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Defining complete and observable chaos

by V́ıctor Jiménez López (Murcia)

Abstract. For a continuous map f from a real compact interval I into itself, we
consider the set C(f) of points (x, y) ∈ I2 for which lim infn→∞ |fn(x)− fn(y)| = 0 and
lim supn→∞ |fn(x) − fn(y)| > 0. We prove that if C(f) has full Lebesgue measure then
it is residual, but the converse may not hold. Also, if λ2 denotes the Lebesgue measure
on the square and Ch(f) is the set of points (x, y) ∈ C(f) for which neither x nor y are
asymptotically periodic, we show that λ2(C(f)) > 0 need not imply λ2(Ch(f)) > 0. We
use these results to propose some plausible definitions of “complete” and “observable”
chaos.

1. Introduction. In what follows, I will be a compact real interval and
C(I) will denote the set of continuous maps from I into itself. For simplicity
we shall always assume I = [0, 1]. As will be clear from the content of
this paper, this is not a significant restriction. One-dimensional and two-
dimensional Lebesgue measures will be denoted respectively by λ and λ2.

Let N be the set of positive integers. A point p ∈ I is a periodic point of
a map f ∈ C(I) if fr(p) = p for some r ∈ N, where f0 is the identity map
and fn = f ◦ fn−1 for any n ∈ N. The least integer r with this property is
called the period of p. If x ∈ I and limn→∞ |fn(x) − fn(p)| = 0 for some
periodic point p then we say that x is an asymptotically periodic point of f .
The set of asymptotically periodic points of f will be denoted by AP(f).

Definition 1 ([LY]). Let f ∈ C(I) and S ⊂ I. We say that S is a
scrambled set of f if for any x, y ∈ S, x 6= y, and any periodic point p of f
the following properties hold:

(i) lim infn→∞ |fn(x)− fn(y)| = 0;
(ii) lim supn→∞ |fn(x)− fn(y)| > 0;
(iii) lim supn→∞ |fn(x)− fn(p)| > 0.
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If f has an uncountable scrambled set then it is said to be chaotic in the
sense of Li and Yorke.

In [Sm3] it is shown that if f ∈ C(I) then exactly one of the following
alternatives must occur: either f is chaotic, or all the points from I are
“almost” asymptotically periodic, in the sense that for any x ∈ I and ε > 0
there is a periodic point p such lim supn→∞ |fn(x) − fn(p)| < ε. Hence,
chaoticity in the sense of Li and Yorke is a valuable criterion to decide
whether the dynamics of f is “complex” or not. However, it must be empha-
sized that this “complex” behaviour may be virtually “unobservable”. For
instance, the map f ∈ C(I) defined by f(x) = αx(1 − x), α ≈ 3.83187 . . . ,
has 1/2 as a periodic point of period 3 and thus f is chaotic by [LY]. On
the other hand, AP(f) is a full measure residual set (see [Gu]).

Hence, the question of finding a reasonable characterization of “observ-
able” chaos (and, in particular, “complete” chaos) arises in a natural way.
Of course, we could for example look for “large” scrambled sets but the
problem is that, at least from a topological point of view, scrambled sets
are rather small: they cannot be residual in any subinterval of I (see [Ge1]).
Fortunately, it is posible to construct some examples of scrambled sets of
positive or even full Lebesgue measure (cf. [Ka], [Sm2], [JaS], [Sm3], [Mi],
[BH], [Ji1], [Ji2]).

Nevertheless, to identify “observable” chaos and existence of scrambled
sets of positive measure may be misleading. The paradigmatic example is
the “tent” map g ∈ C(I) defined by g(x) = 1 − |2x − 1| for any x. It is
well known that the behaviour of g is extremely complicated, even from the
measure-theoretic point of view (cf. e.g. [Ji4]). On the other hand, it has
no scrambled sets of positive measure (although it has a non-measurable
scrambled set of full outer measure which is of the second Baire category in
any subinterval of I), see [Sm1].

In [Pi1], Piórek uses for the first time an idea due to Lasota which
may be very useful here. Namely, he considers the sets C1(f),C2(f) ⊂ I2

given by

C1(f) = {(x, y) ∈ I2 : lim inf
n→∞

|fn(x)− fn(y)| = 0},

C2(f) = {(x, y) ∈ I2 : lim sup
n→∞

|fn(x)− fn(y)| > 0},

and defines a map f ∈ C(I) to be generically chaotic if C(f) = C1(f)∩C2(f)
is residual in I2. The notions of dense chaoticity (cf. [Sn2]) and full chaotic-
ity can be analogously introduced, demanding now C(f) to be respectively
a dense or a full measure set. We emphasize that C(f) is a Borel set (cf.
[Ji4]) and hence it is always measurable.

In general, we still have a rather fragmentary information about the
above notions. For the sake of completeness, we would like to recall all
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the existing bibliography we have knowledge of. Generic and dense chaos
have been characterized respectively in [Sn1] and [Sn2], and it is known
that dense chaos need not imply generic chaos (cf. [Sn1]). In [Sn3], the
definitions of dense and generic chaos are extended to get clearer “physical”
interpretations. A number of questions related with generic chaos in more
general settings have been considered in [Pi1], [Pi2], [Pi3] and [Li]. The
measure of the set C(f) has been explicitly calculated for a number of maps
(see [Ge2], [BJ], [Ji3], [Ji4]). For example, it is known that λ2(C(g)) = 1 for
the tent map g.

Dense, generic and full chaoticity can all be considered as different ap-
proaches to the idea of “complete” chaotic behaviour. Here, the question of
the relations between generic and full chaos suggests itself. In general, of
course, a residual set need not have full or even positive measure. However,
we shall prove

Theorem A. Let f ∈ C(I) and suppose that λ2(C1(f)) = λ(I)2 and
λ2(C2(f) ∩ J2) > 0 for any subinterval J of I. Then f it is generically
chaotic. In particular , if f ∈ C(I) is fully chaotic then it is generically
chaotic.

Theorem B below will also show that a generically chaotic map may not
be fully chaotic. Hence, full chaoticity could be in our opinion a reasonable
definition of “complete” chaos. In this line of reasoning, we could consider
chaos for f to be “observable” if C(f) has positive measure: informally
speaking, this means that for any two points chosen at random there is a
positive probability that their iterates come alternatively close to and far
from each other. Moreover, notice that we can easily compare now the
“degree” of chaoticity of two maps f1, f2 in terms of the measures of the
sets C(f1) and C(f2).

Observe that, when defining C(f), we are “forgetting” property (iii) in
Definition 1. Since asymptotically periodic points have a very regular be-
haviour, it seems logical to exclude them from C(f), because we would like
C(f) to “contain” only the complicated part of the dynamics of f . More
precisely, we should consider instead the set Ch(f) = C(f) \ ((AP(f)× I)∪
(I × AP(f))), that is, the set of points (x, y) (with x 6= y) for which {x, y}
is scrambled. (We remark that Ch(f) is still a Borel set, cf. [Ji4].)

Indeed, Definition 1(iii) turns out to be rather superfluous: as is easy to
check, if S ⊂ I is a set satisfying Definition 1(i), (ii) then there is an x ∈ S
such that S \ {x} is scrambled. Further, f ∈ C(I) is fully (resp. generically,
densely) chaotic if and only if Ch(f) is a full measure (resp. residual, dense)
set. This is because if Ch(f) is a full measure (resp. residual, dense) set
then, since C(f) ∩ AP(f)2 = ∅, it follows that AP(f) is a measure zero set
(resp. a first category set—use [Ku], Corollary 1b, p. 247—, a set with empty
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interior). This implies that (AP(f)×I)∪ (I×AP(f)) is also a measure zero
set (resp. a first category set, a set with empty interior). Hence, C(f) is a
full measure (resp. residual, dense) set.

It is natural to presume that, in general, λ2(C(f)) = λ2(Ch(f)), or at
least λ2(C(f)) > 0 if and only if λ2(Ch(f)) > 0. Surprisingly, this need not
be the case:

Theorem B. There is a map f ∈ C(I) with the following properties:

(i) f is generically chaotic;
(ii) 0 < λ2(C(f)) < λ(I);
(iii) λ2(Ch(f)) = 0.

In view of Theorem B, we propose λ(Ch(f)) > 0 as a plausible definition
of “observable” chaos.

We shall prove Theorems A and B in the next section. Some comple-
mentary examples and concluding remarks are given in Section 3.

2. Proof of Theorems A and B. The proof of Theorem A is based
on some previous lemmas. Let us first introduce some necessary notation.

Let f ∈ C(I) and A ⊂ I. ClA and IntA denote respectively the closure
and the interior of A, and f |A is the restriction of f to A. The map f is
said to be topologically transitive if the sequence (fn(x))∞n=0 is dense in I for
some x ∈ I. If J is a compact subinterval of I, we say that J is an invariant
interval of f if f(J) ⊂ J . If additionally f |J is topologically transitive then
J is called transitive. We say that (Jn)∞n=1 is a sequence of nested intervals
of f if each Jn is a transitive interval, Jn+1 ⊂ Jn for any n and λ(Jn) → 0
as n→∞.

Lemma 1 ([Sh1], Theorem 1.2(h)). Let f ∈ C(I). Then f is generically
chaotic if and only if the following two conditions are satisfied simultane-
ously :

(i) f has a unique transitive interval or two transitive intervals having
exactly one common point ;

(ii) for any subinterval J of I there is a transitive interval K with IntK∩⋃∞
n=0 f

n(J) 6= ∅.

Lemma 2 ([BH], Proposition 2.4). Let f ∈ C(I). Then f is topologically
transitive if and only if for any subinterval J of I we have Cl(

⋃∞
n=0 f

n(J))
= I.

Lemma 3. Let f ∈ C(I) and suppose that both C1(f) and C2(f) are
dense. Let J be a subinterval of I. Then Cl(

⋃∞
n=0 f

n(J)) includes an invari-
ant interval.
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P r o o f. First, there are some n ≥ 0, k > 0 with fn(J) ∩ fn+k(J) 6= ∅.
Otherwise, λ(fn(J))→ 0 as n→∞ and C2(f) ∩ J2 = ∅, a contradiction.

Then K = Cl(
⋃∞
m=0 f

n+mk(J)) is a compact interval and fk(K) ⊂ K.
Let l > 0 be minimal with the property that, for some compact interval
L ⊂ Cl(

⋃∞
n=0 f

n(J)), f l(L) ⊂ L. It turns out that L ∩ fn(L) = ∅ for any
0 < n < l. If not, find a minimal 0 < r < l for which L∩fr(L) 6= ∅. Clearly,
r divides l and for the interval L′ =

⋃l/r
i=0 f

ir(L) we obtain fr(L′) ⊂ L′,
contradicting the minimality of l.

Suppose l > 1. Then L and f(L) are disjoint and C1∩(L×f(L)) = ∅, but
simultaneously C2(f) ∩ L2 6= ∅ so f(L) must be a non-degenerate interval.
This is impossible. Thus l = 1 and L is the invariant interval we were looking
for.

Lemma 4. Let f ∈ C(I) and suppose that both C1(f) and C2(f) are
dense. Let J⊂I be an invariant interval. Then J includes either a transitive
interval or a sequence of nested intervals.

P r o o f. Define δ = inf{λ(K) : K is an invariant subinterval of J}.
Then several possibilities arise. If δ = λ(J) then, according to Lemmas 2
and 3, J itself is transitive. If 0 < δ < λ(J), construct a sequence (Kn)n
of invariant subintervals of J with λ(Kn) → δ as n → ∞. It is clearly not
restrictive to assume that K =

⋂
nKn contains an interval and then K itself

is an interval. Further, f(K) ⊂ K, so λ(K) = δ. In particular, K does not
include any invariant intervals different from itself. Hence, it is transitive by
Lemmas 2 and 3.

Finally, assume δ = 0 and fix an invariant subinterval J1 of J with
λ(J1) < λ(J)/2. After a similar reasoning for J1, we can find either a tran-
sitive subinterval of J1 or an invariant subinterval J2 of J1 with λ(J2) <
λ(J)/22. Proceeding in this way, either we find a transitive subinterval of J
or we construct a sequence of nested intervals. This finishes the proof.

The following lemma is essentially similar to Lemma 4.8 of [Sn1]. For
the sake of completeness, we give here the proof.

Lemma 5. Let f ∈ C(I) and suppose that λ2(C1(f)) = λ(I)2 and
λ2(C2(f) ∩ J2) > 0 for any subinterval J of I. Then it has no sequences of
nested intervals.

P r o o f. Suppose (Jn)∞n=1 were a sequence of nested intervals of f . Clearly,
we can assume that Cl(Jn \ Jn+1) and Jn+2 are disjoint for any n. Define
Kn = {x ∈ J1 : there is a k ≥ 0 such that fk(x) ∈ Jn} for any n. Then
λ(Kn) = λ(J1). In fact, assume that J1 \ Kl has positive measure for
some l. Since fm(x) ∈ J1 \ Jl for any x ∈ J1 \ Kl and m ≥ 0, we get
C1(f) ∩ (Jl+1 × (J1 \Kl)) = ∅, contradicting λ2(C1(f)) = λ(I)2.
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Hence, the measure of K =
⋂∞
n=1Kn is λ(J1) as well. If {p} =

⋂∞
n=1 Jn

then limm→∞ fm(x) = p for any x ∈ K. This means that λ2(C2(f)∩J2
1 )=0;

a contradiction.

P r o o f o f T h e o r e m A. First notice that, since lim supn→∞ λ(fn(J))
> 0 for any subinterval J of I, we can use Remark 4.14 of [Sn1] to prove
that C2(f) is dense and so f satisfies the requirements of Lemmas 3 and 4.

Suppose that f is not generically choatic. Since topologically transitive
maps are generically chaotic by Lemma 1, we can use Lemmas 2–5 to deduce
the existence of a transitive interval K strictly included in I. Furthermore,
there must exist an interval J ⊂ I with IntK ∩

⋃∞
n=0 f

n(J) = ∅; otherwise
K would be the only transitive interval of f (because two transitive intervals
can intersect at most in one point) and (i) and (ii) of Lemma 1 would hold.
According to Lemmas 3–5, we can then find a transitive interval L having
at most one common point with K. In fact, the density of C1(f) forces
K ∩ L 6= ∅. Then a similar argument allows us to find a transitive interval
M not intersecting Int(K ∪ L). Hence, either M ∩ K = ∅ or M ∩ L = ∅,
both cases contradicting the density of C1(f).

Before proving Theorem B, let us state a weaker version as an auxiliary
lemma:

Lemma 6. There is a map f ∈ C(I) with the following properties:

(i) f is generically chaotic;
(ii) if a is the right endpoint of I then limn→∞ fn(x) = a for almost all

x ∈ I (in the sense of Lebesgue measure).

P r o o f. Let g be defined by g(x) = (x+ 1)/2 for any x. Fix a0 ∈ (0, 1)
and set an = gn(a0) and In = [an, an+1] for any n. Also, let A ⊂ I0 be a
Cantor set of positive measure containing both a0 and a1 and let {Om0 }∞m=1

denote the family of connected components of I0 \ A. For any n,m define
Omn = gn(Om0 ) and let cmn be the midpoint of Omn . Finally, write B =⋃∞
n=0 In \ (

⋃n+1
m=1O

m
n ) and C =

⋃∞
n=0 g

n(A).
Let us now define f , which will consist of infinitely many consecutive

linear (affine) pieces. We put f(x) = g(x) for any x ∈ B. Further, we define
f(0) = 0, f(1) = 1, f(cmn ) = c1n−1 for any n ≥ 0 (here we mean c1−1 = 0)
and extend f by linearity to the rest of I.

We clearly have f ∈ C(I) and

(1) lim
n→∞

fn(x) = 1 for any x ∈ C.

Redefining a0 and A if necessary we can suppose that

(2) λ(f(Ji) ∩ C)/λ(f(Ji)) > 1/2 for any i,
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where {Ji}∞i=1 denotes the family of maximal subintervals of I on which f
is linear. Further, we can also assume that

(3) f ′(x) > 2 for any x ∈ [0, a0)

and, if n ≥ 0,

(4) |f ′(x)| > 2n+1 for any x ∈ Omn \ {cmn }, m = 1, . . . , n+ 1.

We prove that f is appropriate for our purposes. First, observe that
each f(Ji)\C can be written as a countable union of intervals with pairwise
disjoint interiors, in such a way that if J is one of these intervals then there
is a k ≥ 0 such that fk|J is linear and fk(J)=Jl for some l. Hence, (1) and
(2) imply that limn→∞ fn(x) = 1 for almost all x ∈ I.

On the other hand, let J be an arbitrary subinterval of I. By (3) and (4)
(recall also that g′(x) = 1/2 for any x), there is a k ≥ 0 such that fk(J) 6⊂ Ji
for any i, and then an l ≥ k such that f l(J) ⊃ Jj for some j. From this,
Cl(
⋃∞
n=0 f

n(J)) = I. Then f is generically chaotic by Lemmas 1 and 2.

P r o o f o f T h e o r e m B. We shall construct a generically chaotic map
f ∈ C(I) for which λ2(C(f)) = 1/2 and λ2(Ch(f)) = 0. The map f will be
topologically semiconjugate to the tent map g(x) = 1− |2x− 1|, that is, for
an appropriate monotone onto map h ∈ C(I) we shall have h ◦ f = g ◦ h.

The first step of our construction will be to define a set C⊂I with some
special properties with respect to g. For this purpose we need some auxiliary
notation. Define

Nn = {(2m− 1)2n−1 : m ∈ N}
for any n ∈ N. Note that Nn ∩Nk = ∅ if n 6= k and

⋃∞
n=1Nn = N. Namely

N1 = {1, 3, 5, 7, 9, . . .}, N2 = {2, 6, 10, 14, 18, . . .}, N3 = {4, 12, 20, 28, 36, . . .}
and so on. Next, let also

Mn
1 =

{
n(n− 1)

2
+ i : 1 ≤ i ≤ n

}
for any n ∈ N. As before we have Mn

1 ∩Mk
1 = ∅ if n 6= k and

⋃∞
n=1M

n
1 = N.

For example M1
1 = {1}, M2

1 = {2, 3}, M3
1 = {4, 5, 6}, M4

1 = {7, 8, 9, 10} and
so on. Finally, define inductively

Mn
m+1 = M2n−1

m ∪M2n
m

for any m,n ∈ N.
Recall that we can associate with any x ∈ I its extended itinerary ιg(x) ∈

{0, 1, 2}∞ (or simply ι(x)) defined for any n ≥ 1 by

ι(x)n =

 0 if gn−1(x) < 1/2,
1 if gn−1(x) = 1/2,
2 if gn−1(x) > 1/2,
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(of course ι(x)n denotes the nth term of ι(x)). As is well known (use e.g.
[CE], Theorem II.3.8), for any α ∈ {0, 2}∞ with the property that there is
no k such that αn = 0 for any n > k, there is exactly one x ∈ I such that
ι(x) = α. We shall use these extended itineraries to define C. Namely, for
any j ∈ {0, 2} let Cj be the set of points x ∈ I such that, for any n,

ι(x)n =
{
j if n ∈ N1 ∩Mk

1 for some even number k,
2− j if n ∈ N1 ∩Mk

1 for some odd number k.
Inductively, suppose that the sets Cα ⊂ I have already been defined for any
α ∈ {0, 2}i. Then, if β ∈ {0, 2}i and j ∈ {0, 2}, let Cβ,j denote the set of
points x ∈ Cβ with the property that, for any n,

ι(x)n =
{
j if n ∈ Ni+1 ∩Mk

i+1 for some even number k,
2− j if n ∈ Ni+1 ∩Mk

i+1 for some odd number k.

For instance, if x ∈ C0,0 then we must have

ι(x) = 2; 2, 0; ∗, 2, 0; 0, ∗, 0, 0; 2, ∗, 2, 2, 2; ∗, 0, 2, 0, ∗, 0; 0, 2, ∗, 2, 0, 2, ∗; . . . ,
while if x ∈ C2,0 then

ι(x) = 0; 2, 2; ∗, 0, 0; 2, ∗, 2, 0; 0, ∗, 0, 2, 0; ∗, 2, 2, 2, ∗, 2; 0, 0, ∗, 0, 0, 0, ∗; . . .
(here the semicolons mark the Mn

1 blocks, while the symbol “∗” denotes
indistinctly 0 or 2).

In this way we have defined the sets Cα for any m ∈ N and α ∈ {0, 2}m.
Finally, we put

C =
∞⋂
m=1

⋃
α∈{0,2}m

Cα.

Let us describe some useful properties of C. To begin with,

(5) C is a Cantor set.

In fact, each Cα is obviously non-empty, and it is not difficult to check that
it is closed as well. Further, C does not intersect the set D of the preimages
of 0, which is clearly dense in I, so IntC = ∅. Finally, C has no isolated
points, because if x, y ∈ I and ι(x)n = ι(y)n for any 1 ≤ n ≤ m then it is
easy to check that |y − x| < 1/2m.

On the other hand, let x, y ∈ C, x 6= y. Then there is a k ∈ N such that

(6) either gn−1(x) < 1/2 < gn−1(y) or gn−1(y) < 1/2 < gn−1(x)

for any n ∈ Nk: just choose k with the property that x ∈ Cα, y ∈ Cβ for
some α, β ∈ {0, 2}k with αk 6= βk.

Finally, we claim

lim sup
n→∞

gn(x) ≥ 1/2,(7)

lim inf
n→∞

gn(x) = 0,(8)
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for any x ∈ C. (7) is immediate, because if x ∈ C then the sequence ι(x) has
an infinite number of 2s. To prove (8) it is clearly sufficient to show that for
any given x ∈ C and k ∈ N there is an l as large as desired so that ι(x)l+i = 0
for any 1 ≤ i ≤ k. Take m large enough with k < 2m and find α ∈ {0, 2}m
with x ∈ Cα. Choose now some positive integers i(j), 1 ≤ j ≤ m, with
M

i(j)
j ⊂M i(j+1)

j+1 for any 1 ≤ j < m and such that i(j) is even (resp. odd) if
αj = 0 (resp. αj = 2). (The easiest way to define these numbers is to choose
firstly i(m), then i(m− 1) and so on.) Observe that if r ∈M i(1)

1 and is not
a multiple of 2m then ι(x)r = 0 (because N \

⋃m
j=1Nj = {n2m : n ∈ N}).

Further, the number i(1) can be as large as necessary. This implies (8).
Next, we define for any x ∈ I a (possibly degenerate) closed interval

Ix ⊂ I as follows. Construct a homeomorphism ϕ ∈ C(I) with the property
that

(9) A = ϕ(C) has measure 1/2

(this is possible by (5)). Then put Ix = {ϕ(x)} if x ∈ C. For the rest
of the points x, the definition of Ix is more complicated. Let {On}∞n=1 be
the family of connected components of I \A. Rewrite D as

⋃∞
n=1{dn,i}∞i=1,

where {dn,i}∞i=1 = D∩ϕ−1(On) for any n. Also, define for any n a sequence
(sn,i)∞i=1 of positive real numbers with

(10)
∞∑
i=1

sn,i = λ(On).

We can now define Ix for any x ∈ I \C. Let n be such that ϕ(x) ∈ On and
let cn denote the left endpoint of On. Then define

ax = cn +
∑

i:dn,i<x

sn,i, bx = cn +
∑

i:dn,i≤x

sn,i,

and let Ix be the convex hull of {ax, bx}. Observe that all the numbers ax,
bx are well defined except a0, whose definition makes no sense; in this case
put a0 = 0.

We enumerate the relevant properties of the intervals Ix. First, clearly

(11) Ix is non-degenerate if and only if x ∈ D.

Further,

(12)
∑
x∈D

λ(Ix) = 1/2

by (10). Since D is dense in I,

(13) x < y if and only if u < v for any u ∈ Ix, v ∈ Iy
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(use also (10)). Finally, we claim that

(14)
⋃
x∈I

Ix = I.

In fact, recall that A ⊂
⋃
x∈I Ix. Now, let y ∈ On for some n. Of course we

can assume that y 6∈ Ix for any x ∈ D. Consider the set N = {i : u < y for
any u ∈ Idn,i}. By (10), cn +

∑
i∈N sn,i = y. Take x = supi∈N dn,i. Clearly,

x > dn,i for any i ∈ N . Hence, Ix = {y}.
We are ready to define f . Namely, we construct f in such a way that

f(Ix) = Ig(x) for any x ∈ I. Further, f is linear on each of the intervals
Ix, x ∈ D, except for I1/2, where it consists of two linear pieces, and I0,
where f is defined in such a way that f |I0 ∈ C(I0) is generically chaotic and
limn→∞ fn(x) = b0 for almost all x ∈ I0. By (11), (13), (14) and Lemma 6,
such a map clearly exists.

Let us check that f has the desired properties. Write B=
⋃
x∈D Ix. Since

B is dense in I, the definition of f on the intervals Ix, x ∈ D, clearly implies
that f is generically chaotic (use Lemma 1) and limn→∞ fn(x) = b0 for
almost all x ∈ B. On the other hand, (6) implies that lim infn→∞ |fn(x)−
fn(y)| > 0 for any x, y ∈ A, x 6= y. Since A ∩ B = ∅ and λ(A) + λ(B) = 1
(see (9) and (12)), we get

λ2(Ch(f)) = 0.

Finally, we have lim infn→∞ |fn(x)− b0| = 0 and lim supn→∞ |fn(x)− b0| ≥
b1/2 − b0 for any x ∈ A by (7) and (8). Hence,

λ2(C(f)) = 2λ(A)λ(B) = 1/2.

This finishes the proof.

3. Final remarks. 1) In connexion with Theorem A, we emphasize
that it is possible to construct a non-fully chaotic map f ∈ C(I) for which
λ2(C1(f)) = λ(I)2 and λ2(C2(f) ∩ J2) > 0 for any subinterval J of I. The
map f can be defined in such a way that it is topologically conjugate to the
tent map g, that is, h ◦ f = g ◦ h for an appropriate homeomorphism h.

Let us give a sketch of the construction of f . First, we define the sets
A,B by

A = {x ∈ I : ι(x)n = 0 for any n 6= 2m, 2m − 1, m ∈ N,
ι(x)2m = 2 for any m ∈ N,
and there is an α ∈ {0, 2}∞ such that
ι(x)2m−1 = αm for any m ∈ N},
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and
B = {x ∈ I : ι(x)n = 0 for any n 6= 2m − 1, m ∈ N,

and there is a y ∈ C such that
ι(x)2m−1 = ι(y)m for any m ∈ N}

(the sequences ι(x) and the set C were defined in the proof of Theorem B).
Both A and B are Cantor sets, and we have

A2 ⊂ C1(g) \ C2(g),
(A×B) ∪ (B ×A) ∪ (B2 \ {(x, x) : x ∈ B}) ⊂ C(g).

Next, we find for any i ∈ N a family {Bmi }
m(i)
m=1 of pairwise disjoint Cantor

sets with the following properties for any given i and r ∈ {1, . . . ,m(i)}:

(i) There is a connected component O of I \ (
⋃i−1
j=0

⋃m(j)
m=1B

m
j ) such that

Ari ⊂ O (here B = B1
0 and m(0) = 1).

(ii) There is an l ∈ N such that f l(Bri ) = f l(B).
(iii) For any x ∈ I there is a y ∈

⋃m(i)
m=1B

m
i such that |x− y| < 1/i.

Put B′ =
⋃∞
j=0

⋃m(j)
m=1B

m
j and observe that A ∩ B′ = ∅. Then it is

possible to construct a homeomorphism h : I → I with the properties
λ(h−1(A)) > 0, λ(h−1(Bmi )) > 0 for any i ≥ 0 and m = 1, . . . ,m(i), and
λ(h−1(A)) + λ(h−1(B′)) = λ(I). It is sufficient to define f = h−1 ◦ g ◦ h.

2) We conjecture that it is possible to construct some differentiable or
even C∞ maps with properties (i)–(iii) of Theorem B. On the other hand,
let P (I) denote the set of piecewise monotone maps from C(I) (with a finite
number of pieces). It turns out that (i)–(iii) can simultaneously hold for no
map f ∈ P (I). The reason is that if f ∈ P (I) is densely chaotic then it is
not difficult to show that AP(f) is countable. Hence, λ2(C(f)) = λ2(Ch(f)).

It is known that a piecewise monotone map is densely chaotic if and
only if it is generically chaotic (see [Sn2]). However, we can change slightly
the construction of the map f from 1) to get a generically chaotic map
f1 ∈ P (I) (topologically conjugate to the tent map) for which λ2(C(f1)) = 0.
Also, there exists a map f2 ∈ P (I) with λ2(C(f2)) > λ2(Ch(f2)) = 0. To
construct it, just consider the map f and the point b0 defined in the proof
of Theorem B and put

f2(x) =
{

(x/b0)1/2 if x ≤ b0,
f(x) if x > b0.

It would be very interesting to know whether it is possible to find some
maps with similar properties to those of f1 and f2 in more “natural” settings,
namely, those of piecewise linear (with finitely many pieces) or analytic
maps. According to some recent results ([Ji3], [JiS], [Ji4], [MT], [AJS]), it
seems reasonable to conjecture that the notions of dense and full chaoticity
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are equivalent for piecewise linear maps, and in this case both C(f) and
Ch(f) have the same measure. For analytic, or even polynomial maps, things
may not be that simple. With regard to this see [BKNS], where a polynomial
topologically transitive map f is constructed with the property that the set
of limit points of the sequence (fn(x))∞n=0 is a Cantor set for almost all x.

Acknowledgements. I would like to thank J. Smı́tal and L’. Snoha for
a useful discussion about a previous version of Theorem B.
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[Ge1] T. Gedeon, There are no chaotic mappings with residual scrambled sets, Bull.
Austral. Math. Soc. 36 (1987), 411–416.

[Ge2] —, Generic chaos can be large, Acta Math. Univ. Comenian. 54/55 (1988),
237–241.

[Gu] J. Guckenhe imer, Sensitive dependence on initial conditions for one-dimen-
sional maps, Comm. Math. Phys. 70 (1979), 133–160.
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