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On boundary-value problems for partial differential
equations of order higher than two

by JAN PorPIOLEK (Bialystok)

Abstract. We prove the existence of solutions of some boundary-value problems for
partial differential equations of order higher than two. The general idea is similar to that
in [1]. We make an essential use of the results of our paper [12].

1. The problem. Let z = x,(t), 0 <t < T, p= 1,2, be equations of
non-intersecting curves on the (x,t) plane.
In this paper we prove the existence of a solution of the problem
n+2 m
(1) Lu(z,t) ZZa” 2,t)D Diu(x,t) — DP DIz, t) = f(x,t),
=0 7=0
where (z,t) € Sp = {(z,t) : xa(t) <z < x2(t), 0 <t <T}, T = const < oo,
n,m € Ng =NU{0}, n+m > 0 (for n = m = 0 equation (1) is a parabolic
equation of second order, the theory of which is well known), satisfying the
initial conditions
(2) Diu(x,0) =0, x1(0) <z < x2(0), 1 =0,1,...,m,

and the boundary conditions

(3) BYu Zb ) Dyu(xp(t),t) = o7 (t),

where 0 <t <T,p=1,2,1= 1,...,10 = [(n + 3)/2] (denotes the greatest
integer function), 0 <r{ <1y <...<r) <n+1 17 € No, by (t) = bo =
const > 0. l

We distinguish the following four cases:

1)7‘£)<n+1,p:10rp:2,nisodd,

1991 Mathematics Subject Classification: Primary 35G15; Secondary 45D05.
Key words and phrases: partial differential equation, boundary-value problem, Vol-
terra integral equation.

[139]



140 J. Popiotek

2)7“;';<n+1,p:10rp:2,niseven,
3)r;, =n+1,p=1orp=2,nisodd,
4)rp =n+1,p=1orp=2,nis even.

We shall exactly analyse cases 1) and 3). The argument in the remaining
cases is similar. Note that in cases 1) and 3) we have to put [(n — 1)/2]
boundary conditions on one of the curves x, and [(n —1)/2] + 1 on the
other.

Boundary-value problems in rectangular domains and for particular
cases of the operator £ and of the boundary operators B} have been consid-
ered in many papers (see [2], [3], [4], [10] and [15]). In [14] the boundary-value
problem for the equation

D2y — D"Dyu = f(x,t,u,..., D" )
was examined. Paper [13] was devoted to the equation
L(Dx + Do) u(x, t) = f(z,t),
where L = D; — a(z,t)D2 + b(x,t) D, + c(x,t). In [5] some boundary-value
problems for the equation
(D? — Dy)(aDy, + bDy + c)u(z,t) = 0

were investigated, where a, b, ¢ are constants and a-b # 0. Moreover, in [11]
Cauchy’s problem for equation (1) was examined.

Note that particular cases of equation (1) describe the propagation of
waves in a compressible viscous medium (see [3], [6], [17]) and some problems
of magneto-hydrodynamics (see [8], [9]).

2. Assumptions. We make the following assumptions:
(A.1) There are constants ag and a; such that
0<ag<aniom(z,t)<ay for (x,t)€ Sy
(St denotes the closure of S7).

(A.2) The coefficients a;; (i =0,1,...,n+2,j =0,1,...,m) are contin-
uous in S7 and satisfy the Holder condition with respect to & with exponent
a (0 < o < 1); moreover, @, satisfies the Holder condition with respect
to t with exponent %a.

(A.3) The functions x, (p = 1,2) have continuous derivatives up to

order n, = [(n+1)/2] in [0, T] and the highest derivatives satisfy the Holder
condition

a/2 if n+ 1 is even
A Tv™) (1)) < (At) nn ’
| t[Xp (t)]] < const { (At)(aﬂ)/? if n+1is odd,

where Ay[x(t)] = x(t + At) — x(t), t,t + At € [0,T], a € (0,1].
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(A.4) The function f(x,t) is defined and continuous for (z,t) € Sr, and

satisfies the inequalities

|f(l‘,t)| SMf) |Axf($7t)| S’rn’f|A$|a7
where A, f(z,t) = f(z + Az, t) — f(2,t), (z,t),(x + Az,t) € Sy, My,
mys = const > 0, a € (0, 1].

(A.5) The functions g}, p = 1,2, I = 1,...,lp, are defined and have
continuous derivatives Dy g} (v =0,1,..., M = [d, /2], d, = n—7r]+2m+1)
in [0,7] and satisfy the conditions

(At)e/? if d, is even,

M <
’At[Dt gl( )” M { (At)(a—i-l)/Q if dr is Odd,
and DY g7 (0) = 0, where M, = const > 0,0 < a < 1.

(A.6) The functions b7, p = 1,2, I = 1,...,lp, k = 0,1,...,r], are
defined in [0, 7] and have continuous derivatives up to order M.

Remark. Without restricting generality, we can assume bf » l(t) >by=1.
17

3. Solution of the problem. In all cases 1)—4) we shall seek a solution
of the problem (1)—(3) in the form

2 gt

(4) u(z, t) :ZZS re (2,6 Xo (1), T)@5 (T) dT + Zg,_(,1),

where 7 are unknown functions, A, are the fundamental solutions of (1)
constructed in [12] and

(5) Zs, (,t) = \\ Ao(w, t:9,7) f (v, 7) dy dr.
St

3.1.Case 1). Observe that the function u given by (4) satisfies equation
(1) and initial conditions (2). Boundary conditions (3) lead to the system of
equations

(6) HOESS

o=1q=

where z7(t) = B Zs, (xp(t),t), 0 <t <T,p=1,2,1=1,...,1.
By Lemma 3 of [12] we obtain

2 1o
1

VB Ao (xp (1), 85 X0 (7), 7) 05 (7) dr + 20 (1),
0

() D,y (xp(7), X (), 7)

|0, 1<l <y,
L (YRl TR, f2) (- ) g <<,

(p=1,21,g=1,...,ly), where d, =n —r} +2m+1 and the functions w,p
are defined by formula (6) of [12], and a(7) = ant2,m (xp(7), 7).
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Using the definition of the operator I,; ([12], (25)) and (7) we can write
t

(8) SD;'fwrg (Xp(7), 8 X (1), )0l () d = f, L, pa([a(8)] "2 (1))

0
(p=1,2,1,g=1,...,lp,0 <t <T), where
|0, ’ 1<l <yq,
©) qu_{(—l)”‘rfﬁ, g<i<ly

By (8) and (9) we can rewrite system (6) in the form

(10) Z Lo, 2([a()) "0 2e0(1))

2 Iyt
3D VK (6 )ep () dr +2(0) = 97 (1),
o=1g=10
where
(11) K7 (t,7) = B Arg (xp (1), txp(7), 7)
0 ifo£poro=pand1<I<y,
{D;fwrg(xp(T),t;Xp(T),T) if o =pand g <I<ly,

(pyo=1,2,1,g=1,...,lp,0<t <T).

(10) is a system of first-kind Volterra equations. Using the method given
by Baderko [1] and the properties of the operator Ry, defined by formula
(14) of [12], we reduce this system to a system of second-kind Volterra
equations. Applying to both sides of (10) the operator R1 T2 where d, =

n—r] +2m+ 1, by Lemma 4 of [12], we obtain

(12) Zcp )] (=) 20 +ZZR1/2HKW (t,T)g (T)dT

+R1/2[ ()]: 1/2[gl(t)]7 p:1727 l:177l070<t§T
By Theorem 1 of [12],
(13) | Dy K (t,7)] < const (t — 7)(dr—2vta)/2—1
(v= M=1[d/2],dr =n—1V+2m+1,po=121,qg=1,....1,
0< T<t<T 0<a<l).
We consider two cases: (i) d, is even, (ii) d, is odd.

In case (i) the function K satisfies condition (18) of Lemma 4 of [12]
with N = d,./2 and ¢ = «/2; hence, in view of formula (19) of [12] we have

t t
(14) RY, [g K27 (¢, 7)¢7 (7) dﬂ =\ D *Kee (8, 7) (7) dr.
0
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In case (i), K}~ satisfies the same condition with N = (d, — 1)/2 and
0= (a+ 1)/2; hence, by formula (20) of [12] we get
¢ ¢
lo o dr 2 loa o
(15)  RY,[ VK (4 7)eg (1) dr| = {Ru D 2KE (1, 7)) (7) dr
0 0
By (14) and (15) system (12) can be written in the form

lo
(16) Y e la()) "2k ()
q=1

2 lp t
+3 N Ky (8 7)f (r) dr + 20 () = 9T (1)
o0=1¢=10

(p=1,2,1=1,...,lp,0<t <T), where

e Dd'”/zKpU(t,T) if d, is even,
(17) K, ()= " 4, P
Ry2[D Ky, (¢, 7)] if d, is odd,
(18) Z) (1) = Ryj[2] (1),
(19) a7(t) = R, [07(1)].

Now, we estimate the functions Kﬁj .z and g7. In case (i), by Theorem 1
[12], we have

(20) |Dfr/2Kf;(t,7)| <comst (t—7)¥* 1 0<7T<t<T,
(21) \Ath”/QKf;(t,T)] < const (At)P2(t — 7)P1,

0<7<t<t+At<T,0<fB<a<l,p=min{a/2,1—a/2}.
Analogously, in case (ii), we get

2) |D§dr71)/2Kf;(t,7’)| < const (t — 7)IH/271 0 <r <t <T,

3) |AD{ K (1, 7)] < comst (A8) 1T (¢ — ryet

<T<t<t+At<T,p=min{a/2,1—«a/2}.

From (22) and (23) it follows that the functions ng”_l)/ QKf . satisfy the
assumptions of Lemma 6 of [12], and therefore

2
2
0

(24)  |Rqjo [Dt(drfl)/QKqu(t,T)H < const (t — 7')0‘/2*1, 0<7<t<T,
(25) | AR o [DIF V2K (8, 7)]| < comst (A8 (8 — )Y,

0<7<t<t+At<T,0<fB<a<l,pu=min{a/2,1—a/2}.
Combining (20), (21), (24) and (25), we arrive at

(26) |Kfqg(t,7')| <const(t—7)¥*t 0<T<t<T,
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(27) |AK], (t,7)] < const (A)P2(t — )=l 0<T<t<t+At<T,

p,o=121qg=1,...,0p,0<f<a<]1, p=min{a/2,1 — a/2}.

Now, we examine the function g} given by (19). If d, is even, by (A.5)
the function g7 satisfies the assumptions of Lemma 5 of [12] with N = d,./2,
and so

g'(t) = D"*gP(t), 0<r<t<T.
If d, is odd, by (A.5), gl satisfies the assumptions of that lemma with
N = (d, — 1)/2, and thus

G7(t) = Ry o[DI" D PgP(1)], 0<7<t<T.

Hence
/2 . :
(28) 97(t) = D,” / g7 (t) if d,. is even,
: Ry /o [DI V2P (@1)] i d, is odd,
(dr=n—r+2m+1,p=121=1,...,l,0<t <T).
From (28) and (A.5) in case (i) we obtain
(29)  |AGY(t)] < const (A1), 0<t<t+At<T, gr(0)=0.
In case (ii) we have
|A; D= 1/2gP(1)| < const (At)IH9/2 0 <t <t+ At<T,
oyt le (0)=0,

hence, by Lemma 2 of [16], we also get (29).
It remains to investigate the function ZI' given by (18). Using (5) and
Lemma 5 of [12], we obtain

/2 . :
(1) Dy / zf(gt) o if d, is even,
Ry/o[D D220 ()] if d, is odd,

(dr =n—rP+2m+1,p=1,2,1=1,...,ly, 0 <t <T); hence, by Lemma 8

of [12], we find

(30) |AZP ()| < const (A2, 0<t<t+At<T, zZV(0)=0.
Now, we return to system (16). Multiplying both sides by [a(t)]~(~"1)/2

we obtain

lo 2 l() t_ _ .
(31) Sty + Y > Rt 7)eg (r) dr + 27 (t) = T7 (t)
q=1 o=1q¢=10

(p=1,2,1=1,...,lp, 0 <t <T), where

(b)) = la(®)] PR (1), Z() = [a(n)] P2 (1),
97 (1) = [a(t)] "D 2gy (), at) = ant2,m(Xp(t), 1)-
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Using assumptions (A.1), (A.2) it can be proved that the functions Kre
z! and @7 satisfy the estimates (26), (27), (29) and (30) respectively.
Now, we treat system (31) as an algebraic system with respect to the

lg

functions ¢, p=1,2, ¢ =1,...,lp. Its determinant is of the form
e 0 0o ... 0
E & 0 ... 0
W=| ¢ g ... 0
cfml C;loo,Q cfoﬁ’) T C;lDoJo

Hence, in view of (9), we have
W — 6€ng2 . .CZ)JO —_ (_1)1”Ll07(7'f+7'§++7'lpo)(\/E)l0 # 0
on one of the curves x, (see §1) and

W= d,. .. & & el A0

Lo =10 =1 41,1, +1
on the other. Cramer’s formulae yield

2 gt

= po o ~ ~
(32) b )+ Y Ky, (t,7)e (7) dr + 27 () = g7 (1),
o=1q=10
where
lo
Klq (t T) Z Akagq (t7 T)v Z Alv v
v=1
Z A7 g0 A, =Ch /W,

p=121=1,...l, 0 <t < T (C} denotes the algebraic complement of
¢, in W),
It is easy to see that Kl 4 z} and g7 satisfy the same estimates as Kl g f

and g7 ; respectively. Thus, (32) is a system of second-type Volterra integral
equations with weak singularities and hence it has a solution of the form

lp t
(33) () =97(t) —ZI(t +ZZSf’<”“” o(r) — zg ()] dr,

o=1¢=10
where foqU denote the resolvent kernels of the IZZT , p,o = 1,2, l,qg =
1,...,lp. Moreover, the estimates (26), (27), (29) and (30) imply
(34) | AP ()] < const (At)P/2, ©P(0) =0

(p=1,2,1=1,...,00,0<t<t+ At <T,0<f<a<]l).
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3.2. Case 3). Without losing generality we may assume that on both
the curves x,, lo—1 conditions are posed given by the operators B, p = 1,2,
l=1,...,0o—1, with 0 <7} <ry <...<r]_; <n+1, and moreover, one
more condition given by Bfo with rllo =n+ 1 is posed on x;.

Now, we rewrite formula (4) in a form more suitable for further consid-

erations:
t

(35) U(x, t) = SAn+1(x7 b X1 (T)7 T)‘:Dllo (T) dr

0
2 lp—1t
+ Z Z S/l,« T, t; Xo (T), T)pg dT + ZLs,.(2,1),
o=1qg=10
where the functions Arg forc=1,2,¢q=1,...,lp—1 are defined by formula
(7) of [12] and
(36) An+1(l‘,t;y,7) = ATi (:Evt; y7T)

((z,t), (y,7) € St), where r! is a positive integer with 0 < rl <n, rl #r}
forl =0,1,...,lp — 1.
Applying to both sides of (35) the operator Bllo given by (3), we get

t
(37)  Bj,ul.t) = \Bi, A (@, t;x1(7), 7)el, () dr
0
2 lo—1t
+ Z > Bl Ave (2.t x1(7), 7) @ (7) dr + B Zs,, (x,1).
1g=10
By (5) and Lemma 2 of [12] we can write

Bllo A (x,t;x1(7),7) = P [DpwX? ()7 (x,t;x1(7),7)] +Bll0@ri (x,t;x1(7),7)

((z,t) € S7). Consider the integral
I (2,1) = §Pm[meX1(T)’T(:U,t; x1(7), Tl (T)dr - (m € No).
0
We investigate its behaviour as x — x1(t), (x,t) € Sp. For m = 0 we have
Jo(,t) = §Drw’“(7)”(:ﬂ, t;xa(7), )y, (1) dr.
0

This is a heat potential of second kind which has the following property
([7], p- 1085):

(38) lim  Jo(x, >=—,/%ﬁo<t>uo<xl<t>,t>, (a,) € Sr,

T—X1 (t)

where a(t) = an42,0(x1(t),1).
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For m > 0 the integral J,, can be written in the form

t -t
g[g (o) D7, G (). G | )

T

It follows that

(t _ <m)m71

Tl ) =) =070

JO(‘Ta Cm) dCﬂLa

O ey

and hence, by (38), we obtain

‘ t - Cm [ T 1
(39) x~l>1XH11(t) J (S) a(t) ('plo (Cm) de + Jm (Xl (t)v t)

((x,t) € Sp,m € N).
Making use of the definition of the operator I,; (see (25) in [12]), formulae
(38) and (39) can be written in the form

@) i 3ne) = L [ 0] + Taba(0.0)

((x,t) € Sp,m € Ny), where a(t) = ant2,m(x1(t),1).
Passing to the limit © — x1(¢) in (37), we have

t
T
ol = L]\ oeh] + KR e
2 lp—1t
+ )Y K (T (7) dr + 24, (8),
o=1 10

9=
where KL (1,7) = B drs (aa(0). 30 (r), 7). KIG(0.7) = B g (10,15
Xo(7),7), 0 = 1,2, g =1,....l1o — 1, 0 < t < T, the operators Bl are
defined by formula (34) of [12} and the functions zj are given by relation
(42) of [12].

Applying R1/2 to both sides of (41), by Lemmas 4 and 5 of [12], we obtain

42) -, /%90}0 (t) + SK?OEO (t,7)eh, () dr
2 lp—1
t2

=11 —lo _
where K, (t,7) = DyK, (t,7), K, (t.7) = DPKO(t, 1), Z,(t) =
D;nzllo(t)vgllo() Dt glo() 0-21727(]:17""[0_1

t
Kt e (rydr + 2, (1) =) (1), 0<t<T,
0

1 g¢=1



148 J. Popiotek

Using Theorem 2 of [12] we find the estimates

(43) |Klolo (t,7)| < const (t — 7)1, 0<7<t<T,
(44) \K,Oq(t )| < const (t — 7)*/?71, 0<7T<t<T,
(45) |AtKlOlo (t,7)| < const (At)?/2(t — 7)H~ 0<T<t<t+At<T,
(46) yAtKqu(t,r)\ < const (At)?/2(t — r)ﬂfl, 0<7<t<t+At<T,

where 0 = 1,2, ¢g=1,...,lp —1,0< < a <1, p =min{a/2,1 — a/2}.
Similarly, using Lemma 9 of [12], we have

(47) Az (t)] < const (AH)*/?, 0<t<t+At<T, Z, (0)=0,
moreover, in view of assumption (A.5), we get
(48)  |A¢gy,(t)] < const (AH)*/?, 0<t<t+At<T, g, (0)=0.

Observe that equation (42) can be written in the form

¢
~11
(49) o, (t) + SKzOzO (t,7)er, (1) dr
0
2 lp—1t
~1 ~1

o=14¢=10
where Klolo (t,7) = —\/a(t)/m- Klolo(t,T Kloq (t,7) = —\/a(t)/x- Kloq (t,7)
Zzo(t) = = ()/7T Z (1), 9,,(t) = a(t)/m - 910( )7 o =12 q=

L...,lo—1,0<t<T.
From assumptions (A.1) and (A.2) it follows that Klnl , Kloq, z}, and

), satisfy inequalities (43)-(48) respectively. This means that if we treat
the functions ¢, o0 = 1,2, ¢ = 1,...,lp — 1, as parameters, then (49) is a
second-kind Volterra equation with respect to cpllo. Because the singularity
of the kernel of this equation is weak one can solve it.

Imposing on the function w, given by formula (35), the remaining bound-
ary conditions (3) given by the operators BY, BY, ..., B] _; with 0 <r] <
rh<...<r)_;<n+1l(p=1,21lo=[(n+3)/2]), we obtain the following
system of integral equations:

-1t
(50) ZZS Ars (xp (1), 85 X (), T) 0] (7) d
o=1q=10
t
+ B AL (xp (1), 15 x1(7), 7)epl, (7) dr + 20 (1) = 97 (#),
0
p=1,21=1,....1p—1,0<t<T.



Boundary-value problems 149

System (50) is a system of first-kind Volterra integral equations with
2(lo — 1) equations and 2(lp — 1) unknown functions ¢f, o = 1,2, ¢ =

.,lo—1. Now, we apply to system (50) the method presented in subsec-
tion 3.1 to obtain

2 lp—1t o
B @)+ > Ky (t,7)eg (1) dr
o=1q9=10

t
— [ Ky, (7)ol (7) dr — G1() — 0 (8),
0
p=121=1,...lp—1,0<t<T.

The functions IZZT , 97 and z] satisfy inequalities (26), (27), (29) and (30),
respectively, thus (51) is a system of second-kind Volterra integral equations
with weak singularities.

Finally, we are able to find a solution of system (49), (51) in the form

(52) #j(t) =97 (t) —Z/(t)
2 lp—1t

+ 35TV, (81 — K (¢ 7[5 (r) — 25 ()] dr

o=1qg=10
(I=1,...,0pforp=1,1=1,...,lp— 1, for p = 2), where X and gClolo

~po ~11
are the resolvent kernels of Kfq and K; ; , respectively. Furthermore, by
(26)—(27), (29)—(30) and (43)—(48) we obtain

(53) | Aol (t)] < const (At)P/2 0<t<t+ At<T, ¢P(0)=0

(p=1,2,1=1,...,l1p—1), where 0 < f < a < 1.
As a result of the foregoing considerations we can formulate the following
theorem:

THEOREM 1. If assumptions (A.1)—(A.6) are satisfied then there exists
a solution w of the problem (1)—(3). It is given by relation (4), where the
functions ¢7 are defined by formula (33) in case 1); by a formula similar
0 (33) in case 2) and then they satisfy inequality (34); by formula (52) in
case 3); and by a formula similar to (52) in case 4) and then they satisfy
inequality (53).
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