ANNALES POLONICI MATHEMATICI LXV.1 (1996)

Polynomial set-valued functions

by Joanna Szczawińska (Kraków)

Abstract. The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.

Let X, Z be vector spaces over \mathbb{Q} and C be a \mathbb{Q} -convex subset of X. Let $f: C \to Z$ be an arbitrary function and $h \in X$. The difference operator Δ_h is given by the formula

$$\Delta_h f(x) := f(x+h) - f(x)$$

for $x \in C$ such that $x + h \in C$. The iterates Δ_h^n of Δ_h are given by the recurrence

$$\varDelta_h^0 f := f, \quad \varDelta_h^{n+1} f := \varDelta_h(\varDelta_h^n f), \quad n = 0, 1, 2, \dots$$

The expression $\Delta_h^n f$ is a function defined for all $x \in C$ such that $x + nh \in C$. It is easy to see that $x + kh \in C$ for k = 1, ..., n-1 whenever $x, x + nh \in C$.

A function $f:C\to Z$ is said to be a Jensen function if it satisfies the Jensen functional equation

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}[f(x) + f(y)]$$

for all $x, y \in C$.

A function $f: C \rightarrow Z$ is called a $polynomial\ function\ of\ order\ at\ most\ n$ if

$$\Delta_h^{n+1}f(x) = 0$$

for every $x \in C$ and $h \in X$ such that $x + (n+1)h \in C$. We have

$$\Delta_h^n f(x) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f(x+kh)$$

 $Key\ words\ and\ phrases:$ polynomial set-valued functions, difference operators, biadditive functions, Jensen function.

¹⁹⁹¹ Mathematics Subject Classification: 54C60, 26E25, 39A70.

for $n \in \mathbb{N}$, $h \in X$ and $x \in C$ such that $x + nh \in C$ (see e.g. [3], Corollary 2, p. 368).

R. Ger has proved that every polynomial function $f: C \to Z$ of order at most n admits an extension to a polynomial function of order at most non the whole X (see Theorem 2 of [2]). Therefore, due to Theorem 3 of [3] (p. 379), we can formulate the following theorem:

THEOREM 1. Let X, Z be \mathbb{Q} -linear spaces and C be a nonempty \mathbb{Q} -convex subset of X. If $f: C \to Z$ is a polynomial function of order at most n then

$$\Delta_{h_1\dots h_{n+1}}f(x) := \Delta_{h_1}\Delta_{h_2}\dots\Delta_{h_{n+1}}f(x) = 0$$

for $x \in C$ and $h_1, \ldots, h_{n+1} \in X$ such that $x + \varepsilon_1 h_1 + \ldots + \varepsilon_{n+1} h_{n+1} \in C$, $\varepsilon_1, \ldots, \varepsilon_{n+1} \in \{0, 1\}.$

We are going to deal with polynomial set-valued functions (abbreviated to s.v. functions in the sequel). Let Y be a real Hausdorff topological vector space. The symbol n(Y) will stand for the set of all non-empty subsets of Y. The set of all convex and compact members of n(Y) will be denoted by cc(Y).

Rådström's equivalence relation ~ (see [5]) is defined on $(cc(Y))^2$ by stating $(A, B) \sim (C, D)$ if A + D = B + C. The equivalence class containing (A, B) is denoted by [A, B]. The quotient space $\mathcal{Z} = (cc(Y))^2/\sim$, with addition defined by

$$[A, B] + [D, E] := [A + D, B + E],$$

and scalar multiplication

$$\lambda[A,B] := \begin{cases} [\lambda A, \lambda B], & \lambda \ge 0, \\ [-\lambda B, -\lambda A], & \lambda < 0, \end{cases}$$

is a real vector space.

The following result of Rådström (see [5], Lemma 3) is useful.

LEMMA 1. Let A, B be convex and closed sets in Y and let C be nonempty and bounded. Then A + C = B + C implies A = B.

Let Y be a topological vector space and let \mathcal{W} be a base of neighbourhoods of zero in Y. The space n(Y) may be considered as a topological space with the Hausdorff topology. In this topology the families of sets

 $N_W(A) := \{ B \in n(Y) : A \subseteq B + W \text{ and } B \subseteq A + W \},\$

where W runs over the base \mathcal{W} , form a base of neighbourhoods of the set $A \in n(Y)$ (see [6]).

The three lemmas below can be found e.g. in [4] (Lemmas 5.6 and 3.2).

LEMMA 2. Let Y be a topological vector space and $A_n, B_n, A, B \in n(Y)$ for $n \in \mathbb{N}$. If $A_n \to A$ and $B_n \to B$ (in the Hausdorff topology on n(Y)), then $A_n + B_n \rightarrow A + B$. If A is bounded, then the function $t \rightarrow tA$ is continuous.

LEMMA 3. If $\lambda_n \to 0$ and $A \in n(Y)$ is bounded, then $\lambda_n A \to \{0\}$.

LEMMA 4. If $\lambda_n \to \lambda_0$ and $A \in n(Y)$ is bounded, then $\lambda_n A \to \lambda_0 A$.

The next lemma is proved in [1] for a metric space Y.

LEMMA 5. Let Y be a topological vector space. If $A_n \to A$ (in the Hausdorff topology on n(Y)) and A is closed then $A = \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m}$.

Proof. Fix $n \in \mathbb{N}$ and $W \in \mathcal{W}$, where \mathcal{W} denotes a base of neighbourhoods of zero in Y. Since $A_n \to A$, there is $n_0 \in \mathbb{N}$ such that $A \subseteq A_m + W$ for every $m \ge n_0$. Hence, $A \subseteq \bigcup_{m \ge n} A_m + W$ for $W \in \mathcal{W}$. Therefore, we have

$$A \subseteq \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m}.$$

Now, fix $W \in \mathcal{W}$. Let $V \in \mathcal{W}$ with $V + V \subseteq W$. There is $n_0 \in \mathbb{N}$ such that if $n \geq n_0$, then

A + V.

(1)
$$A_n \subseteq$$

Choose an $x \in \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m}$. Hence $x \in A_m + V$ for some $m \ge n_0$. Then by (1),

$$x\in A+V+V\subseteq A+W,$$

that is, $x \in \overline{A} = A$. Consequently, $\bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m} \subseteq A$.

LEMMA 6. Let Y be a topological vector space and $A_n, B, C \in cc(Y)$ for $n \in \mathbb{N}$. If $A_n + B =: C_n \to C$, then there exists $A \in cc(Y)$ such that C = A + B.

Proof. By the last lemma, Lemma 5.3 of [4] and the fact that the algebraic sum of a compact set and a closed set is closed, we have

$$C = \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} (A_m + B)} = \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m + B} = \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m + B}$$
$$= \bigcap_{n=1}^{\infty} \left(\overline{\bigcup_{m \ge n} A_m} + B \right) = \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m} + B.$$

Hence

$$C = \operatorname{clconv}\left(\bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n}} A_m + B\right) = \operatorname{cl}\left(\operatorname{conv} \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n}} A_m + B\right)$$
$$= \operatorname{cl}\left(\operatorname{clconv} \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n}} A_m + B\right) = \operatorname{clconv} \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n}} A_m + B.$$

Put

$$A := \operatorname{clconv} \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} A_m}$$

The set A is of course closed and convex and A + B = C. Since $A \subset C - B$, A is compact.

DEFINITION 1. A set $S \subseteq X$ is said to be a \mathbb{Q} -convex cone if $S + S \subseteq S$ and $\lambda S \subseteq S$ for all $\lambda \in \mathbb{Q} \cap (0, \infty)$.

Now consider an s.v. function $F : S \to cc(Y)$, where $S \subseteq X$ denotes a \mathbb{Q} -convex cone. Define $f : S \to \mathcal{Z}$ as follows:

(2)
$$f(x) := [F(x), \{0\}].$$

DEFINITION 2. Let $h \in X$. The difference operator of the function $f : S \to \mathcal{Z}$ given by (2) is called the *difference operator of the s.v. function* F, i.e. $\Delta_h F(x) := \Delta_h f(x) = [F(x+h), F(x)]$ for $x \in S$ and $h \in X$ such that $x + h \in S$, and $\Delta_h^n F(x) := \Delta_h^n f(x)$ for $x \in S$ and $h \in X$ such that $x + nh \in S$.

DEFINITION 3. An s.v. function $F: S \to cc(Y)$ is called a *polynomial* s.v. function of order at most n if the function $f: S \to \mathcal{Z}$ given by (2) is a polynomial function of order at most n, i.e. $\Delta_h^{n+1}F(x) = 0$ for $x \in S$ and $h \in X$ such that $x + (n+1)h \in S$.

Observe that if $F: S \to cc(Y)$ is polynomial of order 0, i.e. $\Delta_h F(x) = 0$ for $x \in S$ and $h \in X$ such that $x + h \in S$, then F is constant.

Now, let F be a polynomial s.v. function of order at most one. Then

$$\Delta_h^2 F(x) = [F(x+2h) + F(x), 2F(x+h)] = 0$$

for $x \in S$ and $h \in X$ such that $x + 2h \in S$. This means that

(3)
$$F(x+2h) + F(x) = 2F(x+h)$$

for $x \in S$ and $h \in X$ such that $x + 2h \in S$.

Putting $h := (y - x)/2 \in X$ in (3), where x, y are arbitrary from S, we get $x + h = (x + y)/2 \in S, x + 2h = y \in S$ and

(4)
$$F(y) + F(x) = 2F\left(\frac{x+y}{2}\right), \quad x, y \in S.$$

So, if $\Delta_h^2 F(x) = 0$, then F satisfies the Jensen equation (4). Conversely, if F satisfies the above equation, then F is a polynomial function of order at most one.

If F is a polynomial s.v. function of order at most one then the function $g: S \to \mathcal{Z}$ given by

$$g(x) := \Delta_x f(0) = [F(x), F(0)]$$

58

is additive. Indeed, by Lemma 3 (p. 367) of [3] and Theorem 1,

$$g(x+y) = \Delta_{x+y} f(0) = \Delta_{x,y} f(0) + \Delta_x f(0) + \Delta_y f(0) = g(x) + g(y)$$

for all $x, y \in S$. Then g(nx) = ng(x) for all $n \in \mathbb{N}$ and $x \in S$, which gives $\begin{bmatrix} E(nx) & E(0) \end{bmatrix} = x \begin{bmatrix} E(n) & E(0) \end{bmatrix}$

$$[F'(nx), F'(0)] = n[F'(x), F'(0)]$$

Hence

$$\frac{1}{n}F(nx) + F(0) = \frac{1}{n}F(0) + F(x)$$

for $x \in S$ and $n \in \mathbb{N}$. Since the limit of the right-hand side exists, so does the limit of the left-hand side. By Lemma 6, there is a set $A(x) \in cc(Y)$ such that

$$A(x) + F(0) = \lim_{n \to \infty} \left(\frac{1}{n}F(0) + F(x)\right) = F(x)$$

for $x \in S$. It follows that

$$[A(x), \{0\}] = [F(x), F(0)],$$

so the s.v. function A is additive. Conversely, if $A: S \to cc(Y)$ is additive and $F(0) \in cc(Y)$, then the s.v. function F given by F(x) = F(0) + A(x) is a polynomial s.v. function of order at most one. By the above considerations we can formulate a theorem proved by K. Nikodem [4] in a different way.

THEOREM 2. Let X be a real vector space, S be a \mathbb{Q} -convex cone in X and let Y be a real topological vector space. Then $F: S \to cc(Y)$ is a polynomial s.v. function of order at most one if and only if there exists an additive s.v. function $A: S \to cc(Y)$ such that F(x) = F(0) + A(x) for $x \in S$.

An s.v. function F is a polynomial function of order 2 if and only if

$$F(x+3h) + 3F(x+h) = 3F(x+2h) + F(x)$$

for $x \in S$ and $h \in X$ such that $x + 3h \in S$. It is easily seen that if

(5)
$$F(x) = A_0 + A_1(x) + A_2(x)$$

for $x \in S$, where $A_0 \in cc(Y)$, $A_1, A_2 : S \to cc(Y)$, A_1 is additive and A_2 is the diagonalization of a biadditive s.v. function $\overline{A}_2 : S \times S \to cc(Y)$ (i.e. $A_2(x) = \overline{A}_2(x, x), x \in S$) then F is a polynomial s.v. function of order at most 2.

Now, let us consider an example. Let $S = \langle 0, \infty \rangle$ and $F : S \to cc(\mathbb{R})$ be given by the formula $F(x) := \langle 2x, x^2 + 1 \rangle$, $x \in S$. Obviously, F is a polynomial function of order at most 2 but we cannot present it in the form (5). In fact, putting x = 0 in (5), we get $A_0 = \langle 0, 1 \rangle$. Next, putting x = 1 in (5), we obtain

$$\langle 0,1 \rangle + A_1(1) + A_2(1) = \langle 2,2 \rangle,$$

which is not possible.

R e m a r k 1. Let $F: S \to cc(Y)$ be a polynomial s.v. function of order at most 2 and let $\overline{f}: X \to \mathcal{Z}$ denote an extension of the function f defined by (2). The function $g: X \times X \to \mathcal{Z}$ given by

$$g(x,y) := \frac{1}{2}\Delta_{x,y}\overline{f}(0)$$

is biadditive and

(6)
$$g(x,y) = \frac{1}{2}\Delta_{x,y}f(0) = \frac{1}{2}[F(x+y) + F(0), F(x) + F(y)]$$
 for $x, y \in S$

Proof. A polynomial extension $\overline{f} : X \to \mathbb{Z}$ of order at most 2 of the function f exists in view of Theorem 2 of [2]. Note that g is symmetric. Fix $x, y, z \in X$. By Lemma 3 of [3] (p. 367) and Theorem 1 we have

$$g(x + z, y) = \frac{1}{2}\Delta_{x+z,y}f(0) = \frac{1}{2}\Delta_y\Delta_{x+z}f(0)$$

= $\frac{1}{2}\Delta_y(\Delta_{x,z}f(0) + \Delta_xf(0) + \Delta_zf(0))$
= $\frac{1}{2}\Delta_{x,y,z}f(0) + \frac{1}{2}\Delta_{x,y}f(0) + \frac{1}{2}\Delta_{z,y}f(x)(0)$
= $g(x, y) + g(z, y).$

By (2), the equation (6) is obvious. \blacksquare

THEOREM 3. Let $F: S \to cc(Y)$ be a polynomial function of order at most 2. Then there exists a polynomial s.v. function $A: S \to cc(Y)$ of order at most 2 such that

$$\frac{1}{2}F(0) + \frac{1}{2}F(2x) = A(x) + F(x), \quad x \in S,$$

$$A(\lambda x) = \lambda^2 A(x), \quad x \in S, \ \lambda \in \mathbb{Q} \cap \langle 0, \infty \rangle,$$

and the function

$$x \to [F(x), F(0) + A(x)], \quad x \in S,$$

 $is \ additive.$

Proof. By Remark 1 the function $g: X \times X \to \mathcal{Z}$ given by $g(x, y) := \frac{1}{2}\Delta_{x,y}\bar{f}(0)$ is biadditive, where \bar{f} denotes an extension of f.

First, we prove that

(7)
$$F\left(\sum_{k=1}^{n} x_k\right) + (n-2)\sum_{k=1}^{n} F(x_k)$$

= $\frac{(n-2)(n-1)}{2}F(0) + \sum_{1 \le k < l \le n} F(x_k + x_l)$

where $n \ge 2$ and $x_1, \ldots, x_n \in S$. If n = 2, then (7) is trivial. Now, assume that (7) holds for $n \ge 2$. Let $x_1, \ldots, x_{n+1} \in S$. Since

$$g\left(\sum_{k=1}^{n} x_k, x_{n+1}\right) = \sum_{k=1}^{n} g(x_k, x_{n+1}),$$

we have

$$\left[F\left(\sum_{k=1}^{n} x_k + x_{n+1}\right) + F(0), F\left(\sum_{k=1}^{n} x_k\right) + F(x_{n+1})\right]$$
$$= \sum_{k=1}^{n} [F(x_k + x_{n+1}) + F(0), F(x_k) + F(x_{n+1})],$$

whence

$$F\left(\sum_{k=1}^{n+1} x_k\right) + F(0) + \sum_{k=1}^{n} F(x_k) + nF(x_{n+1})$$

= $F\left(\sum_{k=1}^{n} x_k\right) + F(x_{n+1}) + \sum_{k=1}^{n} F(x_k + x_{n+1}) + nF(0).$

By the Rådström lemma

$$F\left(\sum_{k=1}^{n+1} x_k\right) + \sum_{k=1}^n F(x_k) + (n-1)F(x_{n+1})$$

= $F\left(\sum_{k=1}^n x_k\right) + \sum_{k=1}^n F(x_k + x_{n+1}) + (n-1)F(0).$

Hence and by the induction hypothesis we have

$$F\left(\sum_{k=1}^{n+1} x_k\right) + (n-1)\sum_{k=1}^{n+1} F(x_k)$$

= $F\left(\sum_{k=1}^n x_k\right) + (n-2)\sum_{k=1}^n F(x_k) + \sum_{k=1}^n F(x_k + x_{n+1}) + (n-1)F(0)$
= $\frac{(n-2)(n-1)}{2}F(0) + \sum_{1 \le k < l \le n} F(x_k + x_l)$
+ $\sum_{k=1}^n F(x_k + x_{n+1}) + (n-1)F(0)$
= $\sum_{1 \le k < l \le n+1} F(x_k + x_l) + \frac{(n-1)n}{2}F(0),$

which ends the induction.

Putting $x = x_1 = \ldots = x_n$ in (7), we have

$$F(nx) + n(n-2)F(x) = \binom{n-1}{2}F(0) + \binom{n}{2}F(2x), \quad n \ge 3, \ x \in S,$$

J. Szczawińska

and

(8)
$$\frac{F(nx)}{n(n-2)} + F(x) = \frac{\binom{n-1}{2}}{n(n-2)}F(0) + \frac{\binom{n}{2}}{n(n-2)}F(2x), \quad n \ge 3.$$

By Lemmas 4 and 2 the limit of the right-hand side of (8) exists; consequently, so does the limit of the left-hand side, and by Lemma 6, for all $x \in S$, there is a set $A(x) \in cc(Y)$ such that

$$\frac{1}{2}F(0) + \frac{1}{2}F(2x) = A(x) + F(x), \quad x \in S.$$

This means that

$$[A(x), \{0\}] = \frac{1}{2}[F(2x) + F(0), 2F(x)] = g(x, x), \quad x \in S.$$

Therefore, the function $a: X \to \mathcal{Z}$ defined by a(x) := g(x, x) is the diagonalization of the biadditive function g and

$$a(x) = [A(x), \{0\}]$$
 for $x \in S$.

By Definition 3, A is a polynomial function of order at most 2. Since g is biadditive, for $x \in S$ and $\lambda \in \mathbb{Q} \cap (0, \infty)$,

$$[A(\lambda x), \{0\}] = g(\lambda x, \lambda x) = \lambda^2 g(x, x) = \lambda^2 [A(x), \{0\}],$$

which means that $A(\lambda x) = \lambda^2 A(x)$.

Finally, observe that the function $x \to f(x) - a(x)$, $x \in S$, is a Jensen function. Indeed, let $x \in S$ and $h \in X$ with $x + 2h \in S$. Then

$$\Delta_h^2(f(x) - a(x)) = \Delta_h^2 f(x) - 2g(h, h) = \Delta_h^2 f(x) - \Delta_h^2 f(0) = \Delta_h^2 \Delta_x f(0) = 0,$$

by Theorem 1 and biadditivity of g. Define $\overline{g}: S \to \mathcal{Z}$ by

$$\overline{g}(x) = f(x) - a(x) - [F(0), \{0\}] = [F(x), A(x) + F(0)].$$

Then the considerations above and the fact that $\overline{g}(0)=0$ imply the additivity of $\overline{g}.$ \blacksquare

DEFINITION 4 (cf. [3]). Let S be a convex cone in a vector space X over \mathbb{Q} . A set \mathcal{E} is called a *base* of S if \mathcal{E} is linearly independent and the cone is spanned by \mathcal{E} , i.e., the set

$$\left\{x \in X : x = \sum_{k=1}^{n} \lambda_k e_k, \ e_1, \dots, e_n \in \mathcal{E}, \ \lambda_1, \dots, \lambda_n \in \mathbb{Q} \cap \langle 0, \infty \rangle, \ n \in \mathbb{N}\right\}$$

coincides with S.

THEOREM 4. Let X be a vector space over \mathbb{Q} and Y be a topological vector space, and let $S \subseteq X$ be a cone with a base. Then $F: S \to cc(Y)$ is a polynomial s.v. function of order at most 2 if and only if there exist additive s.v. functions $\overline{B}, \overline{C}: S \to cc(Y)$ and biadditive s.v. functions $\overline{D}, \overline{H}: S \times S \to cc(Y)$ such that

62

(9)
$$F(x) + \overline{C}(x) + \overline{H}(x,x) = F(0) + \overline{D}(x,x) + \overline{B}(x)$$

for $x \in S$.

Proof. Since a cone with a base is Q-convex, by Theorem 3 there is an s.v. function $A: S \to cc(Y)$ such that

$$x \to [F(x), F(0) + A(x)], \quad x \in S,$$

is additive. There exist (see Theorem 1 of [7]) additive s.v. functions $\overline{B},\overline{C}:S\to cc(Y)$ such that

$$[F(x), F(0) + A(x)] = [\overline{B}(x), \overline{C}(x)], \quad x \in S,$$

which gives

(10)
$$F(x) + \overline{C}(x) = F(0) + \overline{B}(x) + A(x), \quad x \in S.$$

In view of Remark 1,

$$g(x,y) = \frac{1}{2}[F(x+y) + F(0), F(x) + F(y)]$$

is biadditive. Set

$$D(x,y) := \frac{1}{2}(F(x+y) + F(0)), \quad H(x,y) := \frac{1}{2}(F(x) + F(y)),$$

and let \mathcal{E} be a base of S. Fix $x, y \in S$. There exist $n \in \mathbb{N}, \lambda_1, \ldots, \lambda_n \in \mathbb{Q} \cap \langle 0, \infty \rangle$ and $e_1, \ldots, e_n \in \mathcal{E}$ such that $x = \sum_{i=1}^n \lambda_i e_i$, and

$$D(x,y) + \sum_{i=1}^{n} \lambda_i H(e_i, y) = H(x, y) + \sum_{i=1}^{n} \lambda_i D(e_i, y).$$

Similarly

$$H(e_i, y) + \sum_{j=1}^{m} \mu_j D(e_i, \bar{e}_j) = D(e_i, y) + \sum_{j=1}^{m} \mu_j H(e_i, \bar{e}_j),$$

where $y = \sum_{j=1}^{m} \mu_j \overline{e}_j, \ \overline{e}_1, \dots, \overline{e}_m \in \mathcal{E}$ and $\mu_1, \dots, \mu_m \in \mathbb{Q} \cap (0, \infty)$. Hence

$$D(x,y) + \sum_{i=1}^{n} \lambda_i D(e_i, y) + \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j H(e_i, \overline{e}_j)$$

= $D(x, y) + \sum_{i=1}^{n} \lambda_i \Big[D(e_i, y) + \sum_{j=1}^{m} \mu_j H(e_i, \overline{e}_j) \Big]$
= $D(x, y) + \sum_{i=1}^{n} \lambda_i \Big[H(e_i, y) + \sum_{j=1}^{m} \mu_j D(e_i, \overline{e}_j) \Big]$
= $D(x, y) + \sum_{i=1}^{n} \lambda_i H(e_i, y) + \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j D(e_i, \overline{e}_j)$

J. Szczawińska

Define

$$\overline{D}(x,y) := \sum_{i=1}^n \sum_{j=1}^m \lambda_i \mu_j D(e_i, \overline{e}_j), \quad \overline{H}(x,y) := \sum_{i=1}^n \sum_{j=1}^m \lambda_i \mu_j H(e_i, \overline{e}_j),$$

where $x = \sum_{i=1}^{n} \lambda_i e_i$, $y = \sum_{j=1}^{m} \mu_j \overline{e}_j$, $x, y \in S$. It is clear that \overline{D} and \overline{H} are biadditive and

$$\frac{1}{2}F(x+y) + \frac{1}{2}F(0) + \overline{H}(x,y) = \frac{1}{2}F(x) + \frac{1}{2}F(y) + \overline{D}(x,y).$$

Setting y = x, we have

$$\frac{1}{2}F(2x) + \frac{1}{2}F(0) + \overline{H}(x,x) = F(x) + \overline{D}(x,x).$$

Hence and by Theorem 3,

$$A(x) + \overline{H}(x, x) = \overline{D}(x, x)$$

and by (10),

$$F(x) + \overline{C}(x) + \overline{H}(x, x) = F(0) + \overline{B}(x) + A(x) + \overline{H}(x, x)$$
$$= F(0) + \overline{D}(x, x) + \overline{B}(x), \quad x \in S.$$

Thus (9) holds true. To end the proof it suffices to prove that F is a polynomial s.v. function of order at most 2 if (9) is satisfied. By (9),

$$\begin{split} \Delta_h^3 F(x) &= [F(x+3h)+3F(x+h), 3F(x+2h)+F(x)] \\ &= [\overline{D}(x+3h,x+3h)+\overline{B}(x+3h)+3\overline{D}(x+h,x+h)+3\overline{B}(x+h), \\ &\overline{H}(x+3h,x+3h)+\overline{C}(x+3h)+3\overline{H}(x+h,x+h)+3\overline{C}(x+h)] \\ &- [3\overline{D}(x+2h,x+2h)+3\overline{B}(x+2h)+\overline{D}(x,x)+\overline{B}(x), \\ &\quad 3\overline{H}(x+2h,x+2h)+3\overline{C}(x+2h)+\overline{H}(x,x)+\overline{C}(x)] \\ &= [\overline{D}(x+3h,x+3h)+3\overline{D}(x+h,x+h), 3\overline{D}(x+2h,x+2h)+\overline{D}(x,x)] \\ &= [\overline{H}(x+3h,x+3h)+3\overline{H}(x+h,x+h), 3\overline{H}(x+2h,x+2h)+\overline{H}(x,x)] \\ &+ [\overline{B}(x+3h)+3\overline{B}(x+h), 3\overline{B}(x+2h)+\overline{B}(x)] \\ &+ [\overline{C}(x+3h)+3\overline{C}(x+h), 3\overline{C}(x+2h)+\overline{C}(x)] \\ &= \Delta_h^3\overline{D}(x,x)-\Delta_h^3\overline{H}(x,x)+\Delta_h^3\overline{B}(x)-\Delta_h^3\overline{C}(x)=0, \end{split}$$

for $x \in S$ and $h \in X$ such that $x + 3h \in S$, because \overline{D} and \overline{H} are biadditive and $\overline{B}y$ and \overline{C} are additive. So, the proof is complete.

64

References

- C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
- [2] R. Ger, On extensions of polynomial functions, Results Math. 26 (1994), 281–289.
- [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN and Uniw. Śl., Warszawa-Kraków-Katowice, 1985.
- [4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Politech. Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
- [5] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [6] —, One-parameter semigroups of subsets of a real linear space, Ark. Mat. 4 (1960), 87–97.
- [7] A. Smajdor, On a functional equation, Ann. Math. Sil. 8 (1994), 217-226.

Institute of Mathematics Pedagogical University Podchorążych 2 30-084 Kraków, Poland E-mail: smwilk@cyf-kr.edu.pl

> Reçu par la Rédaction le 18.5.1995 Révisé le 7.6.1996