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Polynomial set-valued functions

by Joanna Szczawińska (Kraków)

Abstract. The aim of this paper is to give a necessary and sufficient condition for a
set-valued function to be a polynomial s.v. function of order at most 2.

Let X,Z be vector spaces over Q and C be a Q-convex subset of X. Let
f : C → Z be an arbitrary function and h ∈ X. The difference operator ∆h

is given by the formula

∆hf(x) := f(x+ h)− f(x)

for x ∈ C such that x + h ∈ C. The iterates ∆n
h of ∆h are given by the

recurrence

∆0
hf := f, ∆n+1

h f := ∆h(∆n
hf), n = 0, 1, 2, . . .

The expression ∆n
hf is a function defined for all x ∈ C such that x+nh ∈ C.

It is easy to see that x+kh ∈ C for k = 1, . . . , n−1 whenever x, x+nh ∈ C.
A function f : C → Z is said to be a Jensen function if it satisfies the

Jensen functional equation

f

(
x+ y

2

)
=

1
2

[f(x) + f(y)]

for all x, y ∈ C.
A function f : C → Z is called a polynomial function of order at most n

if
∆n+1

h f(x) = 0
for every x ∈ C and h ∈ X such that x+ (n+ 1)h ∈ C.

We have

∆n
hf(x) =

n∑
k=0

(−1)n−k

(
n

k

)
f(x+ kh)
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for n ∈ N, h ∈ X and x ∈ C such that x+nh ∈ C (see e.g. [3], Corollary 2,
p. 368).

R. Ger has proved that every polynomial function f : C → Z of order
at most n admits an extension to a polynomial function of order at most n
on the whole X (see Theorem 2 of [2]). Therefore, due to Theorem 3 of [3]
(p. 379), we can formulate the following theorem:

Theorem 1. Let X,Z be Q-linear spaces and C be a nonempty Q-convex
subset of X. If f : C → Z is a polynomial function of order at most n then

∆h1...hn+1f(x) := ∆h1∆h2 . . . ∆hn+1f(x) = 0

for x ∈ C and h1, . . . , hn+1 ∈ X such that x+ ε1h1 + . . .+ εn+1hn+1 ∈ C,
ε1, . . . , εn+1 ∈ {0, 1}.

We are going to deal with polynomial set-valued functions (abbreviated
to s.v. functions in the sequel). Let Y be a real Hausdorff topological vector
space. The symbol n(Y ) will stand for the set of all non-empty subsets of Y .
The set of all convex and compact members of n(Y ) will be denoted by
cc(Y ).

R̊adström’s equivalence relation ∼ (see [5]) is defined on (cc(Y ))2 by
stating (A,B) ∼ (C,D) if A+D = B+C. The equivalence class containing
(A,B) is denoted by [A,B]. The quotient space Z = (cc(Y ))2/∼, with
addition defined by

[A,B] + [D,E] := [A+D,B + E],

and scalar multiplication

λ[A,B] :=
{

[λA, λB], λ ≥ 0,
[−λB,−λA], λ < 0,

is a real vector space.
The following result of R̊adström (see [5], Lemma 3) is useful.

Lemma 1. Let A,B be convex and closed sets in Y and let C be nonempty
and bounded. Then A+ C = B + C implies A = B.

Let Y be a topological vector space and let W be a base of neighbour-
hoods of zero in Y . The space n(Y ) may be considered as a topological
space with the Hausdorff topology. In this topology the families of sets

NW (A) := {B ∈ n(Y ) : A ⊆ B +W and B ⊆ A+W},
where W runs over the base W, form a base of neighbourhoods of the set
A ∈ n(Y ) (see [6]).

The three lemmas below can be found e.g. in [4] (Lemmas 5.6 and 3.2).

Lemma 2. Let Y be a topological vector space and An, Bn, A,B ∈ n(Y )
for n ∈ N. If An → A and Bn → B (in the Hausdorff topology on n(Y )),
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then An + Bn → A + B. If A is bounded , then the function t → tA is
continuous.

Lemma 3. If λn → 0 and A ∈ n(Y ) is bounded , then λnA→ {0}.
Lemma 4. If λn → λ0 and A ∈ n(Y ) is bounded , then λnA→ λ0A.

The next lemma is proved in [1] for a metric space Y .

Lemma 5. Let Y be a topological vector space. If An → A (in the Haus-
dorff topology on n(Y )) and A is closed then A =

⋂∞
n=1

⋃
m≥nAm.

P r o o f. Fix n ∈ N and W ∈ W, where W denotes a base of neighbour-
hoods of zero in Y . Since An → A, there is n0 ∈ N such that A ⊆ Am +W
for every m ≥ n0. Hence, A ⊆

⋃
m≥nAm + W for W ∈ W. Therefore, we

have

A ⊆
∞⋂

n=1

⋃
m≥n

Am.

Now, fix W ∈ W. Let V ∈ W with V + V ⊆ W . There is n0 ∈ N such
that if n ≥ n0, then

(1) An ⊆ A+ V.

Choose an x ∈
⋂∞

n=1

⋃
m≥nAm. Hence x ∈ Am +V for some m ≥ n0. Then

by (1),
x ∈ A+ V + V ⊆ A+W,

that is, x ∈ A = A. Consequently,
⋂∞

n=1

⋃
m≥nAm ⊆ A.

Lemma 6. Let Y be a topological vector space and An, B, C ∈ cc(Y )
for n ∈ N. If An + B =: Cn → C, then there exists A ∈ cc(Y ) such that
C = A+B.

P r o o f. By the last lemma, Lemma 5.3 of [4] and the fact that the
algebraic sum of a compact set and a closed set is closed, we have

C =
∞⋂

n=1

⋃
m≥n

(Am +B) =
∞⋂

n=1

⋃
m≥n

Am +B =
∞⋂

n=1

⋃
m≥n

Am +B

=
∞⋂

n=1

( ⋃
m≥n

Am +B
)

=
∞⋂

n=1

⋃
m≥n

Am +B.

Hence

C = clconv
( ∞⋂

n=1

⋃
m≥n

Am +B
)

= cl
(

conv
∞⋂

n=1

⋃
m≥n

Am +B
)

= cl
(

clconv
∞⋂

n=1

⋃
m≥n

Am +B
)

= clconv
∞⋂

n=1

⋃
m≥n

Am +B.
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Put

A := clconv
∞⋂

n=1

⋃
m≥n

Am.

The set A is of course closed and convex and A+B = C. Since A ⊂ C−B,
A is compact.

Definition 1. A set S ⊆ X is said to be a Q-convex cone if S+S ⊆ S
and λS ⊆ S for all λ ∈ Q ∩ 〈0,∞).

Now consider an s.v. function F : S → cc(Y ), where S ⊆ X denotes a
Q-convex cone. Define f : S → Z as follows:

(2) f(x) := [F (x), {0}].

Definition 2. Let h ∈ X. The difference operator of the function f :
S → Z given by (2) is called the difference operator of the s.v. function F ,
i.e. ∆hF (x) := ∆hf(x) = [F (x + h), F (x)] for x ∈ S and h ∈ X such
that x + h ∈ S, and ∆n

hF (x) := ∆n
hf(x) for x ∈ S and h ∈ X such that

x+ nh ∈ S.

Definition 3. An s.v. function F : S → cc(Y ) is called a polynomial
s.v. function of order at most n if the function f : S → Z given by (2) is a
polynomial function of order at most n, i.e. ∆n+1

h F (x) = 0 for x ∈ S and
h ∈ X such that x+ (n+ 1)h ∈ S.

Observe that if F : S → cc(Y ) is polynomial of order 0, i.e. ∆hF (x) = 0
for x ∈ S and h ∈ X such that x+ h ∈ S, then F is constant.

Now, let F be a polynomial s.v. function of order at most one. Then

∆2
hF (x) = [F (x+ 2h) + F (x), 2F (x+ h)] = 0

for x ∈ S and h ∈ X such that x+ 2h ∈ S. This means that

(3) F (x+ 2h) + F (x) = 2F (x+ h)

for x ∈ S and h ∈ X such that x+ 2h ∈ S.
Putting h := (y − x)/2 ∈ X in (3), where x, y are arbitrary from S, we

get x+ h = (x+ y)/2 ∈ S, x+ 2h = y ∈ S and

(4) F (y) + F (x) = 2F
(
x+ y

2

)
, x, y ∈ S.

So, if ∆2
hF (x) = 0, then F satisfies the Jensen equation (4). Conversely, if

F satisfies the above equation, then F is a polynomial function of order at
most one.

If F is a polynomial s.v. function of order at most one then the function
g : S → Z given by

g(x) := ∆xf(0) = [F (x), F (0)]
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is additive. Indeed, by Lemma 3 (p. 367) of [3] and Theorem 1,

g(x+ y) = ∆x+yf(0) = ∆x,yf(0) +∆xf(0) +∆yf(0) = g(x) + g(y)

for all x, y ∈ S. Then g(nx) = ng(x) for all n ∈ N and x ∈ S, which gives

[F (nx), F (0)] = n[F (x), F (0)].

Hence
1
n
F (nx) + F (0) =

1
n
F (0) + F (x)

for x ∈ S and n ∈ N. Since the limit of the right-hand side exists, so does
the limit of the left-hand side. By Lemma 6, there is a set A(x) ∈ cc(Y )
such that

A(x) + F (0) = lim
n→∞

(
1
n
F (0) + F (x)

)
= F (x)

for x ∈ S. It follows that

[A(x), {0}] = [F (x), F (0)],

so the s.v. function A is additive. Conversely, if A : S → cc(Y ) is additive
and F (0) ∈ cc(Y ), then the s.v. function F given by F (x) = F (0) +A(x) is
a polynomial s.v. function of order at most one. By the above considerations
we can formulate a theorem proved by K. Nikodem [4] in a different way.

Theorem 2. Let X be a real vector space, S be a Q-convex cone in X
and let Y be a real topological vector space. Then F : S → cc(Y ) is a polyno-
mial s.v. function of order at most one if and only if there exists an additive
s.v. function A : S → cc(Y ) such that F (x) = F (0) +A(x) for x ∈ S.

An s.v. function F is a polynomial function of order 2 if and only if

F (x+ 3h) + 3F (x+ h) = 3F (x+ 2h) + F (x)

for x ∈ S and h ∈ X such that x+ 3h ∈ S. It is easily seen that if

(5) F (x) = A0 +A1(x) +A2(x)

for x ∈ S, where A0 ∈ cc(Y ), A1, A2 : S → cc(Y ), A1 is additive and A2

is the diagonalization of a biadditive s.v. function A2 : S × S → cc(Y ) (i.e.
A2(x) = A2(x, x), x ∈ S) then F is a polynomial s.v. function of order at
most 2.

Now, let us consider an example. Let S = 〈0,∞) and F : S → cc(R)
be given by the formula F (x) := 〈2x, x2 + 1〉, x ∈ S. Obviously, F is a
polynomial function of order at most 2 but we cannot present it in the
form (5). In fact, putting x = 0 in (5), we get A0 = 〈0, 1〉. Next, putting
x = 1 in (5), we obtain

〈0, 1〉+A1(1) +A2(1) = 〈2, 2〉,
which is not possible.
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R e m a r k 1. Let F : S → cc(Y ) be a polynomial s.v. function of order
at most 2 and let f : X → Z denote an extension of the function f defined
by (2). The function g : X ×X → Z given by

g(x, y) := 1
2∆x,yf(0)

is biadditive and

(6) g(x, y) = 1
2∆x,yf(0) = 1

2 [F (x+ y) + F (0), F (x) + F (y)] for x, y ∈ S.

P r o o f. A polynomial extension f : X → Z of order at most 2 of the
function f exists in view of Theorem 2 of [2]. Note that g is symmetric. Fix
x, y, z ∈ X. By Lemma 3 of [3] (p. 367) and Theorem 1 we have

g(x+ z, y) = 1
2∆x+z,yf(0) = 1

2∆y∆x+zf(0)
= 1

2∆y(∆x,zf(0) +∆xf(0) +∆zf(0))
= 1

2∆x,y,zf(0) + 1
2∆x,yf(0) + 1

2∆z,yf(x)(0)
= g(x, y) + g(z, y).

By (2), the equation (6) is obvious.

Theorem 3. Let F : S → cc(Y ) be a polynomial function of order at
most 2. Then there exists a polynomial s.v. function A : S → cc(Y ) of order
at most 2 such that

1
2F (0) + 1

2F (2x) = A(x) + F (x), x ∈ S,
A(λx) = λ2A(x), x ∈ S, λ ∈ Q ∩ 〈0,∞),

and the function

x→ [F (x), F (0) +A(x)], x ∈ S,
is additive.

P r o o f. By Remark 1 the function g : X ×X → Z given by g(x, y) :=
1
2∆x,yf(0) is biadditive, where f denotes an extension of f .

First, we prove that

(7) F
( n∑

k=1

xk

)
+ (n− 2)

n∑
k=1

F (xk)

=
(n− 2)(n− 1)

2
F (0) +

∑
1≤k<l≤n

F (xk + xl),

where n ≥ 2 and x1, . . . , xn ∈ S. If n = 2, then (7) is trivial. Now, assume
that (7) holds for n ≥ 2. Let x1, . . . , xn+1 ∈ S. Since

g
( n∑

k=1

xk, xn+1

)
=

n∑
k=1

g(xk, xn+1),
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we have[
F
( n∑

k=1

xk + xn+1

)
+ F (0), F

( n∑
k=1

xk

)
+ F (xn+1)

]
=

n∑
k=1

[F (xk + xn+1) + F (0), F (xk) + F (xn+1)],

whence

F
( n+1∑

k=1

xk

)
+ F (0) +

n∑
k=1

F (xk) + nF (xn+1)

= F
( n∑

k=1

xk

)
+ F (xn+1) +

n∑
k=1

F (xk + xn+1) + nF (0).

By the R̊adström lemma

F
( n+1∑

k=1

xk

)
+

n∑
k=1

F (xk) + (n− 1)F (xn+1)

= F
( n∑

k=1

xk

)
+

n∑
k=1

F (xk + xn+1) + (n− 1)F (0).

Hence and by the induction hypothesis we have

F
( n+1∑

k=1

xk

)
+ (n− 1)

n+1∑
k=1

F (xk)

= F
( n∑

k=1

xk

)
+ (n− 2)

n∑
k=1

F (xk) +
n∑

k=1

F (xk + xn+1) + (n− 1)F (0)

=
(n− 2)(n− 1)

2
F (0) +

∑
1≤k<l≤n

F (xk + xl)

+
n∑

k=1

F (xk + xn+1) + (n− 1)F (0)

=
∑

1≤k<l≤n+1

F (xk + xl) +
(n− 1)n

2
F (0),

which ends the induction.
Putting x = x1 = . . . = xn in (7), we have

F (nx) + n(n− 2)F (x) =
(
n− 1

2

)
F (0) +

(
n

2

)
F (2x), n ≥ 3, x ∈ S,
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and

(8)
F (nx)
n(n− 2)

+ F (x) =

(
n−1

2

)
n(n− 2)

F (0) +

(
n
2

)
n(n− 2)

F (2x), n ≥ 3.

By Lemmas 4 and 2 the limit of the right-hand side of (8) exists; con-
sequently, so does the limit of the left-hand side, and by Lemma 6, for all
x ∈ S, there is a set A(x) ∈ cc(Y ) such that

1
2F (0) + 1

2F (2x) = A(x) + F (x), x ∈ S.

This means that

[A(x), {0}] = 1
2 [F (2x) + F (0), 2F (x)] = g(x, x), x ∈ S.

Therefore, the function a : X → Z defined by a(x) := g(x, x) is the diago-
nalization of the biadditive function g and

a(x) = [A(x), {0}] for x ∈ S.

By Definition 3, A is a polynomial function of order at most 2. Since g is
biadditive, for x ∈ S and λ ∈ Q ∩ 〈0,∞),

[A(λx), {0}] = g(λx, λx) = λ2g(x, x) = λ2[A(x), {0}],

which means that A(λx) = λ2A(x).
Finally, observe that the function x → f(x) − a(x), x ∈ S, is a Jensen

function. Indeed, let x ∈ S and h ∈ X with x+ 2h ∈ S. Then

∆2
h(f(x)−a(x)) = ∆2

hf(x)−2g(h, h) = ∆2
hf(x)−∆2

hf(0) = ∆2
h∆xf(0) = 0,

by Theorem 1 and biadditivity of g. Define g : S → Z by

g(x) = f(x)− a(x)− [F (0), {0}] = [F (x), A(x) + F (0)].

Then the considerations above and the fact that g(0) = 0 imply the addi-
tivity of g.

Definition 4 (cf. [3]). Let S be a convex cone in a vector space X
over Q. A set E is called a base of S if E is linearly independent and the
cone is spanned by E , i.e., the set{
x ∈ X : x =

n∑
k=1

λkek, e1, . . . , en ∈ E , λ1, . . . , λn ∈ Q ∩ 〈0,∞), n ∈ N
}

coincides with S.

Theorem 4. Let X be a vector space over Q and Y be a topological
vector space, and let S ⊆ X be a cone with a base. Then F : S → cc(Y ) is a
polynomial s.v. function of order at most 2 if and only if there exist additive
s.v. functions B,C : S → cc(Y ) and biadditive s.v. functions D,H : S×S →
cc(Y ) such that
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(9) F (x) + C(x) +H(x, x) = F (0) +D(x, x) +B(x)

for x ∈ S.

P r o o f. Since a cone with a base is Q-convex, by Theorem 3 there is an
s.v. function A : S → cc(Y ) such that

x→ [F (x), F (0) +A(x)], x ∈ S,

is additive. There exist (see Theorem 1 of [7]) additive s.v. functions B,C :
S → cc(Y ) such that

[F (x), F (0) +A(x)] = [B(x), C(x)], x ∈ S,

which gives

(10) F (x) + C(x) = F (0) +B(x) +A(x), x ∈ S.

In view of Remark 1,

g(x, y) = 1
2 [F (x+ y) + F (0), F (x) + F (y)]

is biadditive. Set

D(x, y) := 1
2 (F (x+ y) + F (0)), H(x, y) := 1

2 (F (x) + F (y)),

and let E be a base of S. Fix x, y ∈ S. There exist n ∈ N, λ1, . . . , λn ∈
Q ∩ 〈0,∞) and e1, . . . , en ∈ E such that x =

∑n
i=1 λiei, and

D(x, y) +
n∑

i=1

λiH(ei, y) = H(x, y) +
n∑

i=1

λiD(ei, y).

Similarly

H(ei, y) +
m∑

j=1

µjD(ei, ej) = D(ei, y) +
m∑

j=1

µjH(ei, ej),

where y =
∑m

j=1 µjej , e1, . . . , em ∈ E and µ1, . . . , µm ∈ Q ∩ 〈0,∞). Hence

D(x, y) +
n∑

i=1

λiD(ei, y) +
n∑

i=1

m∑
j=1

λiµjH(ei, ej)

= D(x, y) +
n∑

i=1

λi

[
D(ei, y) +

m∑
j=1

µjH(ei, ej)
]

= D(x, y) +
n∑

i=1

λi

[
H(ei, y) +

m∑
j=1

µjD(ei, ej)
]

= D(x, y) +
n∑

i=1

λiH(ei, y) +
n∑

i=1

m∑
j=1

λiµjD(ei, ej).
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Define

D(x, y) :=
n∑

i=1

m∑
j=1

λiµjD(ei, ej), H(x, y) :=
n∑

i=1

m∑
j=1

λiµjH(ei, ej),

where x =
∑n

i=1 λiei, y =
∑m

j=1 µjej , x, y ∈ S. It is clear that D and H are
biadditive and

1
2F (x+ y) + 1

2F (0) +H(x, y) = 1
2F (x) + 1

2F (y) +D(x, y).

Setting y = x, we have

1
2F (2x) + 1

2F (0) +H(x, x) = F (x) +D(x, x).

Hence and by Theorem 3,

A(x) +H(x, x) = D(x, x)

and by (10),

F (x) + C(x) +H(x, x) = F (0) +B(x) +A(x) +H(x, x)

= F (0) +D(x, x) +B(x), x ∈ S.

Thus (9) holds true. To end the proof it suffices to prove that F is a poly-
nomial s.v. function of order at most 2 if (9) is satisfied. By (9),

∆3
hF (x)
= [F (x+ 3h) + 3F (x+ h), 3F (x+ 2h) + F (x)]

= [D(x+ 3h, x+ 3h) +B(x+ 3h) + 3D(x+ h, x+ h) + 3B(x+ h),

H(x+ 3h, x+ 3h) + C(x+ 3h) + 3H(x+ h, x+ h) + 3C(x+ h)]

− [3D(x+ 2h, x+ 2h) + 3B(x+ 2h) +D(x, x) +B(x),

3H(x+ 2h, x+ 2h) + 3C(x+ 2h) +H(x, x) + C(x)]

= [D(x+ 3h, x+ 3h) + 3D(x+ h, x+ h), 3D(x+ 2h, x+ 2h) +D(x, x)]

= [H(x+ 3h, x+ 3h) + 3H(x+ h, x+ h), 3H(x+ 2h, x+ 2h) +H(x, x)]

+ [B(x+ 3h) + 3B(x+ h), 3B(x+ 2h) +B(x)]

+ [C(x+ 3h) + 3C(x+ h), 3C(x+ 2h) + C(x)]

= ∆3
hD(x, x)−∆3

hH(x, x) +∆3
hB(x)−∆3

hC(x) = 0,

for x ∈ S and h ∈ X such that x+ 3h ∈ S, because D and H are biadditive
and By and C are additive. So, the proof is complete.
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ties, PWN and Uniw. Śl., Warszawa–Kraków–Katowice, 1985.
[4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Po-
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