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Global attractor of a differentiable autonomous system
on the plane

by Nguyen Van Chau (Hanoi)

Abstract. We study the structure of a differentiable autonomous system on the plane
with non-positive divergence outside a bounded set. It is shown that under certain con-
ditions such a system has a global attractor. The main result here can be seen as an
improvement of the results of Olech and Meisters in [7, 9] concerning the global asymp-
totic stability conjecture of Markus and Yamabe and the Jacobian Conjecture.

1. Introduction. Consider the autonomous system

(S) ẋ = f(x)

on R2, where f is C1 on R2. Let Df(x) and Div f(x) denote the Jacobian
matrix and the divergence of f .

In 1962 C. Olech [7] considered the 2-dimensional case of the Markus–
Yamabe Conjecture [5] on the global asymptotic stability of autonomous
systems and obtained the following result:

Suppose that

(i) f(0) = 0,
(ii) detDf(x) > 0 and Div f(x) < 0 for all x ∈ R2, and
(iii) ‖f(x)‖ > const > 0 for ‖x‖ > const.

Then x = 0 is a globally asymptotically stable solution of the system (S).

This result leads to an affirmative solution of the global asymptotic sta-
bility conjecture of Markus and Yamabe for the 2-dimensional polynomial
case [9], that the conditions (i) and (ii) imply global asymptotic stability of
the solution x = 0.
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In this note we present an improvement of these results for the case when
the above condition for Div f only holds outside a bounded set. Our main
result is the following.

Theorem 1. Suppose that

(i) f(0) = 0 and zero is a regular value of f ,
(ii) ‖f(x)‖ > const > 0 for ‖x‖ > const,
(iii) Div f(x) ≤ 0 for ‖x‖ > const, and
(iv)

∫
R2 Div f(x) dx < 0.

Then either

(a) there is a trajectory with empty positive limit set which tends to a
saddle point as t→ −∞, or

(b) the system (S) has a global attractor.

In fact, it will be shown that under conditions (i)–(iii) either there exists
a special trajectory as in (a), or infinity can be viewed as either a centre, a
repulsive point or an attracting point of the system. It seems that the last
case cannot happen. This will be proved for the polynomial case.

A special case of these results is when the system has no saddle point.
For this case, it will be shown that under conditions (i)–(iii) the system has
a unique singular point. This fact allows us to obtain some results con-
cerning the univalence domain of a map. In particular, one of these results
asserts that a polynomial map of R2 into itself with detDf positive is a
diffeomorphism of R2 if Div f(x) is non-positive outside a bounded set.
This is an improvement of a result of Olech and Meisters [9] concerning the
real version of the Jacobian Conjecture, which asserts that every polynomial
non-singular map of Rn into itself is bijective.

The proof of Theorem 1 is based on Olech’s Lemma about orbital sta-
bility of plane dynamical systems in invariant domains of non-positive di-
vergence [7, 8]. This lemma and some other lemmas are given in Section 2.
Theorem 1 and its version for the polynomial case are proved in Section 3.
Some results on univalence are presented in the last section.

The author would like to take this opportunity to thank Prof. C. Olech
and Prof. M. Zelikin for advice and support. The author also wishes to thank
the International Centre for Theoretical Physics, Trieste, and the Banach
International Mathematical Center, Warsaw, for their hospitality.

2. Some lemmas. Let f be a C1-map of R2 into itself, f = (f1, f2). We
consider the autonomous system

(S) ẋ = f(x)
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and its orthogonal system

(S∗) ẋ = (−f2(x), f1(x)).

Denote by x(t, P ) (resp. x∗(t, P )) the unique solution of (S) (resp. (S∗))
with the initial condition x(0, P ) = P (resp. x∗(0, P ) = P ). Let (a(P ), b(P ))
be the maximal interval on which x(t, P ) is defined. As usual, ω(P ) and α(P )
denote the positive and negative limit sets of x(t, P ). Denote by P1P2 the
segment {x = x(t, P ) : t2 ≤ t ≤ t1}, where Pi = x(ti, P ), i = 1, 2.

For the solution segment PQ of (S∗), Q = x∗(t0, P ), Olech [7, 8] intro-
duced the function

(1) L(P,Q) =
∫
PQ

‖f(x∗(t, P ))‖2 dt =
s0∫
0

‖f(x∗(t(s), P ))‖ ds,

where ds = ‖f(x∗(t, P ))‖ dt is the line element and s0 is the length of the
segment PQ. Put P (t) = x(t, P ). There is an ε > 0 such that for each t ∈
[0, ε) the solution curve x∗(τ, P (t)) crosses the solution curve x(t, Q) at time
τ(t) > 0. By the continuous dependence of solutions on initial conditions,
there exists an increasing continuous function s(t) and a continuous function
τ(t) on [0, ε) satisfying τ(0) = 0 and s(0) = t0 such that x(s(t), Q) =
x∗(τ(t), P (t)).

Assume that these functions are well defined on the maximal interval
[0, T (P )). Put Q(t)=x(s(t), Q). We denote by G(t) the region with bound-
ary PP (t)Q(t)Q, where PP (t), QQ(t) and PQ, P (t)Q(t) are solution seg-
ments of (S) and (S∗), respectively. Using Green’s formula we obtain

(2) L(P,Q)− L(P (t), Q(t)) = −
∫

G(t)

Div f(x) dx.

For µ > 0, put O(P, µ) :=
⋃
t≥0{x : ‖x−x(t, P )‖ < µ}. This is a neighbour-

hood of the solution curve x(t, P ), t ≥ 0.
The following lemma, for convenience restated in another form, is due

to Olech [7, 8].

Olech’s Lemma (see Lemma 2 in [7]). Assume that there are constants
µ > 0 and d > 0 such that ‖f(x)‖ > d, Div f(x) ≤ 0 for x ∈ O(P, µ),
PQ ⊂ O(P, µ) and L(P,Q) < µd. Then

(i) T (P ) = b(P ),
(ii) s(t)→ b(Q) as t→ b(P ),
(iii) d‖P (t)−Q(t)‖ ≤ L(P (t), Q(t)) ≤ L(P,Q) ≤ µd for all 0 ≤ t < b(P ).

Denote by A∞ the set of all points P such that ω(P ) = ∅. Applying
Olech’s Lemma to the case when Div f is non-positive outside a bounded
set we have
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Lemma 1. Assume that there are d > 0 and r > 0 such that

(3) ‖f(x)‖ > d and Div f(x) ≤ 0 for ‖x‖ > r.

Then

(i) the set A∞ is open,
(ii) for any P ∈ R2 either ω(P ) = ∅ or ω(P ) is bounded.

P r o o f. (i) follows immediately from Olech’s Lemma. If ω(P ) 6= ∅ were
unbounded then in view of the Poincaré–Bendixson Theorem it would con-
tain a trajectory with empty positive limit set. Hence, by (i), ω(P ) = ∅,
which contradicts the unboundedness of ω(P ). Thus ω(P ) is bounded.

R e m a r k 1. In the case when (3) holds, for each P ∈ A∞ and each
sufficiently small solution segment PQ of (S∗) the functions P (t), Q(t) and
G(t) are well defined and the properties (i) and (ii) in Olech’s Lemma are
still valid. Instead of property (iii) we have

(iii)′ d‖P (t)−Q(t)‖ ≤ L(P (t), Q(t)) ≤ L(P (t0), Q(t0))

for 0 ≤ t0 ≤ t ≤ b(P ). Furthermore,

(4) L(P,Q) = −
∫

GPQ

Div f(x) dx+ lim
t→b(P )

L(P (t), Q(t)),

where GPQ =
⋃
t≥0G(t).

From Olech’s Lemma we can observe an interesting geometrical relation
between the trajectories of the systems (S) and (S∗).

Lemma 2. Let L be a trajectory of (S∗). For each P ∈ A∞ ∩ L the
solution curve x(t, P ), t > 0, either does not cross L again, or it crosses L
infinitely many times.

P r o o f. Let V be a connected component of A∞ ∩ L and P ∈ V . As
in Remark 1 we can choose a sufficiently small solution segment P1P2 with
P ∈ P1P2 so that the corresponding functions P1(t) and P2(t) are well
defined and satisfy (i), (ii) and (iii)′ of Remark 1. Clearly, the curves Pi(t),
t ≥ 0, cross V iff the curve x(t, P ), t ≥ 0, crosses V . Since V is connected,
this implies that the set

(5) W := {P ∈ V : x(t, P ) ∈ V for some t > 0}
is either empty or the whole of V . In the latter case, if P ∈ W then the
curve x(t, P ), t ≥ 0, crosses V infinitely many times, which completes the
proof.

3. Global attractor. In this section we give the proof of Theorem 1 and
a version for the polynomial case. Theorem 1 will be proved in a sequence
of lemmas.
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Consider the system (S) under the assumptions of Theorem 1:

(7) f(0) = 0 and detDf(x) 6= 0 for x ∈ f−1(0),
(8) Div f(x) ≤ 0 for ‖x‖ > r,

(9) ‖f(x)‖ > d for ‖x‖ > r

and

(10)
∫

R2

Div f(x) dx < 0,

where r and d are positive numbers.
Note that (7) and (9) mean that (S) has a finite number of singular

points and its singular points are either attracting, repulsive, saddle points
or centres (see e.g. [1]).

Lemma 3. Assume that the conditions (7)–(9) hold. Then either

(a) the set A∞ is not empty ,
(b) the system (S) has a global attractor , or
(c) every trajectory of (S) starting from outside a bounded set is closed.

P r o o f. Assume that A∞ = ∅. Then, by Lemma 1, for every P ∈ R2 the
set ω(P ) is bounded. Set

B := {ω(P ) : P 6∈ ω(P )} and C :=
⋃
B

ω(P ).

First, we show that C is bounded. Notice that by (7) all elements of B are
regular trajectories, except finitely many elements which are either singu-
lar points, or solution curves composed by some singular points and some
trajectories joining singular points. Clearly, if the family B is finite, then
C is bounded. Consider the case when B is infinite. Assume, contrary to
our claim, that C is unbounded. Then we can define a sequence ci ∈ B,
i = 1, 2, . . . , such that Di ⊂ Di+1 and

K :=
∞⋃
i=1

ci is unbounded,

where Di denotes the bounded component of R2 \ ci. Notice that by (8),

(11) ci ∩ {x : ‖x‖ ≤ r} 6= ∅.

Since K is unbounded, from (34) it follows that there are sequences Pik and
tik > 0 such that Pik ∈ cik , ‖Pik‖ = r, ‖x(t, Pik)‖ > r for 0 < t ≤ tik , and

lim
k→∞

Pik = P, lim
k→∞

tik = T, lim
k→∞

‖x(tik , Pik)‖ =∞.
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By the continuous dependence of solutions on initial conditions the solution
x(t, P ) is well defined for t < T and

lim
t→T
‖x(t, P )‖ =∞.

This means that ω(P ) = ∅, contrary to the assumption A∞ = ∅. Thus, we
have proved that C is bounded.

Now, denote by E the unbounded component of R2 \ cl(C). Then, for
each p ∈ E either x(t, P ) is a closed trajectory or ω(P ) ⊂ cl(C). Put

F := {P ∈ E : P ∈ ω(P )}.
Notice that every trajectory starting from F is closed, and F ∪ (R2 \E) is a
global attractor of (S) if F is bounded. So, to complete the proof we need
only show that if F is not a neighbourhood of infinity then F is bounded.
Assuming the unboundedness of F , in the same way as above we deduce
that A∞ 6= ∅, which is a contradiction. Thus F is bounded.

Lemma 4. Assume that the conditions (7)–(9) hold and A∞ 6= ∅. Then
either

(a) there is a point P such that ω(P ) = ∅ and α(P ) is a saddle point , or
(b) the boundary BdA∞ of A∞ is either a repulsive point , a cycle or a

polycycle and BdA∞ = α(P ) for all P ∈ A∞.

P r o o f. Assume that there is no point P such that ω(P ) = ∅ and α(P )
is a saddle point. We need to show that case (b) happens.

First, we prove that BdA∞ is bounded. Notice that BdA∞ is an invari-
ant closed set composed by solutions of (S). Assume to the contrary that
BdA∞ is unbounded. Then there is a P ∈ BdA∞ such that the trajectory
M := {x(t, P ) : t ∈ R} is unbounded. We can define a sequence Qi ∈ A∞
such that ‖Qi‖ > r , and Qi tends to Q ∈M as i→∞. Put

L := {S = limx(ti, Qi) : ti > 0}.
Then L is a connected unbounded set composed by some solution of (S)
and we have L ∩ A∞ 6= ∅. In particular, x(t, Q) ∈ L for all t > 0. Let
Q∗ ∈ L ∩A∞. Then, clearly, either α(Q∗) is a saddle point or Q∗ = x(t, Q)
for some t. Since neither of these cases can happen under our assumptions,
it follows that BdA∞ is bounded.

Now, we prove that BdA∞ is connected. Let C be a connected compo-
nent of BdA∞. We first show that there is an open neighbourhood W of
C such that α(Q) is bounded for each Q ∈ W ∩ A∞. Assume to the con-
trary that there exists a sequence Qi ∈ A∞ tending to a point P ∈ C with
α(Qi) all unbounded. Then, by the continuous dependence of solutions on
initial conditions, for each R > 0 large enough we can choose a sequence
ti < 0 such that ‖x(ti, Pi)‖ = R and x(ti, Pi) tends to a point P ∗ ∈ A∞ as
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i → ∞. In view of Olech’s Lemma we can take a neighbourhood O of P ∗

so that Pi ∈ {x(t, Q) : Q ∈ O, t > 0} for i large enough. This implies that
P ∈ O ⊂ A∞, contrary to our assumptions. Thus a neighbourhood W as
above does exist. By the same argument, we can also prove that α(Q) ⊂ C
for all Q ∈W . So, each connected component of BdA∞ can be viewed as a
repulsor of (S).

Now, we prove the connectedness of BdA∞. Assume to the contrary
that BdA∞ has some connected components ci, i = 1, 2, . . . For each ci we
denote by Rci the set of all points P lying outside ci such that α(P ) = ci.
Clearly, Rci is a non-empty open subset of A∞ and BdRci ∩ A∞ 6= ∅. Fix
c = c1, let P ∈ BdRc1 ∩A∞ and let L be the trajectory of (S∗) through P .
If the trajectory x(t, P ) crosses L once again, then α(P ) is bounded, and
consequently α(P ) = ci for some i 6= 1. This is impossible, since P ∈ BdRc1 .
Thus, as in the proof of Lemma 2, no solution curve starting from L crosses
L again. This implies that L ∩Rc1 is a closed subset of Rc1 . Now, we take
a segment PQ of L such that Q ∈ Rc1 , and P ′ ∈ PQ \ {P,Q}. Put

(12) U := {x(t, Q′) : Q′ ∈ P ′P, t ∈ R},

(13) V := Rc1 \ {x(t, P ′) : t ∈ R}.

Clearly, U is a non-empty open connected proper subset of V and V is an
open connected set. This implies that BdU ∩V 6= ∅. Consequently, there is
a P ∗ ∈ V ∩BdU such that the curve {x(t, P ∗) : t > 0} does not intersect the
segment P ′P . Applying Olech’s Lemma we can take a neighbourhood O of
P ∗ such that the solution curves starting from O do not cross the segment
P ′P . This contradicts the definition of U , since P ∗ ∈ BdU ∩ V . Hence, we
get the contradiction that BdRc1 ∩A∞ = ∅.

Thus BdA∞ is connected and contains all negative limit sets of all points
P ∈ A∞. Let P ∈ A∞. In view of the Poincaré–Bendixson Theorem α(P ) is
either a point, a closed regular cycle or a polycycle. Since we have assumed
that case (a) does not hold, in the first case α(P ) is a repulsive point. One
can verify that in the remaining cases α(P ) = BdA∞. The proof is complete.

Notice that in case (b) of Lemma 5, infinity can be viewed as an “at-
tracting point” of (S).

Lemma 5. Assume that the conditions (7)–(10) hold. Then case (b) of
Lemma 4 cannot happen.

P r o o f. Suppose that case (b) of Lemma 4 holds. This means that A∞
is a neighbourhood of infinity, BdA∞ is a repulsive point, a limit cycle
or a complex limit cycle, and for each P ∈ A∞, α(P ) = BdA∞. Define
c := BdA∞.
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First, we consider the case when c is a cycle or a polycycle. Since c is
the α-limit set of each point in A∞, we can choose a point P ∈ A∞ close
enough to c so that the trajectory x(t, P ) crosses the trajectory x∗(t, P )
more than once. Therefore, in view of Lemma 2, x(t, P ) crosses x∗(t, P )
infinitely many times. Let {ti}i=0,1,..., 0 = t0 < t1 < . . . , be such that
x(ti, P ) lies on the trajectory x∗(t, P ). Let γi be the closed curve composed
by the segment Li := x(ti−1, P )x(ti, P ) on the trajectory x(t, P ) and L∗i :=
x∗(ti−1, P )x∗(ti, P ) on the trajectory x∗(t, P ), and let Di be the bounded
component of R2 \ γi. In view of Olech’s Lemma and Remark 1 one can see
that R2 =

⋃
iDi. By Green’s formula we have

(14) 0 <
∫
L∗i

‖f(x∗(t, P ))‖2 dx =
∫
Di

Div f(x) dx.

So, taking i→∞, we get

(15) 0 ≤
∫

R2

Div f(x) dx,

which is impossible by (10).
Now, we consider the case when c is a repulsive point. In this case A∞

is the whole of R2 \ c. For each circle Sr := {x : ‖x‖ = r} and ε > 0 small
enough we can take a closed curve γε(r) composed of a finite number of
solution segments PiPi+1 of (S) and PiQi of (S∗), i = 1, . . . , n , so that

(a) The corresponding functions Pi(t), Qi(t) and Gi(t) are well defined
and the properties (i), (ii), (iii)′ of Remark 1 and (4) hold.

(b) γε(r) ⊂ {x : r − ε < ‖x‖ < r + ε}.

Then, for such closed γε(r), from (1) and (4) it follows that

(16) 2πr max
‖x‖≤r+ε

‖f(x)‖2 ≥
∑
i

L(PiQi) > −
∫

R2\Dγε(r)

Div f(x) dx.

Now, taking ε→ 0 and r → 0 we get

(17) 0 ≥ −
∫

R2

Div f(x) dx,

which is impossible by (10). The proof is complete.

P r o o f o f T h e o r e m 1. If A∞ 6= ∅, then in view of Lemmas 4 and 5
there is a P such that ω(P ) = ∅ and α(P ) is a saddle point. Assume that
A∞ = ∅. In view of Lemma 4 either (S) has a global attractor or there is a
neighbourhood of infinity filled up with closed trajectories of (S). However,
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for each closed trajectory γ of (S),

(19)
∫
γ

Div f(x) dx = 0.

Hence, by condition (iv) the last case is impossible. Thus, the system (S)
has a global attractor.

R e m a r k 2. As in the proof of Theorem 1 and of the above lemmas,
under conditions (i)–(iii) of Theorem 1 either the structure of the system
(S) has one of types (a), (b) or (c) of Lemma 3, or infinity can be viewed as
an “attracting point” of (S).

For polynomial systems, we obtain

Theorem 2. Let f be a polynomial map of R2 into itself such that
conditions (i)–(iii) of Theorem 1 hold. Then either (a) or (b) of Theorem 1
holds for (S), or

(c) every trajectory of (S) is either a centre, a saddle point , a closed
curve or a curve joining two saddle points.

P r o o f. Consider the system (S) when f is a polynomial. In this case,
by (iii) the polynomial function Div f(x) is non-positive outside a bounded
set. One can verify that either Div f ≡ 0 or∫

R2

Div f(x) dx = −∞.

For the second case, in view of Theorem 1 either (S) has a global attractor
or there is a point P such that ω(P ) = ∅ and α(P ) is a saddle point of (S).

Now, assume that Div f ≡ 0 and there is no P such that ω(P ) = ∅
and α(P ) is a saddle point. Since Div f ≡ 0 the singular points of (S) are
centres or saddle points and (S) has no limit cycle and no complex limit
cycle. Furthermore, in view of Lemma 4 the set A∞ is empty and there is a
neighbourhood of infinity filled up with closed trajectories. From these facts
it follows that every trajectory of (S) is either a centre, a saddle point, a
closed curve or a curve joining two saddle points.

4. Univalence domain of a map. In this section we apply Theorems
1 and 2 to the uniqueness problem for the equation

(20) f(x) = a.

A special case of Theorem 1 is when the system (S) has no saddle point.
In this case the behavior of the system at infinity is simple.



152 Nguyen Van Chau

Set

(21) If := {a ∈ R2 : 0 < #f−1(a) <∞ and
detDf(x) > 0 for all x ∈ f−1(a)}.

The method of proof of Theorem 1 allows us to obtain

Theorem 3. Suppose that the interior int If of If is non-empty and that
condition (ii) of Theorem 1 holds. Then the map f : f−1(int If )→ int If is
bijective.

P r o o f. Assume that int If 6= ∅.
S t e p 1. We prove that there exists an open dense subset U of int If

such that for each a ∈ U ,

(22) ‖f(x)− a‖ > const > 0 for ‖x‖ > const.

Let N : int If → Z be defined by N(a) = #f−1(a). By the definition
of If , the restriction of f to int If is a local diffeomorphism. Hence, N is
lower-semicontinuous on int If . Put Vk := {a : N(a) ≤ k} for non-negative
integers k. Then each Vk is a closed subset of int If . Put Uk := int(Vk\Vk−1)
and U :=

⋃
k Uk. Then, by the Baire Category Theorem, U is an open dense

subset of int If . One can verify that every a ∈ U satisfies (22).
S t e p 2. Consider the system

(Sa) ẋ = f(x)− a

for each a∈U . Then the systems (Sa) satisfy conditions (i)–(iii) of Theorem
1. Furthermore, by definition (Sa) has only stable singular points. As pointed
out in Remark 2, in this case infinity can be viewed as a repulsive, attracting
or centre point of (Sa). We now show that (Sa) has a unique singular point.

Let P be a singular point of (Sa), f(P ) = a. Denote by DP the stable
domain of P , which is a repulsive, attracting or centre domain of P according
to the singular type of P . Applying Lemmas 1, 3 and 4 we see that either
BdDP \ {P} is a closed trajectory or DP is the whole of R2 \ {P}. In the
last case, P is a unique singular point of (Sa).

Assume that for each singular point P of (Sa) the set BdDP \ {P} is a
closed trajectory. Then the boundary of the stable domain of infinity is also
a closed trajectory and all singular points lie inside this closed trajectory.
So, by the well-known fact that inside a closed trajectory there is at most
one stable singular point or there is a saddle point, the point P is the unique
singular point of (S).

Thus, we see that N ≡ 1 on U . Since f is a local diffeomorphism on
f−1(int If ) and U is an open dense subset of int If , we have N ≡ 1 on
int If . This means that f : f−1(int If )→ int If is bijective.
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This theorem together with a result of Newman [6], which asserts that
every injective polynomial map from Rn to itself is necessarily bijective,
allows us to obtain immediately the following consequence, which gives a
contribution to the real version of the Jacobian Conjecture: every polynomial
map of Rn into itself without a singularity is a diffeomorphism of Rn (see
e.g. [2, 4, 9]).

Theorem 4. Suppose that f is a polynomial map of R2 into itself such
that detDf > 0 on R2, except possibly on a finite set. Assume that condition
(ii) of Theorem 1 holds. Then f is a homeomorphism of R2.

Let us end the paper by the following example.

Example. Consider the 1-parameter family of maps

fµ(x1, x2) = (x2 − x1(x2
1 + x2

2 − µ),−x1 − x2(x2
1 + x2

2 − µ))

with µ ∈ R and the systems

(Sµ) ẋ = fµ(x).

For this family

f−1
µ (0) = {0},

detDfµ(x1, x2) = 3(x2
1 + x2

2)2 − 4µ(x2
1 + x2

2) + µ2 + 1,
DivDfµ(x1, x2) = 2µ− 4(x2

1 + x2
2).

We have
(1) For µ ≤ 0, the system (Sµ) has the structural type (a) and fµ is a

diffeomorphism of R2.
(2) For 0 < µ < 31/2, fµ is a diffeomorphism of R2 and the system (Sµ)

is of type (b).
(3) For µ = 31/2, fµ is a homeomorphism of R2 with a unique singularity

at 0 and the system (Sµ) is of type (b).
(4) For µ > 31/2, the system (Sµ) is also of type (b), but fµ is not a

diffeomorphism of R2. However, Ifµ is a non-empty open set and 0 ∈ int Ifµ .
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