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Versal deformations of Dq-invariant 2-parameter

families of planar vector fields

by Grzegorz Świrszcz (Warszawa)

Abstract. The paper deals with 2-parameter families of planar vector fields which are
invariant under the group Dq for q ≥ 3. The germs at z = 0 of such families are studied
and versal families are found. We also give the phase portraits of the versal families.

1. Introduction and the statement of the result. In this work
we solve the problem of classification of families of planar vector fields in-
variant under the group Dq for q ≥ 3. The problem of classification of
vector fields invariant under some subgroups of the group of isometries of
R

2 is quite natural; for example, some problems concerning multidimen-
sional fields lead to this case. The general statement of the problem is given
in [1], [2], [8], [11]. The main example of such fields are the ones invari-
ant under Cq , the cyclic group of rotations by the angle 2kπ/q. The case
of C1 (no symmetry) with both eigenvalues at zero equal to zero is de-
scribed in [4]. The cases of C2 and C3 appear in [9]. The fields invariant
under C4 are very complicated and are not completely investigated yet.
[3], [10] and [13] deal with that case. Except the condition of rotation in-
variance there is also a natural additional condition of invariance under axial
symmetry. This leads to the dihedral group Dq. The fields invariant under
D1 are described in [6], [12], [14] and the fields invariant under D2 are found
in [12], [15]. It turns out that invariance under symmetry allows us to avoid
the problems appearing in the C4 case and the versal families are simple. In
this work we present a complete classification of 1- and 2-parameter families.

The author has made the calculations for 3- and more-parameter families,
but in this case the phase portraits were very complicated and we were not
able to find anything general. Recently the dihedral groups Dq draw some
attention of specialists in bifurcation theory. For example, some bifurcations
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with D3 and D4 symmetries were studied in [7]. The present work deals with
a specific problem with Dq symmetry for any q.

Every field invariant under rotation by 2π/q must have the form

(1) ż = Az + Bz|z|2 + Czq−1 + Dzq+1 + Ezq−1|z|2 + O(|z|q+2).

Our field must also be invariant under axial symmetry (z 7→ z), so
A,B,C,D,E ∈ R. In polar coordinates we obtain

(2)
ṙ = r(A + Br2 + Crq−2) cos(qϕ) + (D + E)rq cos(qϕ) + O(rq+1),

ϕ̇ = −rq−2(C + (E − D)r2 + O(r3)) sin(qϕ).

2. The result. The main result of this work is the following

Theorem 1. (a) All 1- and 2-parameter families of germs at z = 0 of

Dq-invariant planar vector fields (1) can be divided into non-degenerate and

degenerate ones, the latter forming a finite union of positive codimension

submanifolds in the space of all such families.

(b) The following main families are versal families (ε1,2 are parameters

of deformation):

• q = 3 : ż = ε1z + z2,

ż = ε1z + ε2z
2 + z|z|2 + Dz4 + Ez2|z|2, D 6= E, D 6= 0,

• q = 4 : ż = ε1z + Bz|z|2 + z3, |B| 6= 1,

ż = ε1z + ε2z
3 + z|z|2 + Dz5 + Ez3|z|2, D 6= E, D 6= 0,

ż = ε1z + (1 + ε2)z|z|2 + z3 + Dz5 + Ez3|z|2, |D| 6= |E|,

• q > 4 : ż = ε1z + z|z|2 + zq−1,

ż = ε1z + ε2z|z|2 + zq−1.

(c) The bifurcational diagrams and phase portraits are given in Figures

1–6, 8–10.

For the definition of versality, topological equivalence etc. see [1].
The remaining part of this work is devoted to the proof of Theorem 1.

We shall see that the only bifurcations appearing in the 2-parameter families
are bifurcations of critical points of saddle-node type. The analysis of such
families is the same as the analysis of the main families (from Theorem 1(b)).
Therefore in order to avoid unnecessary complications we shall study only
the main families. Then in Section 5 we shall prove the conclusions (a) and
(b) of the theorem. In fact, the result for 1-parameter families follows from
the analysis of Cq-symmetric families in [1], [2].

In 3-parameter families other bifurcations (Hopf, saddle-connection) ap-
pear. But we do not study them here.



Dq-invariant of planar vector fields 267

3. 1-parameter families

3.1. q = 3. We have

ż = A(µ)z + C(µ)z2, A(0) = 0.

We have omitted the terms of degree 3.
Conditions of genericity are

dA

dµ
6= 0 and C(0) 6= 0.

By choosing a new parameter ε, rescaling z, writing our family in polar
coordinates and dividing by r we obtain

ṙ = ε + r cos 3ϕ, ϕ̇ = − sin 3ϕ.

It follows from the equation for ϕ̇ that all the critical points of this family
lie on the lines sin 3ϕ = 0. Since our field is D3-invariant we can restrict
ourselves to the axis ϕ = 0. We allow negative values of r, where we identify
(−r, ϕ) with (r, ϕ + π).

The critical points are p0 = {r = 0} and p1 = (−ε, 0). The point p0 is
a source for ε > 0 and a sink for ε < 0. The point p1 is a saddle. For the
bifurcational diagram see Figure 1.

Fig. 1

3.2. q = 4. We have

ż = A(µ)z + B(µ)z|z|2 + C(µ)z3, A(0) = 0.

We have omitted the terms of degree 4.
Conditions of genericity are

∂A

∂µ
6= 0, C(0) 6= 0, |B(0)| 6= |C(0)|.

By choosing a new parameter ε, applying the change z 7→ λz or z 7→
eπi/4z, possibly reversing the time, writing our family in polar coordinates
and dividing by r we obtain,

ṙ = ε + (B + cos 4ϕ)r2, ϕ̇ = −r sin 4ϕ, 0 ≤ B 6= 1.
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On the half-lines ϕ = 0 and ϕ = π/4 we have the following critical points:

p0 = {r = 0}, p1 =

(
√

−ε

B + 1
, 0

)

, p2 =

(
√

−ε

B − 1
,
π

4

)

.

Denote by Di the matrix of linearization of the field at pi. We have

D1 =





2
√

−ε(B + 1) 0

0 −4

√

−ε

B + 1



 ,

D2 =









2(B − 1)

√

ε

1 − B
0

0 −4

√

ε

1 − B









.

The point p0 is a source for ε > 0 and a sink for ε < 0. Depending on the
value of B we get the bifurcational diagrams given in Figure 2 for B > 1
and in Figure 3 for B < 1.

Fig. 2

Fig. 3
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3.3. q > 4. We have

ż = A(µ)z + B(µ)z|z|2 + C(µ)zq−1, A(0) = 0.

We have omitted the terms of degree q.
Conditions of genericity are

∂A

∂µ
6= 0, B(0) 6= 0, C(0) 6= 0.

As in the previous cases we obtain

ż = εz + z|z|2 + Czq−1, C = ±1.

For q odd, if C < 0 we can make a change of coordinates z 7→ −z to get
C = 1. For q even we obtain the same result after the change z 7→ eπi/qz.
In polar coordinates we get

ṙ = ε + r2 + rq−2 cos qϕ, ϕ̇ = −rq−3 sin qϕ.

We can obtain the whole phase portrait by glueing together the q sectors
{r ≥ 0, 2πi/q ≤ ϕ ≤ 2π(i + 1)/q}.

In our search for critical points it is enough to consider only these two
half-lines: (r > 0, ϕ = 0) and (r > 0, ϕ = π/q).

We have the following critical points:

p1 = (∼
√
−ε, 0), p2 = (∼

√
−ε, π/q).

The point p0 = {r = 0} is a source for ε > 0 and a sink for ε < 0. The
point p1 is a saddle, and p2 is a source. For the bifurcational diagram see
Figure 4.

Fig. 4

4. 2-parameter families

4.1. q = 3. We have

ż = A(µ1, µ2)z + C(µ1, µ2)z
2 + B(µ1, µ2)z|z|2

+ D(µ1, µ2)z
4 + E(µ1, µ2)z

2|z|2.
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For 1-parameter families we made only one nondegeneracy assumption
C(0) 6= 0. In the 2-parameter case we have to allow C(0, 0) = 0. Therefore

A(0, 0) = 0, C(0, 0) = 0.

We have omitted the terms of degree 5.

Conditions of genericity are
∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂C

∂µ1

∂C

∂µ2

∣

∣

∣

∣

∣

∣

∣

6= 0 and

B(0, 0) 6= 0,

D(0, 0) 6= E(0, 0),

D(0, 0) 6= 0.

By choosing new parameters ε1 and ε2, rescaling z and time and writing
our family in polar coordinates we obtain

ṙ = ε1 + ε2r cos 3ϕ + r2 + Kr3 cos 3ϕ,

ϕ̇ = (ε2 + r2) sin 3ϕ.

Note that D 6= 0 implies K 6= 1.

It follows from the equation for ϕ̇ that the critical points all lie on the
lines sin 3ϕ = 0 and on the circle ε2 + r2 = 0. We allow negative values of
r, where we identify (−r, ϕ) with (r, ϕ + π).

We have the following critical points on the invariant half-lines:

p0 = {r = 0},
p1 =

(

∼ − 1
2
(ε2 +

√

ε2
2 − 4ε1), 0

)

, p2 =
(

∼ − 1
2
(ε2 −

√

ε2
2 − 4ε1), 0

)

.

There are two bifurcational curves ε1 = 0 and the saddle-node (S-N)
curve:

Γ0 : ε2
2 ≈ 4ε1.

On the circle r =
√−ε2 we have the equation

ε1 − ε2 + ε2

√
−ε2(1 − K) cos 3ϕ = 0.

That gives

cos 3ϕ =
ε2 − ε1

ε2

√−ε2(1 − K)
.

There are two more bifurcational curves corresponding to the saddle-
node bifurcations |cos 3ϕ| = 1:

ε1 = ε2 ± ε2

√
−ε2(1 − K) = ε2(1 ±

√
−ε2(1 − K)), ε2 ≤ 0.

Since K 6= 1, we have

Γ1 = {(ε1, ε2) : ε1 = ε2(1 +
√
−ε2|1 − K|), ε2 ≤ 0},

Γ2 = {(ε1, ε2) : ε1 = ε2(1 −
√
−ε2|1 − K|), ε2 ≤ 0}.
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The point p0 is a source for ε1 > 0 and a sink for ε1 < 0. The char-
acter of the remaining points changes when bifurcations take place. When
the circle r =

√−ε2 goes through a critical point (that happens on the
curves Γ1 and Γ2), a symmetric saddle-node bifurcation takes place in the
direction transversal to the invariant line. For the bifurcational diagram see
Figure 5.

Fig. 5

4.2. q = 4. We have

ż = A(µ1, µ2)z + B(µ1, µ2)z|z|2 + C(µ1, µ2)z
3

+ D(µ1, µ2)z
5 + E(µ1, µ2)z

3|z|2.
We have omitted the terms of degree 6.

The 1-parameter families satisfied two nondegeneracy conditions C(0) 6=
0 and |B(0)| 6=| C(0) |. In the 2-parameter case we have to allow C(0, 0) = 0
or B(0, 0) = ±C(0, 0). Consequently, we have two cases:



272 G. Świrszcz

I. A(0, 0) = 0 and C(0, 0) = 0. Then conditions of genericity are
∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂C

∂µ1

∂C

∂µ2

∣

∣

∣

∣

∣

∣

∣

6= 0 and

B(0, 0) 6= 0,

D(0, 0) 6= E(0, 0),

D(0, 0) 6= 0.

II. A(0, 0) = 0 and B(0, 0) = C(0, 0). Then conditions of genericity are
∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂B

∂µ1

∂B

∂µ2

∣

∣

∣

∣

∣

∣

∣

6= 0 and
C(0, 0) 6= 0,

|D(0, 0)| 6= |E(0, 0)|.

The third interesting situation for us is when

B(0, 0) = −C(0, 0).

We will show that by a suitable change of variables we can bring it to the
case

B(0, 0) = C(0, 0).

4.2.I. q = 4, case I. By choosing new parameters ε1 and ε2, rescaling z
and writing our family in polar coordinates we obtain

ṙ = ε1 + ε2r
2 cos 4ϕ + r2 + Kr4 cos 4ϕ,

ϕ̇ = −r(ε2 + r2) sin 4ϕ.

Here D 6= 0 implies K 6= 1.
It follows from the equation for ϕ̇ that the critical points all lie on the

lines sin 4ϕ = 0 and on the circle ε2 + r2 = 0.
We have the following critical points on the invariant half-lines:

p0 = {r = 0}, p1 = (∼
√
−ε1, 0), p2 = (∼

√
−ε1, π/4).

On the circle r =
√−ε2 we have the equation

ε1 − ε2 + ε2
2(K − 1) cos 4ϕ = 0.

That gives

cos 4ϕ =
ε2 − ε1

ε2
2(K − 1)

.

There are two bifurcational curves corresponding to the saddle-node bi-
furcations at |cos 4ϕ| = 1:

ε1 = ε2 ± ε2
2(K − 1) = ε2(1 ± ε2(K − 1)), ε2 ≤ 0.

Since K 6= 1, we have

Γ1 = {(ε1, ε2) : ε1 = ε2(1 − ε2|1 − K|), ε2 ≤ 0},
Γ2 = {(ε1, ε2) : ε1 = ε2(1 + ε2|1 − K|), ε2 ≤ 0}.
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The point p0 is a source for ε1 > 0 and a sink for ε1 < 0. The character
of the remaining points changes when bifurcations take place. When the
circle r =

√−ε2 goes through a critical point (that happens on the curves
Γ1 and Γ2), a symmetric saddle-node bifurcation takes place in the direction
transversal to the invariant line. For the bifurcational diagram see Figure 6.

Fig. 6

4.2.II. q = 4, case II . We have

ż = ε1z + (B + ε2)z|z|2 + Bz3 + Dz5 + Ez3|z|2,
where we can put B = 1, E − D = 1. In polar coordinates,

ṙ = ε1 + (1 + ε2)r
2 + r2 cos 4ϕ + Kr4 cos 4ϕ,

ϕ̇ = −r(1 + r2) sin 4ϕ.

Here |D| 6= |E| implies K 6= 0.
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We also get a versal family when B(0, 0) = −C(0, 0). We need not deal
with this because it can be obtained from the above family by the following
change of variables:

τ = −t, ϕ = Φ + π/4 or z → eπi/4z; ′ =
d

dτ
.

It follows from the equation for ϕ̇ that the critical points all lie on the
lines sin 4ϕ = 0.

We have the following critical points on the invariant half-lines:

p0 = {r = 0}, p1 =

(
√

−ε1

ε2 + 2
, 0

)

,

p2 =

(

ε2 −
√

ε2
2 + 4Kε1

2K
,
π

4

)

, p3 =

(

ε2 +
√

ε2
2 + 4Kε1

2K
,
π

4

)

.

The bifurcational curves are

{ε1 = 0}, Γ = {4Kε1 = −ε2
2, Kε2 > 0}.

Consider the case K > 0, ε1 < 0, ε2 > 0, after the S-N bifurcation.
We have one critical point p1 on the line ϕ = 0 (a saddle), and two points p2

(a source) and p3 (a saddle) on the line ϕ = π/4. We now prove that there is
no saddle-connection bifurcation between p1 and p3. Consider the fragments
of the circles O1, O2, O3 with their ends at p1, p2, p3 and contained between
the lines ϕ = 0 and ϕ = π/4 (see Figure 7).

Fig. 7

There cannot exist any trajectory from p3 to p1, because it would
have to cross O2 in the direction opposite to the direction of the ve-
ctor field. So we get two bifurcational diagrams depending on the value
of K.

For the bifurcational diagram corresponding to K < 0 see Figure 8, and
for K > 0 see Figure 9.
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Fig. 8

4.3. q > 4. We have

ż = A(µ1, µ2)z + B(µ1, µ2)z|z|2 + C(µ1, µ2)z
q−1,

A(0, 0) = 0, B(0, 0) = 0.

We have omitted the terms of degree q.
The conditions of genericity are

∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂B

∂µ1

∂B

∂µ2

∣

∣

∣

∣

∣

∣

∣

6= 0 and C(0, 0) 6= 0.

By choosing new parameters ε1, ε2 and rescaling z we obtain

ż = ε1z + ε2z|z|2 + Czq−1, C = ±1.

For q odd, if C < 0 we can make the change of variables z 7→ −z to get
C = 1. For q even we obtain the same result by the change z 7→ eπi/qz.
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Fig. 9

In polar coordinates we get

ṙ = ε1 + ε2r
2 + rq−2 cos qϕ, ϕ̇ = −rq−3 sin qϕ.

We can obtain the whole phase portrait by glueing together the q sectors
{r ≥ 0, 2πi/q ≤ ϕ ≤ 2π(i + 1)/q}.

In our search for critical points it is enough to consider only the two
half-lines:

R = {(r, ϕ) : ϕ = 0} and S = {(r, ϕ) : ϕ = 2π/q}.

The half-line R is attracting, while S is repelling. Simple calculations show
that there are at most two points at each of this lines, but there can be
maximally three critical points on R ∪ S. Arguments similar to those we
used in the case q = 4(II) show that there can be no saddle-connection
bifurcation in this case. For the bifurcational diagram see Figure 10.
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Fig. 10

5. Proof of the conclusions (a) and (b) of Theorem 1

5.1. Proof of (a). We only consider 2-parameter families. The proof for
the 1-parameter case is given in [1], [2].

Consider a family v of vector fields invariant under D3. By Section 1, it
must have the form

ż = A(µ1, µ2)z + C(µ1, µ2)z
2 + B(µ1, µ2)z|z|2

+ D(µ1, µ2)z
2 + E(µ1, µ2)z

2|z|2 + O(|z|5).
We are dealing with germs at z = 0 of families of planar vector fields, so

we may consider it as a small perturbation of the main family V .
We call our family nondegenerate if it satisfies the following conditions:

∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂C

∂µ1

∂C

∂µ2

∣

∣

∣

∣

∣

∣

∣

6= 0 and

B(0, 0) 6= 0,

D(0, 0) 6= 0,

D(0, 0) 6= E(0, 0).
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Other families are degenerate. Denote by Ξ the set of all germs of
D3-invariant 2-parameter planar vector fields. Families not satisfying the
first nondegeneracy condition are solutions of the equation F (v) = 0, where

F : Ξ → R, F (v) =

∣

∣

∣

∣

∣

∣

∣

∂A

∂µ1

∂A

∂µ2

∂C

∂µ1

∂C

∂µ2

∣

∣

∣

∣

∣

∣

∣

.

The derivative of F is nonsingular, so it follows from the Implicit Function
Theorem (IFT) that the solutions of this equation form a submanifold of
codimension 1. The same arguments hold for the functions not satisfying
the remaining conditions. This proves the conclusion (a) of Theorem 1 for
D3-invariant 2-parameter families.

The same arguments give the proof in all the other cases considered in
this paper.

5.2. Proof of the versality of the main families (conclusion (b))

5.2.1. The D3-invariant case. To prove the versality of the main family
we must construct a homeomorphism ϕ of the parameter spaces, and a
family hµ of homeomorphisms of the plane which transform the trajectories
of the family v(µ) into the trajectories of the family V [ϕ(µ)] in a small
neighbourhood of z = 0.

The proof of versality for 1-parameter families can be found in [1] and [2].

Consider a D3-invariant 2-parameter family.We have seen that the neigh-
bourhood of the origin of the parameter space for the main family V is
divided into six domains by the bifurcational curves Γ0, Γ1 and Γ2 (see Fig-
ure 5). We shall prove that this holds for any nondegenerate 2-parameter
family v for both the parameters and |z| sufficiently small. We denote by
F1 (F2) the first (second) coordinate of V written in polar coordinates and
by f1 (f2) the first (second) coordinate of v in polar coordinates.

Let us first deal with Γ0 on which an S-N bifurcation in the direction of
r takes place on the invariant lines {Im z3 = 0}. We consider the map

Φ(ε1, ε2, r, F ) =

(

F (ε1, ε2, r, 0)
∂F

∂r
(ε1, ε2, r, 0)

)

, Φ : R
3 × C1(R2, R) → R

2.

We know that for F = F1 and for every ε2 there exist ε1 and r such that

Φ(ε1, ε2, r, F1) =

(

0
0

)

.

We also have

D(ε1,r)Φ(ε1, ε2, r, F1) =

(

1 ε2 + 2r + 3Kr2

0 2 + 6Kr

)

∼=
(

1 0
0 2

)

.
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We see that for small r and ε2,D(ε1,r)Φ(ε1, ε2, r, F1) is invertible, so it
follows from IFT that for sufficiently small perturbations F of F1 there also
exist r and ε1 such that

Φ(ε1, ε2, r, F ) =

(

0
0

)

.

We also know that ε1 is a continuous function of ε2 and that for fixed ε2

it is a locally unique solution. As f1 is a small perturbation of F1 we know
that for v there exists a bifurcational curve ∆0 corresponding to Γ0.

The same arguments hold for the bifurcational curve ε1 = 0 on which an
S-N bifurcation in the direction of r takes place (at the point r = 0).

Now we deal with Γ1 on which an S-N bifurcation in the direction of ϕ
takes place. We consider the map

Ψ(ε1, ε2, r,G, F ) =

(

G(ε1, ε2, r, 0)
∂F

∂ϕ
(ε1, ε2, r, 0)

)

, Ψ : R
3 × C1(R2, R2) → R

2.

We know that for F = F2, G = F1 and for every ε2 there exist ε1 and r such
that

Ψ(ε1, ε2, r, F1, F2) =

(

0
0

)

.

We also have

D(ε1,r)Ψ(ε1, ε2, r, F1, F2) =

(

1 ε2 + 2r + 3Kr2

0 6r cos 3ϕ

)

=

(

1 0
0 6r

)

.

For small r and ε2,D(ε1,r)Ψ(ε1, ε2, r, F1, F2) is invertible, so by IFT for suffi-
ciently small perturbations G,F of F1 and F2 there also exist r and ε1 such
that

Ψ(ε1, ε2, r,G, F ) =

(

0
0

)

.

We also know that ε1 is a continuous function of ε2 and that for fixed ε2

it is a locally unique solution. As f1 is a small perturbation of F1 we know
that for v there exists a bifurcational curve ∆1 corresponding to Γ1.

The same arguments hold for Γ2.
Of course for r and parameters small enough there cannot happen any

bifurcations for parameters lying outside any fixed neighbourhood of the
mentioned curves. This follows from the fact that all the critical points are
hyperbolic (by IFT). We can choose sufficiently small neighbourhoods of the
curves to provide uniqueness of these curves in these neighbourhoods. This
also follows from IFT.

The above arguments show that the families V and v have the same bi-
furcational diagrams and their phase portraits in the corresponding areas of
the diagrams are the same. For the construction of ϕ and homeomorphisms
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hµ see [4] and [5]. It is rather cumbersome and we do not include it in the
present work.

This ends the proof of the versality of the 2-parameter main family in
the D3 case. Of course the same arguments hold for 1-parameter families.

5.2.2. The Dq-invariant case (q > 3). The proof of the existence and
uniqueness of the bifurcation curves on which an S-N bifurcation takes place
is the same as in the D3 case. To complete the proof of Theorem 1 we only
have to prove that there cannot happen a saddle-connection bifurcation in
the case q = 4 (case II) and in the case q > 4. In both cases the proofs are
similar, so we only consider case II for D4.

The proof of nonexistence of a saddle-connection bifurcation is based on
the construction of a curve O2. We shall prove that such a curve must also
exist for the family v.

Consider the map

Φ(r, ϕ, F ) = F (r, ϕ) − r2 cos 4ϕ − Kr4 cos 4ϕ,

Φ : R
2 × C1(R2, R) → R.

For F := F1 and for every ϕ there exists r such that

Φ(r, ϕ, F1) ≡ 0.

We also have

∂Φ

∂r
(r, ϕ, F1) = 2r(1 + ε2 − cos 4ϕ) + O(r3).

Of course, ε2 > 0 so by IFT for sufficiently small perturbations f1 of F1 and
for every ϕ there also exists r such that

Φ(r, ϕ, f1) = 0.

Denote by o2 the obtained curve r = r(ϕ). We have

ṙ|o2
= r2(1 + Kr2) cos 4ϕ > 0.

There cannot exist any trajectory from p3 to p1 because it would have to
cross the curve o2 in the direction opposite to the direction of the vector
field v. This completes the proof of Theorem 1.
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