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Convergence results for unbounded solutions of first order

non-linear differential-functional equations

by Henryk Leszczyński (Gdańsk)

Abstract. We consider the Cauchy problem in an unbounded region for equations
of the type either Dtz(t, x) = f(t, x, z(t, x), z(t,x),Dxz(t, x)) or Dtz(t, x) = f(t, x, z(t, x),
z,Dxz(t, x)). We prove convergence of their difference analogues by means of recurrence
inequalities in some wide classes of unbounded functions.

Introduction. Basic uniqueness results for first order differential equa-
tions were proved by Szarski [8], and then generalized by Kamont [3], Besala
[1] and others. Let us mention [6] where the case of differential-functional
equations was treated.

Uniqueness, existence and convergence results for parabolic equations
require some assumptions on the class of solutions, namely one ought to
assume that the solutions and their derivatives grow at most as exp

(
c‖x‖2

)

(see [4]). The convergence of difference schemes was proved first locally,
next in the unbounded case for differential problems [2], and finally for
differential-functional systems using a special type of difference operators
[7], and with general difference analogues consistent with the differential-
functional problem [5].

We extend general methods of proving convergence by means of dif-
ference inequalities described in [8] and in the references mentioned there.
Working in wide functional classes (see [6]), we prove recurrence estimates in
a way similar to that used for parabolic equations. We deal simultaneously
with two main types of functional dependence: first, with the variable z(t,x)

as an extension of retardations and integrations over a rectangular bounded
left-side neighbourhood of the point (t, x), and secondly, with z appearing as
variable in a function of the Volterra type. These two quite general models
of functional dependence coincide in classes of bounded solutions; however,
if we investigate unbounded functions, then two slightly different sets of as-
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sumptions imply uniqueness and convergence as shown in [6]. Finally, we
remark that our results, formulated for one equation, can easily be proved
for weakly coupled systems.

1.Basic notations and formulation of the first differential-func-

tional problem. Let E0 =[−τ0, 0]× R
n, E=[0, a]× R

n and D=[−τ0, 0]×
[−τ, τ ], where τ0∈ R+, a > 0 and τ = (τ1, . . . , τn)∈ R

n
+. If z∈ C(E0 ∪ E,R)

and (t, x) ∈ E, then z(t,x) : D → R is defined by z(t,x)(t, x) = z(t+ t, x+ x)
for (t, x) ∈ D.

A function H is of class H iff H ∈ C(E0 ∪ E, (0,∞)), the functions H|E0

and H|E are continuously differentiable, and

(i) H(·, x) is non-decreasing for every x ∈ R
n,

(ii) xiDxi
H(t, x) ≥ 0 for i = 1, . . . , n and (t, x) ∈ E0 ∪ E, where x =

(x1, . . . , xn).

If H ∈ H, then a function ε is said to be of class EH iff ε ∈ C(E0 ∪

E, (0,∞)), ε(t, x) ≤ ε(t, x) for ‖x‖ ≥ ‖x‖, 0 ≤ t, t ≤ a, and the function H̃

defined by H̃(t, x) = H(t, x)ε(t, x) for (t, x) ∈ E0 ∪ E belongs to H.

A function z is of class CH (resp. CH,ε) iff z ∈ C(E0 ∪ E,R) and

|z(t, x)|/H(t, x) (resp. |z(t, x)|/H̃(t, x), where H̃(t, x) = H(t, x)ε(t, x)) is
bounded.

The classes CH and CH,ε are equipped with the seminorms ‖ · ‖H(t)
defined by

(1.1) ‖z‖H(t) = sup{|z(t, x)|/H(t, x) | (t, x) ∈ E0 ∪ E, t ≤ t}

for (t, x) ∈ (0, a] and z ∈ CH . The space C(D,R) is equipped with the

maximum norm ‖ · ‖D. Denote by Ω(0) and Ω
(1)
H the sets

Ω(0) = E × R × C(D,R) × R
n and Ω

(1)
H = E × R × CH × R

n.

If L ∈ C(E0 ∪ E,R+) and L1, L2 ∈ R+, then a function f is of class
Lip(Ω(0);L, L1, L2) iff f ∈ C(Ω(0),R) and

(1.2) |f(t, x, p, w, q) − f(t, x, p, w, q)|

≤ L1|p− p| + L(t, x)‖w − w‖D + L2‖q − q‖

for all (t, x, p, w, q), (t, x, p, w, q) ∈ Ω(0).
Now, let f ∈ C(Ω(0),R). We consider the differential-functional equation

(1.3) Dtz(t, x) = f(t, x, z(t, x), z(t,x) ,Dxz(t, x)),

where Dxz(t, x) = (Dx1
z(t, x), . . . ,Dxn

z(t, x)), with the initial condition

(1.4) z(t, x) = φ(t, x), (t, x) ∈ E0,

where φ ∈ C(E0,R).
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We assume throughout the paper that the Cauchy problem (1.3), (1.4)
has a unique solution of class CH defined on E0 ∪E (see [6]).

Let Γ : R+ → R+ and κ, ψ : [−τ0, a] → (0,∞) be continuously dif-
ferentiable functions such that κ′(t) ≥ 0 and ψ′(t) ≥ 0 for t ∈ [0, a];
κ′(t) = ψ′(t) = 0 for t ∈ [−τ0, 0]; and Γ ′(t) ≥ 0 for t ∈ R+.

We define

(1.5) H(t, x) = Γ (ψ(t)
√

1 + ‖x‖2)

for (t, x) ∈ E0 ∪ E, and

(1.6) L(t, x) = p/Γ (κ(t)
√

1 + ‖x‖2)

for (t, x) ∈ E, where p ∈ R+. Some conditions, assumed in [6], on the
functions Γ, κ, ψ imply uniqueness for problem (1.3), (1.4) as well as for the
Cauchy problem with another type of functional dependence. The properties
of these functions assumed in the present paper are very close to those in [6].

Example. Let us list a few examples of functions Γ appearing in (1.5),
(1.6):

(i) Γ (t) = tk for t ∈ R+ and k > 0.

(ii) Γ (t) = exp
(
tm

)
for t ∈ R and m ∈ N.

(iii) Γ (t) = el(t) for t ∈ R+ and l ∈ N, where e0(t) = t and el+1(t) =
exp(el(t)) for l = 0, 1, . . . and t ∈ R.

(iv) Γ (t) = ΓT(t) = exp(
Tt
0
Γ̃ (r + 1) dr) for t ∈ R, where Γ̃ (r) =

(r − n)en+1(n + 1) + (n + 1 − r)en(n) for r ∈ [n, n + 1] and n = 0, 1, . . .
This example shows that Γ can grow faster than all el for l = 0, 1, . . . It is
possible to construct still faster growing functions:

(v) Γ (t) = ΓT,i(t) for t ∈ R+ and i = 0, 1, . . . , where ΓT,0(t) = ΓT(t) and
ΓT,k+1(t) = exp(ΓT,k(t)) for k = 0, 1, . . . ; and next:

(vi) Γ (t) = ΓTT(t) = exp(
Tt
0
Γ̃ (r + 1) dr) for t ∈ R+, where Γ̃ (r) =

(r − l)ΓT,l+1(l + 1) + (l + 1 − r)ΓT,l(l) for r ∈ [l, l + 1] and l = 0, 1, . . . , and
so on.

(vii) If ξ ∈ C(R,R) and

ω(t) = exp(−max{0, (1 − t)−1})
( ∞\

1

e−ss−3/2(s− 1)−1/2 ds
)−1

for t ∈ R, then

Γ (t) = C0 exp
( ∞\

−∞

max
s∈[−r−1,r+1]

|ξ(s)|ω(
√

1 + t2 − r) dr
)
, t ∈ R+,

where C0 = 1 + max{|ξ(r)| | r ∈ [−1, 1]}, is differentiable and satisfies
Γ (|t|) ≥ |ξ(t)| for t ∈ R.
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3. Formulation of the difference problem and consistency lem-

mas. Let h = (h0, h
′) ∈ (0,∞)1+n, where h′ = (h1, . . . , hn), and Id be a

non-empty subset of
{
h = (h0, h

′) ∈ R
1+n
+

∣∣∣∣
h′ = (h1, . . . , hn); hi ∈ (0, hi], i = 1, . . . , n;
h0N0 = τ0 for some N0 ∈ {0, 1, . . .}

}
.

Let (t, x)(η) = (t(η), x(η)), where t(η) = h0η0 and x(η) = (h1η1, . . . , hnηn) for
η = (η0, η

′) ∈ Z
1+n and η = (η1, . . . , ηn). For h = (h0, h

′) ∈ Id there is a
natural constant N∗ and N1, . . . , Nn ∈ Z+ such that N∗h0 ≤ a < (N∗+1)h0

and τi ≤ Nihi < τi + hi for i = 1, . . . , n.

Let h = (h0, h
′) ∈ Id. Then we define

E0,h = {(t, x)(η) | η = (η0, η
′) ∈ Z

1+n, η0 ∈ {−N0, . . . , 0}},

Eh = {(t, x)(η) | η = (η0, η
′) ∈ Z

1+n, η0 ∈ {0, . . . , N∗ − 1}},

Êh = {(t, x)(η) | η = (η0, η
′) ∈ Z

1+n, η0 ∈ {−N0, . . . , N∗}},

Dh =

{
(t, x)(η)

∣∣∣∣
η = (η0, η

′) ∈ Z
1+n, η0 ∈ {−N0, . . . , 0};

η′ = (η1, . . . , ηn); |ηi| ≤ Ni, i = 1, . . . , n

}
.

Let zh be a function defined on Êh. Set z
(η)
h = zh(t(η), x(η)) for (t, x)(η) ∈ Êh.

If (t, x)(η) ∈ Eh and zh is a function defined on Êh, then the function
(zh)(η) : Dh → R is defined by

(zh)(η)((t, x)
(η)) = zh((t, x)(η+η)) for (t, x)(η) ∈ Dh.

Denote by F(Êh,R) the set of all functions from Êh to R. If z∈ C(E0∪E,R),

then zh ∈ F(Êh,R) denotes the restriction of z to the mesh.

Let λ ∈ {1, 2, . . .} and

Sλ =
{
s = (s1, . . . , sn) ∈ Z

n | |si| ≤ λ, i = 1, . . . , n}.

We define the difference operators A, ∆0 and ∆ = (∆1, . . . ,∆n) by

(2.1)

Az
(η)
h =

∑

s∈Sλ

a(η)
s z

(η0,η′+s)
h , (t, x)(η) ∈ Eh,

∆0z
(η)
h = h−1

0 (z
(η0+1,η′)
h −Az

(η)
h ), (t, x)(η) ∈ Eh,

∆lz
(η)
h = h−1

l

∑

s∈Sλ

b
(η)
s,l z

(η0,η′+s)
h , (t, x)(η) ∈ Eh, l = 1, . . . , n,

where a
(η)
s and b

(η)
s,l are real coefficients.

Assumption H1. Suppose that the discrete operators A and ∆ defined
by (2.1) satisfy the following conditions

(i)
∑

s∈Sλ
a
(η)
s = 1,

∑
s∈Sλ

a
(η)
s sl = 0 for l = 1, . . . , n and (t, x)(η) ∈ Eh.
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(ii)
∑

s∈Sλ
b
(η)
s,l = 0,

∑
s∈Sλ

b
(η)
s,l sj = δlj for j, l = 1, . . . , n and (t, x)(η)

∈ Eh.
(iii) there is c ∈ R+ such that |a

(η)
s |, |b

(η)
s,l | ≤ c for s ∈ Sλ, (t, x)(η) ∈ Eh,

l = 1, . . . , n and h ∈ Id.
(iv) there are constants c0, c1 ∈ (0,∞) such that c0h0 ≤ hl ≤ c1h0 for

l = 1, . . . , n.

This assumption is necessary to prove that the discrete operators ∆l

for l = 0, 1, . . . , n approximate the differential operators Dt and Dxl
for

l = 1, . . . , n.
The operator [·]h : F(Êh,R) → C(E0 ∪ E,R) is defined by

(2.2) [zh]h(t, x) =

0∑

r=−λ

∑

s∈Sλ

p(η)
r,s (t, x)z

(η0+r,η′+s)
h

for zh : Êh → R, t(η−1) < t ≤ t(η) and x(η−1) < x ≤ x(η), where
(t, x)(η−1), (t, x)(η) ∈ Êh and 1 = (1, . . . , 1) ∈ Z

1+n. If (t, x)(η0+r,η′+s) 6∈ Êh,

then z
(η0+r,η′+s)
h means the same as z

(−N0,η′+s)
h .

Assumption H2. Suppose that the functions p
(η)
r,s : R

1+n→R in formula
(2.2) are bounded and satisfy

(2.3)

0∑

r=−λ

∑

s∈Sλ

p(η)
r,s (t, x) = 1

for t(η−1) < t ≤ t(η) and x(η−1) < x ≤ x(η), and

(2.4) p̂ = sup





0∑

r=−λ

∑

s∈Sλ

|p(η)
r,s (t, x)|

∣∣∣∣∣∣

t(η−1) < t ≤ t(η),
x(η−1) < x ≤ x(η), h ∈ Id,
(t, x)(η−1), (t, x)(η) ∈ Êh.



 <∞

Now, we define difference schemes which correspond to the differential-
functional problem (1.3), (1.4). Let f ∈ CH(Ω(0)). Then we consider the
following difference-functional problem (cf. (1.3)):

(2.5) ∆0z
(η)
h = f((t, x)(η), z

(η)
h , ([zh]h)(η),∆z

(η)
h ), (t, x) ∈ Eh,

with the initial condition

(2.6) z
(η)
h = φ

(η)
h , (t, x) ∈ E0,h.

In the literature the function f is often replaced by a function fh which is
defined by use of a finite Taylor expansion of f . This way one can obtain
better difference approximations to the differential problem.

Let H ∈ H and ε ∈ EH . A function zh is of class F
(h)
H (resp. of class

F
(h)
H,ε) iff there is a function z ∈ CH (resp. z ∈ CH,ε) such that zh = zh,

where h ∈ Id.
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Now, we prove an auxiliary lemma on consistency.

Lemma 2.1. Suppose that H ∈ H and Assumptions H1 and H2 are sat-

isfied. Let f ∈ CH(Ω(0)) with constants L0, L1, L2 ∈ R+ and L ∈ C(E,R+).
Let u ∈ C(E0 ∪E,R) be a solution of (1.3), (1.4) such that u,Dtu,Dxl

u ∈
CH for l = 1, . . . , n, and there is Lu ∈ R+ such that

(2.7) |Dxl
u(t, x) −Dxl

u(t, x)| + |Dtu(t, x) −Dtu(t, x)|

≤ Lu

(
|t− t| +

n∑

j=1

|xj − xj |
)

max{H(t, x),H(t, x)}

for (t, x), (t, x) ∈ E and l = 1, . . . , n. Then

(2.8) |∆0u
(η)
h − f((t, x)(η), u

(η)
h , ([uh]h)(η),∆z

(η)
h )| ≤ µ

(η)
h ,

where

µ
(η)
h = h0LuH

(η0+1,η′)
h + h−1

0 âλ2
( n∑

l=1

hl

)2

LuH
(η0,|η′|+λ′)
h(2.9)

+ L((t, x)(η))H
(η0,|η′|+λ′+1′)
h p̂

×
(
h0λ‖Dtu‖H(a) + (λ+ 1)

n∑

l=1

hl‖Dxl
u‖H(a)

)

+ L2‖(h
−1
1 , . . . , h−1

n )‖b̂
( n∑

l=1

hl

)2

λ2LuH
(η0,|η′|+λ′)
h ,

where λ′ = (λ, . . . , λ) ∈ Z
n, 1′ = (1, . . . , 1) ∈ Z

n, and

(2.10) â = sup
η

∑

s∈Sλ\{0′}

|a(η)
s |, b̂ = sup

l,η

∑

s∈Sλ\{0′}

|b
(η)
s,l |.

P r o o f. First, using the mean value theorem we have

(2.11) |Dtu((t, x)
(η)) −∆0u

(η)
h |

=
∣∣∣Dtu((t, x)

(η)) − h−1
0

{
u

(η)
h + h0Dtu((t, x)

(η) + θ
(η)
0 (h))

−
∑

s∈Sλ

a(η)
s

(
u

(η)
h +

n∑

l=1

hlslDxl
u((t, x)(η) + θ(η)

s (h))
)}∣∣∣

for (t, x)(η) ∈ Eh, where

(2.12)
θ
(η)
0 (h) ∈ (0, h0) × {0′},

θ(η)
s (h) ∈ {0} × [−λh1, λh1] × . . .× [−λhn, λhn]

for s ∈ Sλ.
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From (2.7), (2.11) and Assumption H1 we obtain

(2.13) |Dtu((t, x)
(η)) −∆0u

(η)
h |

≤ Luh0H
(η0+1,η′)
h + h−1

0 âλ2
( n∑

l=1

hl

)2

LuH
(η0,|η′|+λ′)
h ,

where â is defined by (2.10). In a similar way we obtain

(2.14) |Dxl
u((t, x)(η)) −∆lu

(η)
h |

=
∣∣∣Dxl

u((t, x)(η)) − h−1
l

∑

s∈Sλ

b
(η)
s,l

(
u

(η)
h +

n∑

l=1

hlslDxl
u((t, x)(η) + θ(η)

s (h))
)∣∣∣

for (t, x)(η) ∈ Eh and l = 1, . . . , n, and thus

(2.15) |Dxl
u((t, x)(η)) −∆lu

(η)
h | ≤ h−1

l b̂
( n∑

l=1

hl

)2

λ2LuH
(η0,|η′|+λ′)
h

for (t, x)(η) ∈ Eh and l = 1, . . . , n. If (t, x) ∈ E0 ∪ E and t(η−1) < t ≤ t(η),

x(η−1) < x ≤ x(η), where (t, x)(η−1), (t, x)(η) ∈ Êh, then

(2.16) |[uh]h(t, x) − u(t, x)|

=
∣∣∣

0∑

r=−λ

∑

s∈Sλ

p(η)
r,s (t, x)

(
u(t, x) + (t(η0+r,η′+s) − t)Dtu(θ

(η)
r,s (t, x, h))

+

n∑

l=1

(x(η0+r,η′+s) − xl)Dxl
u(θ(η)

r,s (t, x, h))
)
− u(t, x)

∣∣∣

≤ p̂
(
‖Dtu‖H(a)λh0 +

n∑

l=1

hl(λ+ 1)‖Dxl
u‖H(a)

)
H

(η0,|η′|+λ′)
h ,

where p̂ is defined by (2.4) and θ
(η)
r,s (t, x, h) is an intermediate point between

(t, x)(η0+r,η′+s) and (t, x).

Let (t, x) ∈ E. From (2.16) we have

(2.17) ‖([uh]h)(t,x) − u(t,x)‖D

= max
(t,x)∈D

‖[uh]h(t+ t, x+ x) − u(t+ t, x+ x)‖

≤ p̂
(
‖Dtu‖H(a)λh0 +

n∑

l=1

hl(λ+ 1)‖Dxl
u‖H(a)

)
H

(η̃0,|η̃′|+λ′)
h ,

where (η̃l − 1)hl < xl ≤ η̃lhl for l = 0, . . . , n. Condition (2.8) follows from
(2.13), (2.15) and (2.17). This finishes the proof.
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3. Convergence theorem. In this section we will prove that natural
assumptions imply the convergence of the difference scheme (2.5), (2.6).

Theorem 3.1. Suppose that

1) H ∈ H is given by (1.5), and L is defined by (1.6), where κ(t) >
ψ(t) > 0 for t ∈ [−τ0, a], ψ, κ are increasing on [0, a], and f ∈ CH(Ω(0))
with L1, L2 ∈ R+,

2) u ∈ C(E0∪E,R) is a solution of (1.3), (1.4) such that u,Dtu,Dxl
u ∈

CH for l = 1, . . . , n, and there is Lu ∈ R+ such that condition (2.7) is

satisfied ,

3) vh ∈ F(Êh,R) is a solution of (2.5), (2.6),

4) the following monotonicity condition is satisfied :

(3.1) a(η)
s + h0

n∑

l=1

h−1
l b

(η)
s,l Dql

f(P (η)) ≥ 0

for s ∈ Sλ, (t, x)
(η) ∈ Eh and P (η) = ((t, x)(η), p, w, q) ∈ Ω

(0)
H ,

5) there is Mφ ∈ R+ such that

(3.2) |φ
(η)
h − φ

(η)

h | ≤ h0MφH
(η)
h , (t, x)(η) ∈ E0,h.

Then

(3.3) |v
(η)
h − u

(η)
h | ≤ h0Ψ(t(η))H

(η)
h , (t, x)(η) ∈ Êh,

where Ψ : [−τ0, a] → R satisfies

(3.4) Ψ(t) ≥Mφ, t ∈ [−τ0, 0],

(3.5) Ψ ′(t) − Lu −B0(h) − L1Ψ(t)

−B1(h, ψ(t))Γ (ψ(t)
√

1 + (r1(t) + ‖τ‖ + ‖h′‖(λ+ 1))2)

× (Γ (Ψ(t)θ̃)Γ (κ(t)θ̃))−1 ≥ 0

for t ∈ [0, a] and h ∈ Id, where θ̃ =
√

1 + (r0(t, h))2, and B0 and B1 are

defined by

B0(h) = λ2Lu

(
h−1

0

n∑

l=1

hl

)2

(â+ b̂L2h0‖(h
−1
1 , . . . , h−1

n )‖),(3.6)

B1(h, p) = pp̂
(
p+ λ‖Dtu‖H(a) + (λ+ 1)

n∑

l=1

hlh
−1
0 ‖Dxl

u‖H(a)
)

(3.7)

for p ∈ R+, and
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(3.8)

r0(t, h) =
1 +

√
1 + (λ‖h′‖/h0)2

ψ′(t)/ψ(t)
λ‖h′‖/h0,

r1(t) =
ψ(t)(‖τ‖ + ‖h′‖(λ+ 1))

κ(t) − ψ(t)
.

Moreover , we have

(3.9) Ψ ′(t) − L1 − Lu + (Ψ(t) − h0Lu)ψ′(t)Γ ′(ψ(t))/Γ (ψ(t))

−B0(h)Γ (ψ(t)
√

1 + (‖h′‖λ/h0 + r0(t, h))2)/Γ (t)

−B1(h, Ψ(t))Γ
(
ψ(t)

√
1 + (r0(t, h) + ‖τ‖ + ‖h′‖(1 + λ))2

)

× (Γ (κ(t))Γ (ψ(t)))−1 ≥ 0

for t ∈ [0, a] with Ψ(t) so large that Ψ(t) − h0Lu ≥ 0.

P r o o f. Let w
(η)
h = u

(η)
h − v

(η)
h for (t, x)(η) ∈ Êh. From (2.5) we obtain

the recurrence equality

w
(η0+1,η′)
h = Aw

(η)
h(3.10)

+ h0(f((t, x)(η), u
(η)
h , ([uh]h)(η),∆u

(η)
h )

− f((t, x)(η), u
(η)
h , ([uh]h)(η),∆v

(η)
h ))

+ h0(f((t, x)(η), u
(η)
h , ([uh]h)(η),∆v

(η)
h )

− f((t, x)(η), v
(η)
h , ([vh]h)(η),∆v

(η)
h ))

+ h0(∆0u
(η)
h − f((t, x)(η), u

(η)
h , ([uh]h)(η),∆u

(η)
h ))

for (t, x)(η) ∈ Eh. Using the mean value theorem, the Lipschitz condition
for f , and Lemma 2.1, we obtain the recurrence estimate

|w
(η0+1,η′)
h | ≤

∑

s∈Sλ

|w
(η0,η′+s)
h |

∣∣∣a(η)
s + h0

n∑

l=1

h−1
l b

(η)
s,l Dql

f(P (η))
∣∣∣(3.11)

+ h0L1|w
(η)
h | + h0L((t, x)(η)) ‖([wh]h)(η)‖D + h0µ

(η)
h

for (t, x)(η) ∈ Eh. Now, using (3.1) and Assumption H1, we easily obtain
from (3.11) the following inequality which is much easier to analyse:

|w
(η0+1,η′)
h | ≤ max

s∈Sλ

|w
(η0,η′+s)
h | + h0L1|w

(η)
h |(3.12)

+ h0L((t, x)(η))‖([wh]h)(η)‖D + h0µ
(η)
h

for (t, x)(η) ∈ Eh. If we prove that the function W
(η)
h = h0Ψ(t(η))H

(η)
h ,

(t, x)(η) ∈ Êh, satisfies a comparison inequality with respect to (3.12), then
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(3.3) will be established. Thus, in order to finish the proof of our theorem
it is enough to prove the following

Lemma 3.1. If the assumptions of Theorem 3.1 are satisfied , then

W
(η0+1,η′)
h ≥ W

(η0,|η′|+λ′)
h + h0L1W

(η)
h(3.13)

+ h0L((t, x)(η))‖([Wh]h)(η)‖D + h0µ
(η)
h

for (t, x)(η) ∈ Eh, and

(3.14) W
(η)
h ≥ h0MφH

(η)
h , (t, x)(η) ∈ E0,h.

P r o o f. Condition (3.14) follows immediately from (3.4) and (3.2). Con-
dition (3.13) is a consequence of

(3.15) (Ψ(t+ h0) − h0Lu)Γ (ψ(t+ h0)
√

1 + r2)

≥ (Ψ(t) + h0B0(h))Γ (ψ(t)
√

1 + (r + ‖h′‖λ)2)

+ h0B1(h, Ψ(t))Γ (ψ(t)
√

1 + (r + ‖τ‖ + ‖h′‖(λ+ 1))2)

× (Γ (ψ(t)
√

1 + r2))−1

for t ∈ [0, a−h0] and r = ‖x‖ ∈ R+, where B0(h) and B1(h, Ψ(t)) are given
by (3.6) and (3.7). This implication follows from (3.9).

If r is greater than r0(t, h) given by (3.8), then

(3.16) ψ(t+ h0)
√

1 + r2 ≥ ψ(t)
√

1 + (r + ‖h′‖λ)2,

and (3.15) follows from

Ξ(θ) := Ψ(t+ θ) − θLu − Ψ(t) − θB0(h) − θL1Ψ(t)(3.17)

− θB1(h, Ψ(t))Γ (ψ(t)
√

1 + (r1(t) + ‖τ‖ + ‖h′‖(λ+ 1))2)

× (Γ (ψ(t)θ̃)Γ (κ(t)θ̃))−1 ≥ 0,

where θ ∈ [0, h0], t ∈ [0, a − h0] and θ̃ is the same as in (3.5). Now, (3.17)
holds true because Ξ(0) = 0 and Ξ ′(θ) ≥ 0 for θ ∈ [0, h0] as we have (3.5).

For r ≤ r0(x0, h) and t ∈ [0, a − h0], formula (3.15) is a consequence of
the inequality Ξ1(θ; t, r) ≥ 0 for θ ∈ [0, h0], where

(3.18) Ξ1(θ; t, r)

:= (Ψ(t+ θ) − θLu)Γ (ψ(t+ θ)
√

1 + r2) − θL1Γ (ψ(t)
√

1 + r2)

− (Ψ(t) + θB0(h))Γ (ψ(t)
√

1 + (r + θλ‖h′‖/h0)2)

− θB1(h, Ψ(t))Γ
(
ψ(t)

√
1 + (r0(t, h) + ‖τ‖ + ‖h′‖(λ+ 1))2

)/
Γ (κ(t))
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for θ ∈ [0, h0] and t ∈ [0, a − h0]. From (3.18) we find a lower estimate of
Ξ ′

1(θ; t, h):

(3.19) Ξ ′
1(θ; t, h)

≥ (Ψ ′(t+ θ) − Lu)Γ (ψ(t+ θ)
√

1 + r2)

+ (Ψ(t+ θ)− θLu)Γ ′(ψ(t+ θ)
√

1 + r2)ψ′(t+ θ)
√

1 + r2

− L1Γ (ψ(t)
√

1 + r2) −B0(h)Γ (ψ(t)
√

1 + (r + ‖h′‖λ)2)

− (Ψ(t) + θB0(h))Γ
′(ψ(t)

√
1 + (r + λ‖H ′‖)2)ψ′(t)

−B1(h, Ψ(t))Γ
(
ψ(t)

√
1 + (r0(t, h) + ‖τ‖ + h′‖(λ+ 1))2

)/
Γ (κ(t)).

From (3.19) and (3.9) we obtain Ξ ′(θ; t, h) ≥ 0, and (3.18) implies
Ξ(0; t, h) = 0. Therefore, Ξ(h0; t, h)≥ 0 for t ∈ [0, a − h0]. This completes
the proof.

R e m a r k. Condition 1) of Theorem 3.1 can be much weaker, namely L
might be defined by

L(t, x) = Γ (ψ(t)
√

1 + ‖x‖2)/Γ (κ(t)
√

1 + ‖x‖2), (t, x) ∈ E.

In this case the function Ψ satisfies stronger conditions than (3.4), (3.5) and
(3.9).

If Γ (t) ≥ const e2(t), then L might be defined by

L(t, x) = (Γ (ψ(t)
√

1 + ‖x‖2))ν/Γ (κ(t)
√

1 + ‖x‖2), (t, x) ∈ E,

where ν ≥ 0, and the proof works for a sufficiently large function Ψ .

4. Convergence result for another functional dependence. If

L,L1, L2 ∈ R+, then f is of class Lip(Ω
(1)
H ;L,L1, L2) iff f ∈ C(Ω

(1)
H ,R) and

(4.1) |f(t, x, p, w, q) − f(t, x, p, w, q)|

≤ L1|p− p| + LH(t, x)‖w − w‖H(t) + L2‖q − q‖

for all (t, x, p, w, q), (t, x, p, w, q) ∈ Ω
(1)
H . For f ∈ C(Ω

(1)
H ,R) we consider the

Cauchy problem for the equation

(4.2) Dtz(t, x) = f(t, x, z(t, x), z,Dxz(t, x)).

We assume that the Cauchy problem (4.2), (1.4) has a unique solution of
class CH defined on E0 ∪ E.

Let f ∈ CH(Ω
(1)
H ). Then the difference analogue of (4.2) reads

(4.3) ∆0z
(η)
h = f((t, x)(η), z

(η)
h , [zh]h,∆z

(η)
h ), (t, x)(η) ∈ Eh.

Problem (4.3) is also considered with initial condition (2.6).
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Lemma 4.1. Suppose that Assumptions H1 and H2 are satisfied and

H ∈ H, ε ∈ EH . Let f ∈ CH(Ω
(1)
H ) with constants L,L0, L1, L2 ∈ R+. Let

u ∈ C(E0 ∪E,R) be a solution of (4.2), (1.4) such that u,Dtu,Dxl
u ∈ CH,ε

for l = 1, . . . , n, and there is Lu ∈ R+ such that

(4.4) |Dxl
(t, x) −Dxl

u(t, x)| + |Dtu(t, x) −Dtu(t, x)|

≤ Lu

(
|t− t| +

n∑

j=1

|xj − xj |
)

max{H(t, x)ε(t, x), H(t, x)ε(t, x)}

for (t, x), (t, x) ∈ E and l = 1, . . . , n. Assume also that for h ∈ Id and

s ∈ Sλ+1 there is R(h) ∈ R+ such that lim sup{R(h) | h ∈ Id} <∞, and

(4.5)
n∑

l=1

xlDxl
(H̃(t+ h0, x+ (x(s)))/H(t, x)) ≤ 0

for ‖x‖ ≥ R(h) and (t+ h0, x) ∈ E, where

(4.6) H̃(t, x) = H(t, x)ε(t, x), (t, x) ∈ E.

Then

(4.7) |∆0u
(η)
h − f((t, x)(η), u

(η)
h , [uh]h,∆u

(η)
h )| ≤ µ

(η)
h ,

where

µ
(η)
h = h0LuH̃

(η0+1,η′)
h + h−1

0 âλ2
( n∑

l=1

hl

)2

LuH̃
(η0,|η′|+λ′)
h(4.8)

+ LH̃
(η)
h p̂

(
h0λ‖Dtu‖H(a) + (λ+ 1)

n∑

l=1

hl‖Dxl
u‖H(a)

)

× sup
η

sup
x(η−1)<x≤x(η)

H̃
(η0,|η′|+λ′)
h

H(t, x)

+ L2‖(h
−1
1 , . . . , h−1

n )‖b̂
( n∑

l=1

hl

)2

λ2LuH̃
(η0,|η′|+λ′)
h ,

where (t, x)(η) ∈ Eh, and H̃ is defined by (4.6).

R e m a r k. Condition (4.5) is satisfied if, for example, H is defined by
(1.5), and

(4.9) ε(t, x) = Γ (ξ(t)
√

1 + ‖x‖2)/Γ (ψ(t)
√

1 + ‖x‖2),

where ξ ∈ C1([−τ0, a],R+) is increasing, and 0 < ξ(t) < ψ(t) for t ∈ [−τ0, a].
We should only assume that h0 < (ψ(t) − ξ(t))/ξ′(a) for t ∈ [−τ0, a].
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P r o o f o f L e m m a 4.1. Estimates (2.13)–(2.16) remain true if we

replace H by H̃ defined by (4.6). Thus, in order to obtain (4.7) with µh

defined by (4.8), it is sufficient to estimate LH
(η)
h ‖[uh]h − u‖H(a) by a suit-

ably chosen expression basing on formula (2.16) with H replaced by H̃. The
double supremum appearing in (4.8) is finite because (4.5) guarantees that

H̃
(η0,|η′|+λ′)
h /H(t, x) is bounded by

(4.10) Mh = sup



H̃(t+ h0, x+ (x(s)))/H(t, x)

∣∣∣∣∣∣

‖x‖ ≤ R(h),
(t+ h0, x) ∈ E,
s ∈ Sλ+1



 ,

where h ∈ Id. The rest works as in the proof of Lemma 2.1.

Theorem 4.1. Suppose that

1) Assumptions H1 and H2 are satisfied ,

2) H ∈ H and ε ∈ EH are given by (1.5) and (4.9), respectively , where

ξ ∈ C([−τ0, a],R+) has positive derivative on [0, a]; 0 < ξ(t) < ψ(t) for

t ∈ [−τ0, a]; H̃ ∈ H is defined by (4.6), and f ∈ CH(Ω
(1)
H ) with constants L,

L1, L2,

3) u ∈ C(E0∪E,R) is a solution of (4.2), (1.4) such that u,Dtu,Dxl
u ∈

CH,ε for l = 1, . . . , n, and there exists Lu ∈ R+ such that condition (4.4) is

satisfied , and the constants Mh defined by (4.10) for h ∈ Id are such that

lim sup{Mh | h ∈ Id} ≤M ,

4) vh ∈ F
(h)
H,ε is a solution of (4.3), (2.6),

5) the monotonicity condition (3.1) is satisfied for s ∈ Sλ, (t, x)(η) ∈ Eh

and P (η) = ((t, x)(η) , p, z, q) ∈ Ω
(1)
H ,

6) there is Mφ ∈ R such that

(4.11) |φ
(η)
h − φ

(η)
h | ≤ h0MφH̃

(η)
h , (t, x)(η) ∈ Eh,

7) h0 is so small that ψ(t) − ξ(t) − h0ξ
′(t) > 0 for t ∈ [0, a].

Then

(4.12) |v
(η)
h − u

(η)
h | ≤ h0Ψ(t(η))H̃

(η)
h , (t, x)(η) ∈ Êh,

where Ψ : [−τ0, a] → R+ satisfies inequality (3.4) and

(4.13) Ψ ′(θ) − Lu − L1 − B̃0(h)

−B̃(h, Ψ(θ))Γ (ξ(θ)
√

1 + (r1(t))2)/Γ (ψ(0)) ≥ 0

for θ ∈ [0, a], where B̃0(h), r1(t) and B̃(h, p) for p ∈ R+ are defined by
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(4.14)

B̃0(h) = λ2Lu

( n∑

l=1

hl/h0

)2

(â+ L2b̂‖(h0h
−1
1 , . . . , h0h

−1
n )‖),

B̃(h, p) = Lp̂
(
λ‖Dtu‖H(a) + (λ+ 1)

n∑

l=1

hlh
−1
0 ‖Dxl

u‖H(a) + p
)
,

r1(t) = (λ+ 1)‖h′‖(1 + ψ(t)(ψ(t) − ξ(t) − h0ξ
′(t))−1),

where θ, t ∈ [0, a], h ∈ Id, and

(4.15) (Ψ ′(θ) − Lu)Γ (ξ(θ)) + Γ ′(ξ(θ))ξ′(θ)(Ψ(θ) − h0Lu)

− Γ (ξ(θ)
√

1 + (r0(t))2)

× (L1Ψ(θ) + B̃(h, Ψ(t))Γ (ξ(θ)
√

1 + (r1(θ))2)/Γ (ψ(0)))

− (Ψ(θ) + h0B̃0(h))

× Γ ′(ξ(θ)
√

1 + (r0(θ) + λ‖h′‖)2)ξ(θ)λ‖h′‖/h0

− B̃0(h)Γ (ξ(θ)
√

1 + (r0(θ) + λ‖h′‖)2) ≥ 0

for θ ∈ [0, a], h ∈ Id with h0 so small that Ψ(θ) − h0Lu ≥ 0 on [−τ0, a].

P r o o f. Let w
(η)
h = u

(η)
h − v

(η)
h for (t, x)(η) ∈ Êh. From (4.11) it fol-

lows that (4.12) is satisfied for (t, x)(η) ∈ E0,h. Subtracting the recurrence

expressions of v
(η0+1,η′)
h from u

(η0+1,η′)
h leads to the recurrence error esti-

mates similar to (3.12), as in the proof of Theorem 3.1 (compare (3.10) and
(3.11)):

|w
(η+1,η′)
h | ≤ max

s∈Sλ

|w
(η0,η′+s)
h | + h0L1|w

(η)
h |(4.16)

+ h0LH̃
(η)
h ‖[wh]h‖H(a) + h0µ

(η)
h

for (t, x)(η) ∈ Eh, where µh is defined by (4.8). In order to establish (4.12)

on Êh it is sufficient to prove the following

Lemma 4.2. If the assumptions of Theorem 4.1 are satisfied , then the

function W̃h : Êh → R+ given by W̃
(η)
h = h0Ψ(t(η))H̃

(η)
h for (t, x)(η) ∈ Êh

satisfies the inequality

|W̃
(η0+1,η′)
h | ≥ W̃

(η0,|η′|+λ′)
h + h0L1|W̃

(η)
h |(4.17)

+ h0LH̃
(η)
h ‖[W̃h]h‖H(a) + h0µ

(η)
h

for (t, x)(η) ∈ Eh, and

(4.18) W̃
(η)
h ≥ h0MφH̃

(η)
h , (t, x)(η) ∈ E0,h.
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P r o o f. Inequality (4.18) is obvious. Formula (4.17) follows from

(4.19) (Ψ(t+ h0) − h0Lu)Γ (ξ(t+ h0)
√

1 + r2)

≥ h0L1Ψ(t)Γ (ξ(t)
√

1 + r2) + h0B̃(h, Ψ(t))

× sup




Γ (ξ(t(η))

√
1 + ‖x(|η|) + λh′‖2)

Γ (ψ(t)
√

1 + ‖x‖2)

∣∣∣∣∣∣∣

t(η−1) < t ≤ t(η),
x(η−1) < x ≤ x(η),
(t, x)(η−1), (t, x)(η) ∈ Êh,
−h0N0 ≤ h0η0 ≤ t,





+ (Ψ(t) + h0B̃0(h))Γ (ξ(t)
√

1 + (r + λ‖h′‖)2)

for t ∈ [0, a− h0], r ∈ R+ and h = (h0, h
′) ∈ Id.

First, observe that

(4.20) Γ (ξ(t(η))
√

1 + ‖x(|η|) + λh′‖2)/Γ (ψ(t)
√

1 + ‖x‖2)

≤ Γ (ξ(t(η))
√

1 + (r1(t))2)/Γ (ψ(t)
√

1 + ‖x‖2)

for t(η−1) < t ≤ t(η), x(η−1) < x ≤ x(η), (t, x)(η−1), (t, x)(η) ∈ Êh, −N0 ≤
η0 ≤ η0. We claim that

Ξ̃(θ; t) := Ψ(t+ θ) − Ψ(t) − θ(Lu + L1 + B̃0(h)(4.21)

+ B̃(h, Ψ(t))Γ (ξ(t)
√

1 + (r1(t))2)/Γ (ψ(0))) ≥ 0

for t ∈ [0, a−h0] and θ ∈ [0, h0], because Ξ̃(0; t) = 0 and Ξ̃ ′(θ; t) ≥ 0 on the
considered interval as we have (4.13). Thus, if r ≥ r0(t), then (4.19) results
from (4.20) and (4.21).

If r ≤ r0(t), then we define

Ξ̃1(θ; t, r) = (Ψ(t+ θ) − θLu)Γ (ξ(t+ θ)
√

1 + r2)(4.22)

− θΓ (ξ(t)
√

1 + r2)(L1Ψ(t)

+ B̃(h, Ψ(T ))Γ (ξ(t)
√

1 + (r1(t))2)/Γ (ψ(0)))

− (Ψ(t) + θB̃0(h))Γ (ξ(t)
√

1 + (r + θλ‖h′‖/h0)2)

for t ∈ [0, a− h0] and θ ∈ [0, h0]. Next, from (4.15) we have

(4.23) Ξ̃ ′
1(θ; t, r)

= (Ψ ′(t) − Lu)Γ (ξ(t+ θ)
√

1 + r2)

+ Γ ′(ξ(t+ θ)
√

1 + r2)ξ′(t+ θ)
√

1 + r2(Ψ(t+ θ)− θLu)

− Γ (ξ(t)
√

1 + r2)(L1Ψ(t) + B̃(h, Ψ(t))Γ (ξ(t)
√

1 + (r1(t))2)/Γ (ψ(0)))

− (Ψ(t) + θB̃0(h))Γ
′(ξ(t)

√
1 + (r + θλ‖h′‖/h0)2)ψ(t)λ‖h′‖/h0

− B̃0(h)Γ (ξ(t)
√

1 + (r + θλ‖h′‖/h0)2) ≥ 0
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for t ∈ [0, a−h0] and θ ∈ [0, h0]. From (4.21) it is easy to obtain Ξ̃1(0; t, r) =

0. From this and (4.23) we have Ξ̃1(h0; t, r) ≥ 0. This finishes the proof of
our lemma.
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