ANNALES POLONICI MATHEMATICI LXIII.1 (1996)

On balanced L²-domains of holomorphy

by MAREK JARNICKI (Kraków) and PETER PFLUG (Oldenburg)

Abstract. We show that any bounded balanced domain of holomorphy is an $L_{\rm h}^2$ -domain of holomorphy.

It is known [PfI] that any bounded domain of holomorphy $G \subset \mathbb{C}^n$ with $G = \operatorname{int} \overline{G}$ is an $L^2_{\mathrm{h}}(G)$ -domain of holomorphy, where $L^2_{\mathrm{h}}(G)$ denotes the space of all Lebesgue square integrable holomorphic functions on G. Observe that $L^2_{\mathrm{h}}(E) = L^2_{\mathrm{h}}(E \setminus \{0\})$, where $E := \{\lambda \in \mathbb{C} : |\lambda| < 1\}$. For Reinhardt domains there is a complete description of the L^2_{h} -domains of holomorphy (cf. [Jar-PfI]). In [Sic] J. Siciak formulated the following problem: Which balanced domains $G \subset \mathbb{C}^n$ are $L^2_{\mathrm{h}}(G)$ -domains of holomorphy? Here "balanced" means that $\overline{E} \cdot G = G$.

The aim of this note is to give a partial solution of this problem (using a deep result due to T. Ohsawa and K. Takegoshi [Ohs-Tak]).

THEOREM. Any bounded balanced domain of holomorphy $G \subset \mathbb{C}^n$ is an $L^2_{\rm h}(G)$ -domain of holomorphy. Consequently, the $L^2_{\rm h}(G)$ -envelope of holomorphy of any bounded balanced domain $G \subset \mathbb{C}^n$ coincides with the standard envelope of holomorphy.

Proof. We proceed by induction on n. Obviously, the result is true for n = 1. Assume that the assertion holds for n - 1.

Let $G \subset \mathbb{C}^n$ be a bounded balanced domain of holomorphy. Suppose that G is not an $L^2_h(G)$ -domain of holomorphy. Since G is balanced, we may assume that there are domains $\emptyset \neq V \subset U \cap G \subsetneq U$ such that:

(a) for any $f \in L^2_{\rm h}(G)$ there exists an $f \in \mathcal{O}(U)$ with $f|_V = f|_V$, where $\mathcal{O}(U)$ denotes the space of all holomorphic functions on U;

(b) there exists a continuous curve $\gamma : [0, 1] \to U$ with $\gamma(0) \in V, \gamma(1) =: b \in \partial G, \gamma([0, 1)) \subset G$, and $[0, 1)b \subset G$;

⁽c) $b = (b_1, 0, \dots, 0).$

¹⁹⁹¹ Mathematics Subject Classification: 32D05, 32D10.

Key words and phrases: balanced domain of holomorphy, L^2 -holomorphic function.

^[101]

To see that (b) is always possible we can proceed as follows. Let U, V be as in (a) and let $\gamma : [0,1] \to U$ be an arbitrary curve with $\gamma(0) \in V$, $\gamma(1) =: b \in \partial G$, and $\gamma([0,1)) \subset G$. Observe that there is $\tau_0 \in (0,1]$ such that $[0,\tau_0)b \subset G$ and $\tau_0b \in \partial G$. It suffices to show that we can replace U, V, γ by $\tau_0 U, \tau_0 V, \tau_0 \gamma$. Take an arbitrary function $f \in L^2_h(G)$ and put $f_{\tau_0}(z) := f(\tau_0 z), z \in G$. Then $f_{\tau_0} \in L^2_h(G)$ and therefore there exists $\tilde{f}_{\tau_0} \in \mathcal{O}(U)$ with $\tilde{f}_{\tau_0}|_V = f_{\tau_0}|_V$. Define $\tilde{f}(z) := \tilde{f}_{\tau_0}(z/\tau_0), z \in \tau_0 U$. Then $\tilde{f} \in \mathcal{O}(\tau_0 U)$ with $\tilde{f}|_{\tau_0 V} = f|_{\tau_0 V}$.

We choose $\tau \in (0,1)$ and a domain W with $\tau\gamma([0,1]) \subset W \subset G \cap U$, $\tau\gamma(0) \in V$, and $[\tau, 1]b \subset U$. Take (n-1)-dimensional domains \widetilde{U} and \widetilde{V} and an $\varepsilon > 0$ such that $[\tau, 1]b \subset \widetilde{U} \times (\varepsilon E) \subset U$ and $\tau b \in \widetilde{V} \times \{0\} \subset (\widetilde{U} \times \{0\}) \cap W$.

We define $\widetilde{G} := G \cap (\mathbb{C}^{n-1} \times \{0\})$ and consider \widetilde{G} as a bounded balanced domain of holomorphy in \mathbb{C}^{n-1} .

Let $f \in L^2_{\rm h}(\widetilde{G})$. Using [Ohs-Tak] we find a function $F \in L^2_{\rm h}(G)$ with $F|_{\widetilde{G}} = f$. By our construction there exists $\widetilde{F} \in \mathcal{O}(U)$ such that $\widetilde{F}|_V = F|_V$. Then the identity theorem implies that $\widetilde{F}|_W = F|_W$; in particular, $\widetilde{F}(\cdot, 0)|_{\widetilde{V}} = f|_{\widetilde{V}}$. Thus $f|_{\widetilde{V}}$ extends as a holomorphic function to \widetilde{U} with $\widetilde{U} \notin \widetilde{G}$, which contradicts our assumption for the (n-1)-dimensional case.

R e m a r k. We do not know any characterization of unbounded balanced $L_{\rm h}^2$ -domains of holomorphy. Even more, there is no description of unbounded balanced domains G with $L_{\rm h}^2(G) \neq \{0\}$. For Reinhardt domains see [Jar-Pf].

References

- [Jar-Pfl] M. Jarnicki and P. Pflug, Existence domains of holomorphic functions of restricted growth, Trans. Amer. Math. Soc. 304 (1987), 385-404.
- [Ohs-Tak] T. Ohsawa and K. Takegoshi, On the extension of L^2 -holomorphic functions, Math. Z. 195 (1987), 197–204.
 - [Pfl] P. Pflug, Quadratintegrable holomorphe Funktionen und die Serre Vermutung, Math. Ann. 216 (1975), 285–288.
 - [Sic] J. Siciak, Balanced domains of holomorphy of type H^{∞} , Mat. Vesnik 37 (1985), 134–144.

INSTITUTE OF MATHEMATICSCARL VON OSSIETZKY UNIVERSITÄT OLDENBURGJAGIELLONIAN UNIVERSITYFACHBEREICH MATHEMATIKREYMONTA 4POSTFACH 250330-059 KRAKÓW, POLANDD-26111 OLDENBURG, GERMANYE-mail: JARNICKI@IM.UJ.EDU.PLE-mail: PFLUGVEC@DOSUNI1.RZ.UNI-OSNABRUECK.DE

Current address of Peter Pflug: HOCHSCHULE VECHTA POSTFACH 1553 D-49364 VECHTA, GERMANY

Reçu par la Rédaction le 1.6.1995