ANNALES
POLONICI MATHEMATICI
LXIV.1 (1996)

Convergence results for unbounded solutions of first order
non-linear differential-functional equations

by HENRYK LESzCzZYNSKI (Gdarisk)

Abstract. We consider the Cauchy problem in an unbounded region for equations
of the type either Dyz(t,z) = f(t,z, 2(1, ), 2(t 0), D z(t, @) or Diz(t,x) = f(t, 2, 2(L, 2),
z,Dzz(t,x)). We prove convergence of their difference analogues by means of recurrence
inequalities in some wide classes of unbounded functions.

Introduction. Basic uniqueness results for first order differential equa-
tions were proved by Szarski [8], and then generalized by Kamont [3], Besala
[1] and others. Let us mention [6] where the case of differential-functional
equations was treated.

Uniqueness, existence and convergence results for parabolic equations
require some assumptions on the class of solutions, namely one ought to
assume that the solutions and their derivatives grow at most as exp (c[|z|?)
(see [4]). The convergence of difference schemes was proved first locally,
next in the unbounded case for differential problems [2], and finally for
differential-functional systems using a special type of difference operators
[7], and with general difference analogues consistent with the differential-
functional problem [5].

We extend general methods of proving convergence by means of dif-
ference inequalities described in [8] and in the references mentioned there.
Working in wide functional classes (see [6]), we prove recurrence estimates in
a way similar to that used for parabolic equations. We deal simultaneously
with two main types of functional dependence: first, with the variable 2 ;)
as an extension of retardations and integrations over a rectangular bounded
left-side neighbourhood of the point (¢, z), and secondly, with z appearing as
variable in a function of the Volterra type. These two quite general models
of functional dependence coincide in classes of bounded solutions; however,
if we investigate unbounded functions, then two slightly different sets of as-
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sumptions imply uniqueness and convergence as shown in [6]. Finally, we
remark that our results, formulated for one equation, can easily be proved
for weakly coupled systems.

1. Basic notations and formulation of the first differential-func-
tional problem. Let Ey=[—70,0] x R", E=[0,a] x R™ and D=[—7,0] x
[—7,7], where o€ Ry,a > 0and 7 = (7q,...,7,) € R}. If z€ C(Eg U E,R)
and (t,z) € E, then 2y 4y : D — R is defined by z(; ) (t,7) = 2(t + ¢, 2+ T)
for (¢,T) € D.

A function H is of class H iff H € C(Ey U E, (0,00)), the functions H| g,
and H|p are continuously differentiable, and

(i) H(-,x) is non-decreasing for every z € R,

(ii) #; Dy, H(t,z) > 0 for i = 1,...,n and (¢t,z) € Ey U E, where z =
(T1,. .y Tn).

If H € H, then a function ¢ is said to be of class &y iff ¢ € C(Ey U
E,(0,00)), e(t,z) < e(,7) for ||z]| > |Z||, 0 < t,7 < a, and the function H
defined by H(t,z) = H(t,x)e(t,z) for (t,2) € Ey U E belongs to H.

A function z is of class Cy (resp. Cp.) iff z € C(Ey U E,R) and
|2(t,)|/H(t,z) (vesp. |z(t,)|/H(t,x), where H(t,z) = H(t,z)e(t,z)) is
bounded.

The classes Cy and Cpy . are equipped with the seminorms || - ||z ()
defined by
(LY lzlla @) = sup{|=(t,2)|/H(t,7) | (1,T) € Eo UE, T <t}
for (t,z) € (0,a] and z € Cy. The space C(D,R) is equipped with the
maximum norm || - ||p. Denote by 2(® and Qg) the sets

2O =ExRxCD,R)xR" and 02U =ExRxCy xR".

If L € C(EyUE,Ry) and Ly,Ls € Ry, then a function f is of class
Lip(2©); £, Ly, Ly) iff f € C(2(¥,R) and

(12) ’f(t7x7p7w7Q) - f(t7x7]_77w7q)‘
< Lilp = bl + L, @) |[w — w[|p + L2flq —

for all (¢, z,p,w,q), ( z,p,W,q) € 2O,
Now, let f € C(2® R). We consider the differential-functional equation
x) =

(1.3) Dyz(t, f(t,x, 2(t, x), 2(4,2), Do2(t, ),

where D, z(t,x) = (Dy, 2(t, ), ..., Dy, 2(t,x)), with the initial condition
(1.4) z(t,x) = ¢(t,x), (t,x) € Ey,

where ¢ € C(Ep, R).
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We assume throughout the paper that the Cauchy problem (1.3), (1.4)
has a unique solution of class Cy defined on Ey U E (see [6]).

Let I' : Ry — Ry and k,¢ : [—70,a] — (0,00) be continuously dif-
ferentiable functions such that «/(t) > 0 and ¢'(¢) > 0 for t € [0,aq];
K'(t) =4'(t) =0 for t € [—70,0]; and I"(t) > 0 for t € R.

We define

(1.5) H(t,x) = () v/ 1+ [|l]?)
for (t,x) € Ey U E, and
(1.6) L(t,x) =p/I(k(t)v1+ [z[?)

for (t,z) € E, where p € R,. Some conditions, assumed in [6], on the
functions I, k, ¢ imply uniqueness for problem (1.3), (1.4) as well as for the
Cauchy problem with another type of functional dependence. The properties
of these functions assumed in the present paper are very close to those in [6].

EXAMPLE. Let us list a few examples of functions I" appearing in (1.5),
(1.6):
I(t)=tkfort € Ry and k > 0.
i) I'(t) = exp(t™) for t € R and m € N.
I'(t) = e(t) for t € Ry and | € N, where eg(t) =t and e;41(t) =
exp(e(t)) for I =0,1,... and t € R.

(iv) I'(t) = 1{t) = exp(xg I'(r + 1)dr) for t € R, where I'(r) =
(r—=m)epy1(n+1)+ (n+1—r)ey(n) for r € [n,n+1] and n = 0,1,...
This example shows that I" can grow faster than all ¢; for [ =0,1,... It is
possible to construct still faster growing functions:

(v) I'(t) = FTi(t) fort € Ry and i =0,1,..., where FT70(t) = I'(t) and
FTk+1(t) = exp(FTk(t)) for k=0,1,...; and next:

(vi) I'(t) = 'Yty = eXp(SE I'(r +1)dr) for t € Ry, where I'(r) =
(T—l)FTl+1(l+ I+ (1+1 —T)FTJ(Z) forre[l,l+ 1] and [ =0,1,..., and
SO on.

(vii) If ¢ € C(R,R) and

° —1
w(t) = exp(—max{0, (1 — t)_l})< S e 55732 (s —1)71/2 ds)
1
for t € R, then

o0

I'(t) :Coexp< S max  |{(s)|w(V1+1t2—7) dr), te Ry,

s€[—r—1,7+1]
—o0

where Cp = 1 + max{|{(r)| | » € [-1,1]}, is differentiable and satisfies
I(|t]) > [£(¢)| for t € R.
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3. Formulation of the difference problem and consistency lem-
mas. Let h = (ho,h’) € (0,00)**", where b/ = (hy,...,h,), and I; be a
non-empty subset of

h' = (hi,...,hy); hi € (0,h;], i=1,...,n;
_ / 14+n 1, sl )y 14 s iy ) 5 Iy
{h = (ho, W) € Ry hoNo = 1 for some Ny € {0,1,...} :

Let (t, ) = (™ M) where t = hong and W = (hyn1, ..., han,) for
n= (no,n) € Z**™ and n = (n1,...,nn). For h = (hg,h’) € I  there is a
natural constant N, and Ny,..., N, € Z, such that N.hy < a < (N.+1)hg
and 7, < N;h; <71+ h;fori=1,...,n
Let h = (ho,h') € I4. Then we define
EO h = {(t ‘T)(n) ’ n= (7707 ,) € Z1+7’L7 Mo S {_NU7’ .. 70}}7
Eh ={(t,2)" |n=(no,n') €Z'", o €{0,...,N. — 1}},
={t, )" | n= (no,n') € Z"*™, mo € {—No,..., N }},
) €

— (o) € Z*", my € {=No, .. 0}
D, = t,x(") (7707 Tlo 05
" {( ) 77,:(7717""77“) |771|<N172_1

Let 2, be a function defined on EJ,. Set z(n) = 2, (t), x(")) for (t, )™ € Ej,.

If (¢, m)(”) € E; and z, is a function defined on Eh, then the function
(21) () : Dn — R is defined by

(2n) () (£, 2) ) = 24 ((t, ) for (¢,2)™ € Dy,

Denote by f(Eh, R) the set of all functions from EntoR. Ifz€ C(EyUE,R),
then z, € F(E}),R) denotes the restriction of z to the mesh.
Let A € {1,2,...} and

Sy={s=(s1,...,80) €Z" | |s;| < A, i=1,...,n}.
We define the difference operators A, Ag and A = (Aq,...,A,) by
=S T ) e

SESK
21)  Agzl” = by () — Ay (2™ € By,
Az = bt ST 0W T  (fa) ™ € By, I=1,..n

SESK
where aé") and bgnl) are real coefficients.

ASSUMPTION Hy. Suppose that the discrete operators A and A defined
by (2.1) satisfy the following conditions

(1) Xsesy al” =1, D sesy al” s;=0forl=1,...,nand (t,z)" € By,
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(i) > ses, bgnl) =0, ZSGSX Sl sj = 0y for j,l =1,...,n and (¢,2)™
e by,

(iii) there is ¢ € R, such that |a§’7)|, |bg77l)| < cfor s € Sy, (t,z) € By,
l=1,...,nand h € 1.

(iv) there are constants cg,c; € (0,00) such that cohg < h; < ¢1hg for
l=1,...,n

This assumption is necessary to prove that the discrete operators 4,
for I = 0,1,...,n approximate the differential operators D; and D,, for
l=1,...,n R

The operator [-], : f(Eh,R) — C(Eyp U E,R) is defined by

(2.2) Z Z p(n) 1,7) (no+m7 +5)

r=—MX\s€ESy
for z, : Ep — R, ﬁ”il) <t <t and 207V < 7 < 20, where
(t, )=V (t,2)" € By and 1 = (1,...,1) € ZM" If (t, )0 tmn+s) o By
then z,(L"OM’" +%) means the same as z}(l No,n +s),

ASSUMPTION H,. Suppose that the functions p(") R!'*” —R in formula
(2.2) are bounded and satlsfy

(2.3) Z > T =1

r=—2XsES,
for t=1) < T <t and 2"V <7 < 2 and
t=1 <7 <t
(24) p=sup Z Z\p(mtw D) <7 < g, heId, < 00
r=—XsESy (t,2)1=1 (¢, :17)(’7) € By,

Now, we define difference schemes which correspond to the differential-
functional problem (1.3), (1.4). Let f € Cyx(R2®). Then we consider the
following difference-functional problem (cf. (1.3)):

(2.5) A2 = f((t,2)D 2 ([z0]n) o> AZ™),  (t,2) € En,
with the initial condition
(2.6) 20 =3 (t,2) € By

In the literature the function f is often replaced by a function f;, which is
defined by use of a finite Taylor expansion of f. This way one can obtain
better difference approximations to the differential problem.

Let H € H and € € £y. A function zj, is of class fgl) (resp. of class
fgl)a) iff there is a function Z € Cy (resp. Z € Cpg,) such that Z;, = z,
where h € 1.
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Now, we prove an auxiliary lemma on consistency.

LEMMA 2.1. Suppose that H € H and Assumptions Hy, and Hsy are sat-
isfied. Let f € Cp(£2(0)) with constants Lo, Ly, Ly € Ry and £ € C(E,Ry).
Let w € C(EyU E,R) be a solution of (1.3), (1.4) such that u, Dyu, Dy, u €
Cy for l=1,...,n, and there is L, € Ry such that

(2.7)  |Dgu(t,x) — Dyu(t,@)| + |Dyu(t, ) — Dyu(t, T)|

< L, <|t >y - zj|) max{H (t, ), H(,T)}

j=1
for (t,z),(t,T) € E and 1l =1,...,n. Then
(2.8) | Agus™ — F((t, )P ul, ([un]n) o> Az < i,

where

/ i 2 Ny

(29) = hoLu H{™ ) 4+ hg axt (3 ) Lot Y
=1
4 ﬁ((u x)("))H}(Lno"”/H/\/“/)ﬁ

< (hoMIDeull(@) + A+ 1) Y [ Dyl (@)
=1

PR 2 L
Lol B OIB( D ) N LT,

1=1
where X' = (A,...,\) eZ" 1'=(1,...,1) € Z", and
(2.10) a = sup Z lalm)], b= sup Z |bg7l)|.
7 sesa{0'} b sesy\ {0}

Proof. First, using the mean value theorem we have
(2.11)  |Dyu((t, z)™) — Agul™”|
= [Duu((t2)) = g {u? + hoDyu((t,2) ™ + 0" (1))

- a (ugﬁ) + Zn: hysi Dy, u((t, )™ + Hgn)(h))) H

s€S\ =1
for (t,z)" € Ej,, where
(21 05" (h) € (0, ho) x {0'},
0() (h) € {0} x [=Ahy, MNg] X ... X [=Ahp, Ahy)

for s € S,.
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From (2.7), (2.11) and Assumption H; we obtain

(2.13)  |Dyu((t, z)™) — Agul”|

! n 2 ’ i
< LuhoH;(L%H’n ) + hala)\2<z hl) LUH}(LUO,\W [+ ),
=1

where a is defined by (2.10). In a similar way we obtain

(214) | Dagul(t,2)™) — Al

= [Daul(t,@)®) =t 370 (uf? + 3 s Dagul(t, ) + 000 (k) ) |
=1

SES

for (t,z)™ € Ej, and I = 1,...,n, and thus
= 2 Y
(215)  [Daul(ta)™) — A < K7 B( 30 m) AL, )
=1

for (t,z)" € Ep and 1 =1,...,n. If (,%) € Ey UE and t(=1 < <t
2170 <7 <2 where (t,2)"Y (t,2)" € EJ,, then

(2.16)  [[un]n(t,7) — u(?,Z)]

0
:‘ > D plED) (U(M)+(t<”°+“"’+s> —1)D,u(0) (I, 7, h))
r=—MX\s€ESy

n

+ @) 3D, (0 (7, R)) — ulE,7)
=1

< B(IDeull (@) Ao + 3 b (A + DDyl (@) H T,
=1

where p is defined by (2.4) and 97(375) (t,Z,h) is an intermediate point between
(t, x)0Fmm+5) and (£,7).

Let (t,z) € E. From (2.16) we have
(217)  |l([unln)te) — w2 llD

= juax [[un]n(t +t,2+7) —ult +t,z+7)|
t,7)€

< 5(I1Deull (@) + - lu (A + DI Doyl (@) ) HY™ 0,
=1

where (7, — 1)h; < & < mhy for [ = 0,...,n. Condition (2.8) follows from
(2.13), (2.15) and (2.17). This finishes the proof.
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3. Convergence theorem. In this section we will prove that natural
assumptions imply the convergence of the difference scheme (2.5), (2.6).

THEOREM 3.1. Suppose that

1) H € H is given by (1.5), and L is defined by (1.6), where k(t) >
P(t) > 0 for t € [—19,a], ¥, Kk are increasing on [0,a], and f € Cg(2(0)
with Ly, Ly € R+,

2) u € C(EpUE,R) is a solution of (1.3), (1.4) such that u, Dyu, Dy, u €
Cy for 1 = 1,...,n, and there is L, € Ry such that condition (2.7) is
satisfied,

3) vy € F(Ep,R) is a solution of (2.5), (2.6),

4) the following monotonicity condition is satisfied:

(3.1) al™ + hy Zh W) Dy, (P > 0

for s € Sy, (t, )™ € By and P™ = ((t,2)™, p,w,q) € Qg)),
5) there is My € Ry such that

(3.2) 16 — | < hoMgH™,  (t,2)™ € Egp.
Then
(3.3) W —uD| < how (t Y H™ (t,2) ) € By,

where W : [—7,a] — R satisfies

(3.4) U(t) > My, te[—1,0],

(35) W)~ Lo - Bo<h> - le )
— By(h, ¢ (VL (i (@) + I + R +1))2)
x (F(!l”(lt)g)lﬁ(/f(lﬁ)@)_1 >0

for t € [0,a] and h € I, where § = \/1+ (ro(t, h))?, and By and By are
defined by

n 2 N
(86)  Bo(h) = ALy (hg" Y l) @-+bLaholl(hi" .- i),
=1

(37)  Bihp) = 55(p+ A Dpullrla) + (A +1) " hihg [ Deullr(a))
=1

for pe Ry, and
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_ L+ VI QN /ho)? o
. rolt, ) = = AN o
() = V@)Ul + [[R][(A+ 1))
1 ORI
Moreover, we have
(3.9)  ¥(t) — L1 — Ly +( (t) = hoLu)¥' ()1 (1(8)) /T (1(2))
= Bo(M) I ($()v/ 1+ ([ |A/ho +ro(t, h))?) /I'(t)
- Bl<h,w<t>>r(¢<t>¢ L+ (ro(t, ) + 7] + [R1L+2))2)

< (DR ()~ >0
for t € [0,a] with ¥(t) so large that ¥(t) — hoL, > 0.

Proof. Let wé") = ug?) (") for (t,2)™ € Ej,. From (2.5) we obtain
the recurrence equality

(3.10) wénoﬂm’) :Aw(")
+ ho(F((t2) ™y, (unln) ), Aug”)
£ 0l ([un]n) oy Avi”))
+ o (F(t )™, u” ([unln) ), Avg™)
— £t ), 0, ([onln) (> Avs™))
+ ho(Aouf” — F((t,2) " uf ([unln) oy Aup”))

for (t,a:)(") € FE;. Using the mean value theorem, the Lipschitz condition
for f, and Lemma 2.1, we obtain the recurrence estimate

(311) ’w§L770+1,77’)‘ < Z ‘wénom’—i-s)’ agn) + hozhfleq?l)DQlf(P(n))
SESH =1

+ oL [y |+ hoL((t, 2) ™) |(lwn)w) o | o + o™

for (t,2)" € Ej,. Now, using (3.1) and Assumption H;, we easily obtain
from (3.11) the following inequality which is much easier to analyse:

(312) o)< max ™) oL fu” |

+ hoL((t,2) ™) | ([wnln) iy o + hopy”

for (t,x)" € Ej,. If we prove that the function W,(Ln) = hgkl’/(t("))H,(Ln),
(t,2)" € Ej,, satisfies a comparison inequality with respect to (3.12), then
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(3.3) will be established. Thus, in order to finish the proof of our theorem
it is enough to prove the following
LeEMMA 3.1. If the assumptions of Theorem 3.1 are satisfied, then
(3 13) W}(Ln0+1777/) > W}(W07|77/|+>\/) + hOLIW}(Ln)
: — ]
+ ho£((t, ) ) [ (Waln) iy b + hops”
for (t,z)" € Ej,, and
(3.14) W > hoMyH™ (t,2)™ € By

Proof. Condition (3.14) follows immediately from (3.4) and (3.2). Con-
dition (3.13) is a consequence of

(3.15)  (@(t+ ho) — hoLy,)I'(¢(t + hg)\/ 1+172)
> (P(t )+hoBo M) (1()y/1 + (r + [[I/[|A)?)

(
+ hoBi(h, LP(if))FW(if)\/l + (r 4 [I7l £+ 1A (A +1))2)

< (D(W(t)V1+r2)~
for t € [0,a — hg] and r = ||z|| € Ry, where By(h) and By (h,¥(t)) are given
by (3.6) and (3.7). This implication follows from (3.9).
If r is greater than ro(¢,h) given by (3.8), then
(3.16) Y(t+ho)V 1+ 12> ()1 + (r+[[W]|N)2,
and (3.15)
(3.17) =) :=v(t+0)—6L, —¥(t)—0By(h) — 0L 1¥(t)
— 0B1(h, W ()T ((H)y/ 1+ (r(6) + 7] + [P+ 1))2)
x (DT (k(1)8) ! > 0,
where 6 € [0, ho], t € [0,a — ho] and @ is the same as in (3.5). Now, (3.17)
holds true because =(0) =0 and =’(0) > 0 for 6 € [0, hy] as we have (3.5).

For r < ro(zo,h) and t € [0,a — hg], formula (3.15) is a consequence of
the inequality =7(0;¢,7) > 0 for 6 € [0, hg|, where

(3.18)  E=1(6;t,r)
= (W(t+0) — 0L (p(t +0)\/1+12) — AL T(W(t)/1 4 1r2)
— (T(t) 4+ 0Bo(h))T (1 (t)\/1 + (r + OX||1']|/ho)?)

follows from

= 0B )T (WY1 + (ro(t. ) + 7]+ (RO + 1)2) /TG0
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,hol and t € [0,a — hg]. From (3.18) we find a lower estimate of

> (0'(t+0) — L) (@t +0)V/1 +72)
+(T(t+0) — 0L (W(t + 9)\/H——7"2)¢'(t +0)V1+ 2
— LDV +72) = Bo() I (W ()y/T+ (r + [WA)?)
— (@ (t) + 0Bo(h) I ((t)/ 1+ (r + A H'[)2)¢' (t)

= Ba(h W) (6001 + (rolt, ) + (7] + T+ 1))2) /T

From (3.19) and (3.9) we obtain =’(#;¢,h) > 0, and (3.18) implies
Z(0;t,h) =0. Therefore, =(hg;t,h) > 0 for t € [0,a — hg]. This completes
the proof.

Remark. Condition 1) of Theorem 3.1 can be much weaker, namely £
might be defined by

L(t,z) = @OV +[l2]2)/ I (01 + [l2]?), () € E.
In this case the function ¥ satisfies stronger conditions than (3.4), (3.5) and
(3.9).
If I'(t) > const ea(t), then £ might be defined by
L(t,x) = (L)1 + [[2]2)” /T (s 1+ |[z]?), (¢ 2) € E,

where v > 0, and the proof works for a sufficiently large function ¥.

4. Convergence result for another functional dependence. If
L,Ly, Ly € Ry, then f is of class Lip(2\)); L, Ly, L,) iff f € C(2' R) and

(41) ’f(t7x7p7w7Q) _f(t7x7]_)7w7Q)‘
< Lilp =Pl + LH(t,2)||w — w||u (t) + L2/l¢ — 7|

for all (t,z,p,w,q), (t,x,p,w,q) € QS). For f € C’(Qg),R) we consider the
Cauchy problem for the equation

(4.2) Dyz(t,z) = f(t,x, z(t,x), 2, Dy 2(t, x)).

We assume that the Cauchy problem (4.2), (1.4) has a unique solution of
class Cy defined on Fy U E.
Let feC H(Q( )) Then the difference analogue of (4.2) reads

(4.3) Aoz,(:?) = f((t,a:)("),z,(ﬁ), [zn]n, Az}(ln)), (t,2)" e Ej.

Problem (4.3) is also considered with initial condition (2.6).
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LEMMA 4.1. Suppose that Assumptions Hy and Hs are satisfied and
HeH,ecly. Let [ € CH(QS)) with constants L, Lg, Ly, Lo € Ry. Let
u € C(EyUE,R) be a solution of (4.2), (1.4) such that u, Dyu, Dy,u € Cp ¢
forl=1,... n, and there is L, € Ry such that

(4.4)  |Dg, (t,x) — Dyyu(t,T)| + |Deu(t, ) — Dyu(t, )|

<L, <\t — 1+ Z lz; — f]\) max{H (t,x)e(t,x), H(t,T)e(t,T)}

for (t,z),(t,T) € E and | = 1,...,n. Assume also that for h € I and
s € Sxy1 there is R(h) € Ry such that limsup{R(h) | h € I4} < o0, and

(4.5) f: 21Dy, (H(t + ho, 2z + () /H(t,z)) <0
=1

for ||z|| > R(h) and (t + ho,x) € E, where

(4.6) H(t,z) = H(t,x)e(t,x), (t,z) € E.
Then

(4.7) |[Aouf” — F((t, ), ug?”, funln, duf™)| <
where

7 / n 2 ~ / /
(48) " = hoLy H™ ) 4 by an2 (S0 h) Ly )
=1

+ Lﬁ,ﬁ%(hoAHDtuuH(a) ++DY thDxluHH(a)>
=1
y ];NI}(L%M'HA')
sup sup e
7 aG-D<z<em  H(ET)

N - 2 -~ 4 i
+ Lo||(h Y, ... »hv;l)Hb(th) 2L, H oo X
=1

where (t,2)™ € Ey,, and H is defined by (4.6).

Remark. Condition (4.5) is satisfied if, for example, H is defined by
(1.5), and

(4.9) e(t,x) = I'(EOVI+ l2)2)/ T (@) v 1+ llz]?),

where & € C'!([—70,a], R} is increasing, and 0 < &(t) < ¥(t) for t € [—79, al.
We should only assume that hg < (¢(t) — £(¢))/€ (a) for t € [—70, al.
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Proof of Lemma 4.1. Estimates (2.13)-(2.16) remain true if we
replace H by H defined by (4.6). Thus, in order to obtain (4.7) with up,
defined by (4.8), it is sufficient to estimate LH,(LW) wrn]n — u|lg (a) by a suit-

ably chosen expression basing on formula (2.16) with H replaced by H. The
double supremum appearing in (4.8) is finite because (4.5) guarantees that

TN (7,7) is bounded by

N [z]] < R(h),
(4.10) My =sup{ H(t+ ho,z + (z*))/H(t,z) | (t + ho,x) € E, %,
5€ Syt

where h € I;. The rest works as in the proof of Lemma 2.1.

THEOREM 4.1. Suppose that

1) Assumptions Hy and Hy are satisfied,

2) H € H and ¢ € Ey are given by (1.5) and (4.9), respectively, where
¢ € C([—m0,a],R4) has positive derivative on [0,a]; 0 < &(t) < ¥(t) for

t € [—710,a]; H € H is defined by (4.6), and f € CH(QS)) with constants L,
Ly, Lo,

3) u € C(EpUE,R) is a solution of (4.2), (1.4) such that u, Dyu, Dy,u €
Che for l=1,...,n, and there exists L, € Ry such that condition (4.4) is
satisfied, and the constants My, defined by (4.10) for h € I4 are such that
limsup{M;, | h € I} < M,

4) vy, € fgL)E is a solution of (4.3), (2.6),

5) the monotonicity condition (3.1) is satisfied for s € Sy, (t,z)™ € E),
and P = ((t,2)™,p, z,q) € 2},
6) there is My € R such that

(4.11) 63" = B4 < hoMH”,  (t,2)") € B,
7) ho is so small that () — &(t) — ho&'(t) > 0 for t € [0, a).
Then
(4.12) W —u{M| < @ (tNYH ()™ € By,
where ¥ : [—719,a] — Ry satisfies inequality (3.4) and
(4.13)  W'(0) — L, — Ly — By(h)
—B(h, W(0))T(£(0)/T+ (r1(£))?)/T(1(0)) = 0
for 6 € [0,a), where By(h), r1(t) and B(h,p) for p € R, are defined by
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~ i 2 ~
Bo(h) = AL (D" hu/ho) @+ Labll(hoh7™, ... hoh I,
=1

(4.14) Blhp) = Lﬁ(AHDtUHH(G) + (A +1) " huhg Y[ Dy, ull(a) +p),
=1

ri(t) = A+ DI+ () () — £(t) = ho€ ()7,
where 6,t € [0,a], h € 14, and
(4.15)  (F'(6) — L)T(£(9)) + I (£(0))€(6)(¥(6) — hoLy,)
—I'(§(0)v/ 1+ (ro(t)?)
X (Ly(8) + B(h, (1)) T ((0)V/T+ (r1(8))?)/T(#(0)))
— (#(60) + hoBo(h))
< I'"(¢ \/1+ (ro(8) + AlIR/[1)2)&(0) AllA/[| /7o
— Bo(WT(€O)V/I + (ro(6) + ATIT)?) =
for 0 € [0,a], h € I; with EO so small that W(0) — hoL, >0 on [T, al.

Proof. Let w}(ln) = ugln) - v,(Ln) for (t,z) € Ej,. From (4.11) it fol-
lows that (4.12) is satisfied for (t,z)™ € Ep . Subtracting the recurrence

expressions of v}(lnﬁl’"l) from ugm“’"/) leads to the recurrence error esti-
mates similar to (3.12), as in the proof of Theorem 3.1 (compare (3.10) and
(3.11)):

(4.16) [ M < e | 4 ho L |
A

+ hoLH™ |[[wn]nll s (a) + hopll”

for (t,2)"" € Ej, where uy, is defined by (4.8). In order to establish (4.12)
on FEj, it is sufficient to prove the following

LEMMA 4.2. If the assumptions of Theorem 4.1 are satisfied, then the

function W, : Ej, — Ry given by W}(L") =h Lp(t(”))H(") for (t,z)™ € E),
satisfies the inequality

(4'17) ‘W}(Lno-i-lm')’ > W}(Lnoy\n'l-&-)\') + hoLl‘W(n)‘
+ ho LH" | Walallz (@) + hopy”
for (t,x) € By, and

(4.18) W > hoMyH™,  (t,2)" € By
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Proof. Inequality (4.18) is obvious. Formula (4.17) follows from
(4.19) (lp(t + ho) — hoLu)F(f(t + hg)\/ 1+ 7’2)
> hoL W ()T (E(H) V1 + 12) + ho B(h, ¥ (t))
t—1 <7 <t

(tv :E)(ﬁ_l)’ (t7 x)(ﬁ) € Eha

(™Y /1 (Iml) ale:
Xsup{ () y/T+ [ + W)
_hONO § hOﬁO S t,

L@y 1+ [Z]?)

+ (W (t) + hoBo (W) T (€(6)v/1+ (r+ A[W[)?)
for t € [0,a — hyl], r € Ry and h = (hg,h’) € 1.
First, observe that
(4.20) F(ﬁ(t(m)\/l + 20D + AW |12) /T () /1 + [|7]]2)

< PEERVT+ (r(0)2)/T (001 +[Z]?)
for t0-1 < 7 <t 20D <7 < 2@ (¢,2)TV (t,2)@ € B, —Np <
Mo < 1mo. We claim that

(4.21)  Z(0;t) := W(t +0) — ¥ (t) — O(Ly + L1 + Bo(h)
+ B(h, w(1)) L (§(6)/ T+ (r1(6)?)/T (¢ ( ) =

for t € [0,a— he] and 6 € [0, ho], because Z(0;¢) = 0 and =’ (6; ) > 0 on the
considered interval as we have (4.13). Thus, if > r((¢), then (4.19) results
from (4.20) and (4.21).

If r <ry(t), then we define

(4.22)  E1(0;t,r) = (P (t+0) — 0L, (E(t +0)
— O (E()V 1+ 12) (L (t)
+ B(h, w(T))T(&(t ()\/W)/F(w(())))
— (T(t) + 0Bo(h) T (E(t)v/1+ (r+ O[] /ho)?)
for t € [0,a — ho] and 6 € [0, ho]. Next, from ( 5) we have
(4.23)  E,(0;t,r)
= ('(t) = L) (€t +0)V1+12)
FT(EE+0)VT+r2)E (t+0)V1 +r2(W(t +0) — 6L,
— T(E(t >¢1+—r?><L W (t) + B(h, W () T(E(t)V/T + (ri()?)/T(1:(0)))
— (P (1) + 0Bo(h) T (E(t)\/ 1+ (r+ OX[I][ /ho)2) ()M || /g
— Bo(R)I(£(t \/1+ (r + ON|R']|/ho)?) > 0

Vi+r?)
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fort € [0,a—ho] and 6 € [0, ho]. From (4.21) it is easy to obtain Z1(05t,7) =
0. From this and (4.23) we have =7 (ho;¢,7) > 0. This finishes the proof of
our lemma.
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