - [Co] C. C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, R.I., 1978.
 - [Do] A. Dold, Lectures on Algebraic Topology, Springer, Berlin, 1972.
 - [Ho] J. Hofbauer, Saturated equilibria, permanence, and stability for ecological systems, in: Mathematical Ecology, Proc. Trieste 1986, L. J. Gross, T. G. Hallam and S. A. Levin (eds.), World Scientific, 625–642.
 - [Ho1] —, An index theorem for dissipative semiflows, Rocky Mountain J. Math. 20 (1990), 1017–1031.
- [Ho-Si] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, Cambridge Univ. Press, Cambridge, 1988.
- [Mr1] M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), 149–178.
- [Mr2] —, The Conley index on compact ANR's is of finite type, Results Math. 18 (1990), 306–313.
- [Mr3] —, Open index pairs, the fixed point index and rationality of zeta function, Ergodic Theory Dynam. Systems 10 (1990), 555–564.
- [Mr4] —, Index pairs and the fixed point index for semidynamical systems with discrete time, Fund. Math. 133 (1989), 177–194.
- [Mr-Srz] M. Mrozek and R. Srzednicki, On time-duality of the Conley index, Results Math. 24 (1993), 161–167.
 - [Ryb] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer, Berlin, 1987.
 - [Srz] R. Srzednicki, On rest points of dynamical systems, Fund. Math. 126 (1985), 69-81.
 - [Sz] A. Szymczak, The Conley index and symbolic dynamics, Topology 35 (1996), 287–299.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: wojcik@im.uj.edu.pl

> Reçu par la Rédaction le 30.1.1995 Révisé le 6.5.1995