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On solutions of integral equations
with analytic kernels and rotations

by Nguyen Van Mau and Nguyen Minh Tuan (Hanoi)

Abstract. We deal with a class of integral equations on the unit circle in the complex
plane with a regular part and with rotations of the form

(∗) x(t) + a(t)(Tx)(t) = b(t),

where T =Mn1,k1 . . .Mnm,km andMnj ,kj are of the form (3) below. We prove that under
some assumptions on analytic continuation of the given functions, (∗) is a singular integral
equation for m odd and is a Fredholm equation for m even. Further, we prove that T is
an algebraic operator with characteristic polynomial PT (t) = t3 − t. By means of the
Riemann boundary value problems, we give an algebraic method to obtain all solutions
of equation (∗) in closed form.

1. Algebraic characterizations of integral operators with rota-
tions. Let Γ = {t : |t| = 1}, D+ = {t : |t| < 1} and let X = Hµ(Γ ) (0 <
µ < 1). Consider the following operators in X:

(Sx)(t) =
1
πi

∫
Γ

1
s− t

x(s) ds,(1)

(Sn,kx)(t) =
1
πi

∫
Γ

sn−1−ktk

sn − tn
x(s) ds,(2)

(Mn,kx)(t) =
1
πi

∫
Γ

sn−1−ktkMn(s, t)
sn − tn

x(s) ds,(3)

where n, k ∈ N, n > 1, 0 ≤ k ≤ n − 1 and Mn(s, t) satisfies the Hölder
condition with respect to (s, t) ∈ Γ ×Γ . Let εn,1 = e2πi/n, εn,j = εjn,1, j =
1, . . . , n. Consider the rotation operators (Wnx)(t) = x(εn,1t). For j ∈
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{1, . . . , n}, write

(4) P =
1
2

(I + S), Q =
1
2

(I − S), Pn,j =
n∑
k=1

εn−1−k
n,j W k+1

n .

It is easy to check that X = X+ ⊕X− and X =
⊕n

j=1Xn,j , where X+ =
PX, X− = QX and Xn,j = Pn,jX for j ∈ {1, . . . , n}.
Lemma 1. Let P , Q and Pn,j be defined by (4). Then

Pn,jX
+ ⊂ X+, Pn,jX

− ⊂ X−

and
PXn,j ⊂ Xn,j , QXn,j ⊂ Xn,j (j ∈ {1, . . . , n}).

P r o o f. This follows immediately from the equalities

SWn = WnS, Sn,kS = SSn,k, Sn,kWn = WnSn,k,

for all k ∈ {0, . . . , n− 1}.
Lemma 2 ([2]–[3]). Sn,k = SPn,k = Pn,kS for all k ∈ {0, . . . , n − 1},

where we set Pn,0 = Pn,n.

Lemma 3. Suppose that Mn(s, t) is invariant with respect to the rota-
tion operator Wn, i.e. Mn(εn,1s, t) = Mn(s, εn,1t) = Mn(s, t). Suppose,
moreover , that Mn(t, t) = 1 for all t ∈ Γ . Then

(5) Mn,k = Sn,k +NnPn,k, NnPn,k = Pn,kNn for all k ∈ {1, . . . , n},
where

(Nnx)(t) =
1
πi

∫
Γ

Nn(s, t)x(s) ds, Nn(s, t) =
Mn(s, t)− 1

s− t
.

P r o o f. The assumptions on Mn(s, t) imply the equalities

(Mn,kx)(t) = (Sn,kx)(t) +
1
πi

∫
Γ

sn−1−ktk

sn − tn
(Mn(s, t)− 1)x(s) ds

= (Sn,kx)(t) +
n∑
j=1

εn−1−j
k

(
1
πi

∫
Γ

Mn(s, t)− 1
s− εjt

x(s) ds
)

= (Sn,kx)(t) +
1
πi

∫
Γ

Nn(s, t)(Pn,kx)(s) ds,

which gives the first equality of the formula (5). The second equality of (5)
immediately follows from the assumption that Mn(s, t) is invariant with
respect to Wn.

Theorem 1. Let n > 1 and m ∈ {0, . . . , n − 1}. Suppose that Mn(s, t)
satisfy all assumptions of Lemma 3 and admit an analytic continuation in
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both variables into D+. Write

M =
m∑
k=0

Mn,k,

where Mn,k is of the form (3). Then M is an algebraic operator and
M3 = M .

P r o o f. From the assumptions on Mn(s, t), the function Nn(s, t) =
(Mn(s, t)−1)(s−t)−1 is continuous in (s, t) ∈ Γ×Γ and admits an analytic
continuation in both variables into D+. Hence, the Cauchy integral theorem
gives

(6) N2
n = 0, SNn = Nn, NnS = −Nn.

On the other hand, since S2 = I, S2
n,k = Pn,k and Pn,kPn,j = δkjPn,j we

find
M2
n,k = Pn,k, M3

n,k = Mn,k, Mn,kMn,j = δkjMn,j

and

M3 =
m∑
k=0

M3
n,k =

m∑
k=0

Mn,k = M,

which gives the proof.

Theorem 2. Let m ∈ N+. Write

(7) T = Mn1,k1Mn2,k2 . . .Mnm,km ,

where Mnj ,kj (j ∈ {1, . . . ,m}) are of the form (3). Suppose that Mnj (t, t)
= 1, and Mnj (s, t) (j ∈ {1, . . . ,m}) admit an analytic continuation in
both variables into D+ and are invariant with respect to WN , where N =∏m
j=1 nj. Then T is an algebraic operator and T 3 = T .

P r o o f. Since every Mnj ,kj (s, t) is invariant with respect to WN , by
Lemma 3, we conclude that

Mnν ,kνMnµ,kµ = Mnµ,kµMnν ,kν for all µ, ν ∈ {1, . . . ,m}.
Hence, the proof immediately follows from Theorem 1.

R e m a r k 1. If k, j ∈ {0, . . . , n} and k 6= j then Mn,kMn,j = 0 for
Pn,kPn,j = 0. Hence, if there are i, j ∈ {1, . . . ,m} and i 6= j such that
ni = nj and ki 6= kj , then T = 0. Therefore, in the sequel, we only deal with
the cases ni 6= nj for i 6= j.

Lemma 4. Let l ∈ N+. Suppose that Mnj (s, t) (j ∈ {1, . . . ,m}) satisfy
all assumptions of Theorem 2. Then

(8)
m∏
k=1

(S +Nnk) = I +
2l∑
k=1

(−1)kNnk for m = 2l
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and

(9)
m∏
k=1

(S +Nnk) = S +
2l−1∑
k=1

(−1)k+1Nnk for m = 2l − 1.

P r o o f. Since SNn2 = Nn2 , Nn1S = −Nn1 and Nn1Nn2 = 0 (see the
proof of Theorem 2), for l = 1 we have

(S +Nn1)(S +Nn2) = I + SNn2 +Nn1S +Nn1Nn2 = I +Nn2 −Nn1 .

Hence, it is easy to check the formula (8) by induction on l.
Similarly, (9) is trivial for the case l = 1. Suppose that (9) is true for

l = s. Then for l = s+ 1, we find
2s+1∏
k=1

(S +Nnk) =
(
S +

2s−1∑
k=1

(−1)k+1Nnk

)
(S +Nn2s)(S +Nn2s+1)

=
(
S +

2s−1∑
k=1

(−1)k+1Nnk

)
(I +Nn2s+1 −Nn2s)

= S +
2s−1∑
k=1

(−1)k+1Nnk − SNn2s + SNn2s+1

= S +
2s+1∑
k=1

(−1)k+1Nnk ,

which proves the formula (9).

2. Integral equations with rotations. In the sequel, for every fixed
a ∈ X, we write (Kax)(t) = a(t)x(t).

Lemma 5. Let k, j ∈ {1, . . . , n} be fixed. Then for every a ∈ X there
exists an element b ∈ X such that KbXj ⊂ Xk and

Pn,kKaPn,j = KbPn,j on X.

(Such a function b(t) will be denoted by ankj(t).)

P r o o f. Note that Pn,k defined by (4) is a polynomial in Wn with con-
stant coefficients. On the other hand, we also have

Pn,jPn,k = δjkPn,k, W l
n =

n∑
k=1

εln,kPn,k for all l ∈ N.

Hence

Pn,kKaPn,j =
n∑
l=1

εn−1−l
n,k W l+1

n KaPn,j =
n∑
l=1

εn−1−l
n,k a(εn,l+1t)W l+1Pn,j
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=
n∑
l=1

εn−1−l
n,k a(εn,l+1t)

n∑
ν=1

εl+1
n,νPn,νPn,j

=
n∑
l=1

εn−1−l
n,k a(εn,l+1t)εl+1

n,j Pn,j = ankj(t)Pn,j ,

where

(10) ankj(t) =
n∑
l=1

εn−1−l
n,k εl+1

n,j a(εn,l+1t).

It is easy to check that Pn,νKbPn,j = 0 for all ν 6= k and for b(t) = ankj(t),
which gives KbXj ⊂ Xk. The proof is complete.

Corollary 1. Let j ∈ {1, . . . , n}. Then for every a ∈ X there is a func-
tion b ∈ X that is invariant with respect to the rotation operator Wn and

Pn,jKaPn,j = KbPn,j = Pn,jKb on X.

P r o o f. By Lemma 5, we have the equality

Pn,jKaPn,j = anjj(t)Pn,j ,
where

(11) anjj(t) =
n∑
k=1

a(εn,k+1t).

We see from (11) that anjj(t) is a function invariant with respect to the
rotation operator Wn. Hence KbPn,j = Pn,jKb for b(t) = anjj(t), which was
to be proved.

Consider now the equation with the operator T of the form (7):

(12) x(t) + a(t)(Tx)(t) = b(t),

where a, b ∈ X are given.

Theorem 3. Let m ∈ N+ and n1, . . . , nm be given distinct positive in-
tegers. Suppose that Mnj (t, t) = 1, and Mnj (s, t) (j ∈ {1, . . . ,m}) admit
an analytic continuation in both variables into D+ and are invariant with
respect to WN , where N =

∏m
j=1 nj. Then the equation (12) has solutions

if and only if the equation

(13) y(t) + a(m)(t)((S +Nn1) . . . (S +Nnm)y)(t) = b(m)(t),

where a(m)(t) are constructed by Lemma 4 as follows:

(14) a(0)(t) = a(t), a(1)(t) = a
(0)
n1k1k1

(t), . . . , a(m)(t) = a
(m−1)
nmkmkm

(t)

and
b(m)(t) = (Pn1,k1 . . . Pnm,kmb)(t),

has solutions in the space X(m) := P⊗X, where P⊗ = Pn1,k1 . . . Pnm,km .
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P r o o f. Suppose that (12) has a solution x0(t), i.e.

(15) x0(t) + a(t)(Tx0)(t) = b(t).

Applying the operator P⊗ to both sides of (15), we obtain y0(t) = (P⊗x0)(t)
belonging to X(m) and satisfying (13).

Conversely, if y0(t) is a solution in X(m) of (13), then it is easy to check
that x(t) = b(t) − a(t)((S + Nn1) . . . (S + Nnm)y0)(t) is a solution of (12),
which gives the proof.

Lemma 6. Suppose that Mnj (s, t) (j ∈ {1, . . . ,m}) satisfy all assump-
tions of Theorem 3. Then equation (13) has solutions in X(m) if and only
if it has solutions in X. Moreover , if y(t) ∈ X is a solution of (13), then
y(m)(t) = (P⊗y)(t) is a solution of (13) in X(m).

P r o o f. By Corollary 1, a(m)(t) is invariant with respect to all rotation
operators Wnj and by (5), we see that every operator S + Nnj commutes
with any rotation operator Wnl . Then P⊗ commutes with every S + Nnj .
Hence, if y ∈ X is a solution of (13), then applying the operator P⊗ to both
sides of (13), we see that again y(m)(t) = (P⊗y)(t) is also a solution of (13).
The proof is complete.

R e m a r k 2. Lemma 6 shows that it is enough to solve the equation (13)
in a given space X = Hµ(Γ ).

Lemma 7. Let m be an odd positive integer. Suppose that Mnj (s, t) (j ∈
{1, . . . ,m}) satisfy all assumptions of Theorem 3 and the function

(16) Rm(s, t) =
a(m)(t)

1 + a(m)(t)

m∑
k=1

(−1)k+1Nnk(s, t),

where

Nnk(s, t) =
Mnk(s, t)− 1

s− t
,

admits an analytic continuation in both variables inD+. Then every solution
y(t) ∈ X of the equation (13) is given by the formula

y(t) = y+(t) + y−(t), y−(t) = ψ−(t), y+(t) = ψ+(t)− (Rmψ−)(t),

where

(17) (Rmx)(t) =
1
πi

∫
Γ

Rm(s, t)x(s) ds

and (ψ+(t), ψ−(t)) is a solution of the following Riemann boundary value
problem:

(18) ψ+(t) =
a(m)(t)− 1
a(m)(t) + 1

ψ−(t) +
b(m)(t)

1 + a(m)(t)
.
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P r o o f. By Lemma 4, the equation (13) is equivalent to the equation

(19) y(t) + a(m)(t)
((
S +

m∑
k=1

(−1)k+1Nnk

)
y
)

(t) = b(m)(t).

Write y+(t) = (Py)(t) and y−(t) = (Qy)(t). Using the notations (16)–(17),
we can rewrite (19) in the form

(20) y+(t) +
1− a(m)(t)
1 + a(m)(t)

y−(t) + (Rmy)(t) =
b(m)(t)

1 + a(m)(t)
.

The assumption on Rm(s, t) implies (Rmy+)(t) = 0 and (Rmy−)(t) ∈ X+

for all y ∈ X. Hence (20) is a Riemann boundary value problem of the
form (18), where ψ+(t) = y+(t) + (Rmy−)(t) and ψ−(t) = y−(t). The proof
is complete.

Note that all solutions of the Riemann boundary value problem can be
found in closed form (see [1], [2], [4]). Consequently, from Lemma 7, we can
formulate the following result.

Corollary 2. All solutions of equation (13) can be given in closed form
by means of the Riemann boundary value problem (18).

Lemma 8. Let m be an even positive integer. Suppose thatMnj (s, t) (j ∈
{1, . . . ,m}) satisfy all assumptions of Lemma 7. Then every solution y(t)
∈ X of the equation (13) is given by the formula

(21) y−(t) = ψ−(t), y+(t) = ψ+(t)− (Rmψ−)(t),

where

(22) ψ(z) =
1
πi

∫
Γ

b(m)(s)
1 + a(m)(s)

ds

s− z
.

P r o o f. By Lemma 4, (13) is equivalent to the equation

(23) y(t) + a(m)(t)
((
I +

m∑
k=1

(−1)kNnk
)
y
)

(t) = b(m)(t).

Using notations (16)–(17), we can rewrite (23) in the form

(24) y(t) + (Rmy)(t) =
b(m)(t)

1 + a(m)(t)
.

The assumption on Rm(s, t) implies (Rmy+)(t) = 0 and (Rmy−)(t) ∈ X+.
Hence, (24) is of the form

ψ+(t)− ψ−(t) = b(m)(t){1 + a(m)(t)}

which gives the formula (21)–(22) for any solution of (13).
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Now we can formulate the main results of Theorem 3 and of Lemmas
6–7 about solutions of the equation (12) in the following form.

Theorem 4. Let m be an odd positive integer and let T be of the form (7).
Suppose that Mnj (s, t) (j ∈ {1, . . . ,m}) satisfy all assumptions of Theo-
rem 3. Moreover , suppose that the function Rm(s, t) of the form (16) admits
an analytic continuation in both variables into D+. Then equation (12) has
solutions if and only if the corresponding Riemann boundary value problem
(18) has solutions. If that is the case, every solution of (12) is given by the
formula

(25) x(t) = b(t)− a(t)((S +Nn1) . . . (S +Nnm)y)(t),

where y(t) = ψ+(t) − (Rmψ−)(t) + ψ−(t) and ψ±(t) is a solution of the
Riemann boundary value problem (18).

Similarly, Theorem 3 and Lemma 8 together imply the following.

Theorem 5. Let m be an even positive integer and let T be of the
form (7). Suppose that Mnj (s, t) (j ∈ {1, . . . ,m}) satisfy all assumptions
of Theorem 4. Then equation (12) has solutions of the form (25), where
y(t) = ψ+(t)− (Rmψ−)(t) + ψ−(t) and ψ(z) is of the form (22).

R e m a r k 3. Note that the equation (12) in the case of m even is not a
singular integral equation. In that case, (12) is a Fredholm integral equation
(see Lemma 4).
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