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The algebra generated by a pair
of operator weighted shifts

by MAREK PTAK (Krakéw)

Abstract. We present a model for two doubly commuting operator weighted shifts.
We also investigate general pairs of operator weighted shifts. The above model general-
izes the model for two doubly commuting shifts. WOT-closed algebras for such pairs are
described. We also deal with reflexivity for such pairs assuming invertibility of operator
weights and a condition on the joint point spectrum.

1.Introduction. In what follows L(H) denotes the algebra of all (linear,
bounded) operators in a complex separable Hilbert space H and Ig or I
stands for the identity in H. By an algebra of operators we always mean
a WOT(= weak operator topology)-closed subalgebra of L(H) with unit
Iy. If SC L(H), then W(S) and Lat S stand for the WOT-closed algebra
generated by S and the lattice of all (closed) invariant subspaces for S,
respectively. Alg Lat S stands for the algebra of all operators on H which
leave invariant all subspaces from LatS. An algebra W is called reflezive
it W = AlgLatW. A family & € L(H) is called reflexive if so is W(S).
Operators 11,15 € H doubly commmute if T7 commutes with To and T}
commutes with 75

In the paper we present a model for two doubly commuting operator
weighted shifts (Section 2) which generalizes a model for two doubly com-
muting (but not operator or weighted) shifts (see Theorem 1 of [6]). In [4],
the general pair of (neither operator nor weighted) shifts was considered.
The main purpose of the paper is to investigate general pairs of operator
weighted shifts (for definition see Section 3). This generalizes two doubly
commuting operator weighted shifts, in view of the model given in Section 2.
On the other hand, a special case of a general pair of scalar weighted shifts
was considered in [1]. In what follows we describe the WOT-closed algebra
generated by a pair of operator weighted shifts (Theorem 6.2). We also deal

1991 Mathematics Subject Classification: Primary 47D25.
Key words and phrases: pairs of operator weighted shifts, reflexive algebras.

[97]



98 M. Ptak

with reflexivity for such a pair (Theorem 6.7) assuming invertibility of oper-
ator weights and a condition on the joint point spectrum. The corresponding
results for a single operator weighted shift were given by Lambert [2].

In Section 4 we present basic properties of the joint point spectrum and
joint eigenvalues. In Section 5 we present the case of pairs of operator
weighted shifts “defined on the pairs of non-negative integers”. In view of
the model given in Section 2, it describes two doubly commuting operator
weighted shifts. Section 6 discusses the general case. Examples are given in
Section 7.

In what follows, let Gy denote the set of all pairs of non-negative integers
and G be the set of all pairs of integers. If ¢ = (¢(1), $(2)), o = (v, (2 €
G, then we write ¢ < 1 if and only if ¢ < (1) ¢3) < @) Let e, = (1,0),
€9 = (0, 1)

2. Model for two doubly commuting operator weighted shifts.
The main result of this section is

PROPOSITION 2.1 Let Th,T> € L(K) be operator weighted shifts whose
weights have dense ranges. Assume that Ty, Ty doubly commute. Then there
is a wandering subspace L and families {A((;) : ¢ € Go} (I =1,2) such that

K = @ycq, Lo where Ly = L and for f = 3,5, fees, fo € L and ey
indicates that feeq is an element of Ly, we have

(2.1) Tif = > (AY fo)egre,  fori=1,2.
9€Go

Moreover,
(2.2) TiT§ Loy = Ly for all (i,5) € Go
and

(M) 42 _ 4@ 4@

Apte, s’ = Agie 4y

(1) 4(2)x _ 4(2)x 4(1)

(2'3) A¢ A¢ _A¢+61A¢+52’

AP ALY = AR AL) - for all ¢ € Go.

Proof. Since T is a weighted shift, there is a subspace H such that
K = @ ,H;, where H; = H, and for f = Y7, fie;, € K, T1f =
Yoco B,L-(l)fiei_l,_l for some bounded family of operators {Bi(l) e L(H):i=
1,2,...}. The operator T» can be represented as a matrix, say [X;;]. Thus
by Lemma 2.1 of [3], X;; = 0 for ¢ < j. The operator T5 is represented by
[X7:]. Tt also commutes with 71, and thus X}, = 0 for i > j. Hence X;; =0
for i # j. Therefore H; reduces T for all i.

The operators To |y, = Xj;, for all 4, are weighted shifts, and thus there
are subspaces L") such that H; = @;’;0 L jy, where L ;) = LW and
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for f() = Z?io f;i)egi) € H;, Tolg, f = Z;io B((i)j)f;i)eg:)_l for some
bounded families of operators {B((ZQ)J) cL(LW):j=1,2,...}.
Now we prove that T1L(; 0y C L(i41,0)- Assume that, on the contrary,

there is & € L(; 0y such that (T, T3 |m,,,y) # 0 for some y € H;11, j > 0.
Then

(Tll'vTQj Hi+1y) = (Tg*T1x7y) = (TlTQj*xay> =0
since x € L; 0y and T3x = 0. Hence T1 L0y C L(i41,0)-

Thus TyT3 L) = T3T1 Liio) € T3 Liss1.0) C Lii+1.5)- The weights of T
have dense ranges, so TQjL(Lo) = L(;,5)- Hence T\ L; jy C Liy1,5)-

To prove (2.2), assume first that there is 0 # y € L(;41,0) such that
TyL oy L y. Then T5y = 0 and Ty # 0 since y € H; 11 and ker Bi(l)* ={0}.
Also, T{y € H; and Tfy L L. This implies that 7577y # 0 since
ker B((f);; ={0} for j=0,1,... Then TyT5y #0, contrary to T5y=0. Thus
T1L;,0)=Li+1,0)- Hence T{ L 0)=Li0). We also have ToL(; jy=L; j+1,

since weights of T have dense ranges. Hence TszjL(o,o) = L, j-

Since H;, = H;,, we have L) = L[(2) =: L. Define Ag)j) = Bz-(1)|L(w»)
and AE?)J‘) = B((f)j) It is easy to see that (2.1) is satisfied. The operators
Ty, Ty doubly commute, so (2.1) implies (2.3).

In Corollary 5.6 we will consider reflexivity of the above.

3. Definition and elementary properties of a pair of operator
weighted shifts. Following [4], we introduce some notation and definitions.
Namely, a subset X C G is called a diagram if ¢ € X, s € Gy implies
¢+ s € X. The set of all diagrams is denoted by X. For ¢ € G we define
Ey ={X € X:¢ € X}. It is obvious that E, C Es1s (¢ € G, s € Gy).
Let B be the o-algebra generated by Ey (¢ € G) and p be a positive finite
measure on (X, B).

Set H = @¢6G Hy, where Hy = H and consider the space K of all
measurable functions f : X — H such that [||f(X)||*du < oo and f(X) €
Dyecx Hy (we identify functions equal p-a.e.). Then K is a Hilbert space
with inner product (f,g) = [(f(X),9(X))n du(X). Each element of K can
be written as f = >, fo(-)eqy, where fi € Hy := {f € L*(X,B,u,H) :
Jo(X) =0 p-a.e. on X — Ey}, and e, indicates that fg(X)egy is an element
of Hy for X € X.

Let {AY(+) : X — L(H), AY(X) =0 p-ace. on X — By, ¢ € Gy (i =
1,2) be sets of uniformly bounded operator functions (sup{supess HA((;)( Il -
peG,i=1,2} =C < 00). We will consider A((;)( -) as operators on Hy. In
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what follows we assume that ker A((;)( ) ={0}, ¢ € G, i = 1,2. Hence we
can define operators T, Tb on K. If f =3, fo(-)es then

(3.1) Tif = AP () fo(Vegre, i=1,2
PEG
Since X is the set of diagrams, we have T;f € K, ¢ = 1,2. The sets

{Ag)( )}, i = 1,2, are uniformly bounded, and thus 77,75 € L(K). Let us
call {T1,T>} a pair of operator weighted shifts.

LEMMA 3.1. The operators Ty, To commute if and only if

(3.2) AL (A = AR (HAP () forall ¢ € G

To prove the lemma, it is enough to compare 717, with 757 on an
element of K. From now on we assume that 7T}, T5 commute.
For s = (s1,52) € Go and ¢ € G let T° = T{*T5? and
s 2 2 2
(33) S¢( ) ) = At(bJ)rS*f:‘z( ) ) e A((bJ)rSlElJrEz( ) )A<(254)r$1€1( ) )
(1) (1) (1)
~A¢+(Sl_1)61(~)...A¢+€1(-)A¢ (+).
Hence, for [ = E¢EG fo()es,
(3.4) Tf = D S5 )fol)egrs.
PeG
Now, if ¢ € G then we write Gy = ¢+ Gy = {¢p+ s : s € Gy} and
Ly ={f €eK: f(X) € Dycq, Hy prae. and f(X) =0 p-a.e. on X — Ey}.
Let us recall from [4] that
Remark 3.2. K =span{Ly : ¢ € G}.

The following lemma can be proved similarly to Lemma 5 of [4].

LEMMA 3.3. The subspace Ly is invariant for T if s € Gy and ¢ € G.
Let us state the basic examples.

EXAMPLE 3.4. Let X be a diagram and p = dx (the point mass at X).
Then the sets {Ag)}¢ex C L(H), i = 1,2, generate operators 71, T» on the
spaces Kx :={f: f= Z¢€X feeq, fo € H}.

ExXAMPLE 3.5. In view of Proposition 2.1, notice the special case of Ex-

ample 3.4 with X = Gy, since it is a model for two doubly commuting
weigted shifts. In that case, we write K¢ instead of K¢, .

4. Joint eigenvalues. We start with recalling the definition of the joint
eigenvalue. Let By, By € L(H). Then we write A = (A, A2) € 0, (B1, Be) if
there exists a non-zero vector z € H such that (B; —\;)x = 0 for i = 1,2. It
is easy to see that pu(Eg) # 0 implies 0 € op((T1]7,, (T2]1,)") for all ¢ € G.
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Now we turn our attention to Example 3.5 and consider the operators
Ty, Ty € L(Ky) given there. As for a single shift, we can show

LEMMA 4.1. Let A = (A1, A2) be a non-zero joint eigenvalue for Ty, Ty .
Then X = (N}, \) is a joint eigenvalue for T5, Ty if |\;| < |\i| fori=1,2.

It is easy to show the following

LEMMA 4.2. Let Ty, Ty be as in Example 3.5 and let f = ZweGo fuey €
Ko. Then A = (A1, \2) is a joint eigenvalue for Ty, Ty with a joint eigen-
vector f if and only if

A fpres = Nify  forv €Go, i=1,2.
An immediate consequence is

LEMMA 4.3. Let Ty, T be as in Example 3.5 and let f = ZweGo foey €
Ko. Then A = (A1, A2) is a joint eigenvalue for Ty, Ty with a joint eigen-
vector f if and only if

(SO fo =AY Fy  for ¢ > € Go.
As a consequence, for Ty, T5 as in (3.1), we have

Remark4.4. Let ¢ € G and f = ZweG¢ fu()ey € Ly. The operators
(Th|r,)*, (T2|L,)* have a joint eigenvalue A with a joint eigenvector f if and
only if

Sy M) fu() = AT () for 2, .n € G

For the proof it is enough to note that

(41) Lo =L*( @D HyBlg, nlp,) = @ L*(Hy, By, uls,).
111604) IZJEGd;

The following lemma will be of use later.

LEMMA 4.5. Let A € O'p(<T1‘L¢O)*7(T2’L¢O)*)' If¢ > ¢0 then \ €
O-p((Tl‘qu)*v (T2|L¢)*)'

Proof. Let f = Zw€G¢o fu(-)eyp be a joint eigenvector for the given

eigenvalue. We define a vector f = > vec, fy(-)ey € Ly as follows: if
) € Gy then

7ox)= { fo(X) if X € By,
fw( ) {O otherwise.

It is easy to see that f € L. Remark 4.4 shows that if f is a joint eigenvector
for the joint eigenvalue A in the space Lg, then so is f in the space L.
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5. Shifts defined on K. In this section we will consider the shifts
T1,T> € L(Ko) defined in Example 3.5. Namely, if f =3, 5 foeq then

(5.1) Tif = Y (AY fs)epre, fori=1,2.
9€Go

We will use the following notation: if D € L(Kjy), then there is the asso-
ciated matrix [Dagla,sec, of operators on H such that for f =3, o fees,

(5.2) Df=Y" ( > Daﬁfﬁ>ea-
aeGo BEGy
As in [2], we can obtain
LEMMA 5.1. Let B = [Bagla,pec, be an operator on Ko and [Yogla.pec,

be a scalar matriz such that [’ya,g]((:,’gg(o 0) defines a positive operator on

C™ x C™ such that v = Sup4eq, Yaa < 00. Then the matriz [yopBagsla,pec,
defines an operator D on Kq satisfying ||D|| < ~|B||.

We also have the following

LEMMA 5.2. The matriz Cy, = [Yagla.peco, for a = (k,1), 8= (i,7), with

|k —1] i—gly . o
1- 1- =1 < IS
Yo = < p—— 1 if k=1 <nandl|i—j| <n,
0

otherwise,

is positive definite.
Proof. The matrix B,, = [b;;], 4,5 > 0, with
li—g] ... .
bz]:{l_n+1 1f|Z—j‘§7’L’
0 otherwise,

is positive definite by [5]. The matrix C,, is the tensor product of B,, by
itself, thus it is also positive definite.

The next lemma is a consequence of Lebesgue’s Dominated Convergence
Theorem for a discrete measure.

LEMMA 5.3. Let Ay > 0 and ZZ?[:O Ak < 0o. Then

Z((l— F )(1— l >—1))\kl—>0 as n — Q.
n+1 n+1

k,l=0

In view of Proposition 2.1, the following theorem describes the WOT-
closed algebra generated by two doubly commuting operator weighted shifts.

THEOREM 5.4. An operator D € L(Kq) belongs to W(T1,Ts) if and only
if Doap = 0 for a 2 (8 and there is a sequence {\a}aca, of scalars such that
Dog = Xa—pS5 " for a > p.
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Proof. The statements (3.3) and (3.4) imply that T°, s € Gy, has
the following matrix: (T7°%)p4s,¢ = S for ¢ € Go and (T%) gy = 0 other-
wise. Hence, for each polynomial p there is a sequence {A,(p)}aca, of
(finitely non-zero) scalars such that p(T7,T%)a3 = )\a_g(p)Sg_ﬁ for a >
and p(T1,T>)ap = 0 otherwise. Let D € W(T1,T2). Then there is a net
{pw(T1,T3)} of polynomials in Ty, T5 (11, T> commute) converging in the
Weak Operator Topology to D. Thus (p,(71,72))as converges to Dyg.
Hence D has the desired matrix.

Conversely, assume that there is a sequence {\,}aeq, of scalars such

that Dog = /\a_gSg_ﬂ for a > (. Consider a sequence of polynomials in
T17 T27

n
pn(Th Tg) = Z 7](67))‘(k,l)T1kT2l7 where
(5.4) S

- k I
—(1-—" V(1= .
Tkl < n+1>< n+1>

Lemmas 5.1 and 5.2 show that

(5.5) 1P (Ty, T2)|| < || D]

Let z € H, ¢ € G and é¢3 be the Kronecker §. Then
lpn (T1, T2 )we¢ — Dae||®

| (5 sobtrm - 5 (2 o)

acGy PEeGy ac€Gy PEGy
= > len(T1, To)ac)r — Dacz|)?
aeGo
= > (Pa(T1, To)asc.0) = Datecr|?
aeGo

k,l k.l
= > I ranSEz = Aen STV + Y [Darecal?

k,l=0 af(n,n)
n
n k,l
= > = DI SEVz2+ Y I Dase.call?
k,1=0 a®(n,n)

n

= 0 = DIDgyscczl?+ D IDascczl
k,1=0 aZ(n,n)
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Since ), cq, |Datccx||> = ||Dzec]|* < oo, by Lemma 5.3 we have
lpr (T1, To)xec — Dxec|| — 0 (n — oo). Finally, p,(T1,T2)f — Df on a
dense set, and by (5.5), p,,(T1,T2) — D in the Strong Operator Topology.

THEOREM 5.5. Let Ty, Ty be the operator weighted shifts (5.1) such that
ker AV = {0} = ker A for a € Gy, i = 1,2. Assume also that Ty, T4
have a non-zero joint eigenvalue. Then W(Ty,Ts) is reflexive.

Proof. The main idea of the proof is taken from [2]. However, we present
some parts of the proof because they are different. Moreover, we now have
a pair of operator weighted shifts instead of a single one and we assume less
about them.

Let D € L(Ky) and Lat(71,T>) C Lat D. The subspaces LZ(@ter H,)
(for all ¢ € Gy) are invariant for T;, T>. Hence they are also invariant for
D, and thus Dgy = 0 if ¢ £ ¢.

Let f € Hpo) = H and let [f] denote the one-dimensional subspace
generated by f. Then $€Go Sg) [f] is invariant for T3, T5. Thus, if A =

{A¢}eec, is a sequence of scalars such that >, Ao |211SS fII? < oo, then
there is a sequence {v4(f)}scc, depending on A and f such that

(5.6) D( @ 255F) = P WS

$€Go $€Go
Let ¢ € Gy and let Ay = {04y }peca,, Where 04y is the Kronecker . Then
there is I'y = {7y f} defined as above. As in [2], it can be shown that
(5.7) DyySY f = 9u(£)S5f for f € Hand v < ¢.

Let f,g € H be non-zero elements. Then using (5.7) we can prove as in [2]
that

You (F +9)S5 (f +9) = S5 (Vo ()] +765(9)9)-
Since ker Sg’ # {0}, we obtain

Yoo (f +9)(f +9) = You (F) f +790(9)9-

Hence, if f, g are linearly independent, then

(5.8) Yo (f) = Vo0 (9)-
If f = ag, then using (5.7), we can show that

You (1S3 f = 166(9)S3 1.
Thus, in this case we also have (5.8). Hence, the 74y (f) do not depend on
f,s0 D¢¢Sg’ = vd)ng. Now we will show that

(5.9) Yoo = Vo—1,0-
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We know that Lat(17,75) C Lat D*. Let g = > ;. gs€p be a joint
eigenvector for an eigenvalue A = (A1, o) for T}, T5. Then, for ¢ € Gy and
f € Hy,) = H, using Lemma 4.3, (3.3) and (5.2), we have

(D9, 5§ 1) = (D Diygor S F) = 3 (D0 S5 1)

$<o $<o

= (96:DowSS ) = D _ (902 15655 f)
W< ¥<o

= Z (7¢¢9¢7 Si_wsépf) = Z (iw(b(Si_w)*g(ﬁ, S(%f)
W<o V<o

= > TusX V9. S5 5 = D oA (90,58 F)-
$<¢ $<o

On the other hand, [g] is invariant for D*, and so there is v € C such that
D*g = ~g. Hence

(D9, 55 £) = (9,55 1) = ¥(93, 55 F)-
Since ker S4* ={0}, we have R(S{)=H. Hence Y p<s Ty ¥ =7. Thus

D Avrewr? = D Apo A%

¢€Go [ EN

Let o = (a1, 2) be an existing non-zero eigenvalue for 77, T5. Then
Lemma 4.1 shows that the above equality holds for all A = (A1, A2), |Ai] <
lai], © = 1,2. Hence (5.9) is shown and

(5.10) Dgy = Y945y "

So, Theorem 5.4 implies that D € W(T1,T5).

A consequence of the above and Proposition 2.1 is

COROLLARY 5.6. Let Ty, Ty be operator weighted shifts whose weights
and their adjonts have trivial kernels. Assume that Ty, To doubly commute

and o, (T}, T5) # {0}. Then W(T1,T3) is reflexive.

6. The general situation. As an immediate consequence of Theo-
rem 5.4, by (4.1) we obtain

PROPOSITION 6.1. An operator D € L(Ly) (u(Ey) # 0) belongs to
W(Ti|L,, T2|L,) if and only if there is D(-) : Eg — @weG¢ Hy such that
Dos(-) =0 for a # B and o, > ¢ and there is a sequence {\q}aca, Of
scalars such that Dog( ) = )\a,gSg_B( -) fora> (3> ¢.

We are thus led to the following strengthening of Theorem 5.4:
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THEOREM 6.2. An operator D € L(K) belongs to W(T1,T5) if and only
if there is D(-) : X — H such that Dog(-) = 0 for a # 3 and there is a

sequence {\q }aca, Of scalars such that Dyog(-) = Aa_ﬂsg‘/’( ) fora> (3.

Proof. If D € W(T,T3) then Lg € Lat D. If o >  and p(Eg) #
0, then, by Proposition 6.1 for ¢» = 3, D|r, is represented by a function
DP(-): Eg — @D.cq, H: and there is a sequence {\83 heq, of scalars such
that Dgﬁ( ) = Xg_ﬂsg_ﬂ( )|lL;.- We need to show that the sequence does

not depend on the 1 chosen in Proposition 6.1. Let oo > 5 > v, u(Ey) # 0.
Then D|,, is represented by a function D¥(-) : Ey — @ter H; and there

is also a sequence {\% }ncq, of scalars such that Dgﬁ( D) = Ag_ﬁngﬁ( e,
Let 0 # f(-) € Hg. Then

N _5S5TP () = DEs()f(+) = Pu, Dl f(-)es = Pu,Df(-)es
=P, D|p, f()es=Ds()F()=A"_5S57 () ().

Thus A2 = A\¥ and the function Dfﬁ does not depend on 1 in fact. On the
other hand, if o 2 3, then D,g = 0. In that case D,g is decomposable and
we can define D,g(-) = 0. Thus, it is easy to see that we can construct a
function D(-) : X — H with the desired properties.

For the proof of the inverse implication we can construct a uniformly
bounded sequence of polynomials p(7%,7%) as in (5.4), (5.5). It converges
on each Ly, ¢ € G. As in the proof of Lemma 5.4 and by the uniform
boundedness (5.5) and Remark 3.2 it converges on the whole K.

Now we will present the reflexivity results. We will consider the condi-
tions:

(%) there is ¢ such that o, ((T1|z,)*, (T2|L,)*) # {0}

(#x)  for each ¢ € G such that u(E,) # 0, there is ¢y < ¢ such that
1(Eg,) # 0 and op((T1[,,)": (12]L,,)") # {0}
By Lemma 4.5, (*x) is equivalent to the condition
(#xx)  for each ¢ € G such that u(Ey) # 0, op((T1]z,)*, (T2|L,)*) # {0}.
Firstly, we strengthen (x) to imply (s):

(k%)  there is ¢g € G and a non-zero joint eigenvalue A for (T1|r, )",
Ts5|r, )* such that there is an eigenvector f € Ly, for the eigen-
b0 b0
value A satisfying

(6.1) V6 EG B #0 = |fliamyin,) #0.

The following lemma, together with Lemma 4.5, shows that (x%x) im-
plies ().
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LEMMA 6.3. Let condition (xxxx) be satisfied. If ¢ < ¢o and p(Ey) # 0,
then UP(T1’L¢)*7 (TQ‘qu)* 7& {0}

Proof. Let f = Zwec% fu(+)ey be an eigenvector for the eigenvalue
A= (A1, Ao) for (Th[,, )", (T2|r,, )", existing by (s#xx). We define the vector
= yea, Jv(+)ey as follows:
(fw(X) le€E¢ andequO,
(AP LS TV (X)" fp (X)
it X € Fy and ¢ < ¢y,

¢<2)_¢(2) _ O,¢(2)_¢(2) .
(A )T f g (X)
if X € Ey and ¢ £ ¢o, ¥ < ¢,

o5 =M\ 1 (88 =™ ,0) 1\ x
()‘10 ) IquO (X) f(¢(()1)7w(2))(X)

if X € Ey and ¢ £ o, v < ¢V,
0 if X ¢ B,.

\
First, we show that
(6.3) S TP <
YEG,
Since f € K, for given € > 0 there is m such that
(6.4) > lfu()I? <e  where m = (m,m).

w€G¢>0
pZm

Let Gt = {1 € Gy : b € Gy, ¥ £ m, () <m}, i =1,2. We have

Do MO D0 TP+ D 1w+ D 1wl

YeEGy PEGy, PeG PYEG?
YpZm PpLm

Let us estimate the last sum:

o B5)-1
DoFIP =" > Il
PeG2 k=m |=¢(2)

(2)

¢ -1 (2) * (2) * 2

k=m |=¢(2)
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(2)
o —1

oo @
)] 2 2
S?IZyﬂwwwgwa%wmwmwww
=m l:¢ 2

o -1

_a(2) (2) _
<30S (AT 2 g e I

k=m |=¢(2)
Thus (6.4) implies that
D IFu()I? < Me,
PeEG?

where M is a suitable constant. In the same way we can estimate the last
but one sum. Hence, if M is a suitable constant then

Do TP = D0 ()P + Me

VEG, YEGy,

PLm »¥€m
= 3 ()P + Me < (M +1)e.

eG4,

PLm

Thus f € K and by (6.1), f # 0.
Now, it is easy to see by (6.2) that f € L. Using Remark 4.4, one can
see from (6.2) that A is a joint eigenvalue for (74|r,)*, (T2|L,)*.

The pair {T7,T5} of operator weighted shifts is called of IW type if the
operators Ag;)( ), » € G, i =1,2, are invertible. We have the following

THEOREM 6.4. Let {11, T2} be a pair of operator weighted shifts of IW
type. Assume that (%) is satisfied. Then W(T1,T2) = AlgLat(Ty,T) N
{11, T}

Proof. Let Ac{Ty,T»} C L(K) and Lat(73,7>) C Lat(A). Let ¢p € G
be as in assumption () and take ¢ > ¢o. Lemma 3.3 shows that Ly €
Lat(Ty,T5) C Lat(A) and Theorem 5.5 and Lemma 4.5 imply that there is a
sequence of polynomials n¢ of the operators T} |r, »» T2|, WOT-converging
to Alp,. Moreover, (5.5) shows that |[n%|| < ||A|z,|| < |4l = C. The
following lemma is needed:

LEMMA 6.5. If g < ¢ < ) and n € N, then 77}4’]% :n;ﬂLw.

Proof. This is a consequence of the equalities (5.9) and (5.10). Accord-
ing to (5.4) the coefficients of the polynomials n%|z,, 7|, depend directly
on 7%, 4% given in (5.10) (¢ in the superscript means that 7, was con-
structed on L,). If y < f < aand f: X — Hg, f(X) =0 for X ¢ E,,



Algebra generated by a pair of weighted shifts 109

then
YaepS5 ")) = P, Al f(-)es = Pu Af(-)eg
= P Al f(es =18 555 () ()
Hence 7% = v¥, which finishes the proof of the lemma.

Now, as in [4], for ¢ € G we consider the subspaces My = {f € K :
f(X) =0 pae on X — E;}. We extend n¢ to the whole My considering
the spaces Mé ={f€My: f(X) € D,eg, Ha p-a.e.} for all non-negative
integers [ and 1 = (I,1). We define

(6.5) nof =Ty Tiref for f e M.

As in [4] it can be shown that the extension is well defined and we can extend
ng to My with ||n¢|| < C. The equality (6.5) and Lemma 9 of [4] show that
Lemma 6.5 holds not only for Ly, but also for My. Hence, if ¢ < 1) and
n € N, then M, C My and n% = n¥ |, .

Now, choose any strongly increasing sequence {¢,} C G ( 0 < ¢£3rl,

1 = 1,2, and the qﬁ,(:) are coordinates of ¢y) with first element ¢y. Then,

by Lemma 9 of [4], U, cy Mg, = K. Hence we can define |J,, n%m and
extend it to an operator 7,, on the whole K, as in [4], with ||n,,]] < C. We
have assumed that A € {T7,T»}’, hence we can prove, as in [4], that n,
WOT-converges to A, and A € W(T1,T5).

Next we will show the following;:

PROPOSITION 6.6. Let Ty, Ts be a pair of operator weighted shifts of IW
type. If (xx) is satisfied, then AlgLat(Ty,T») C {T1,T»} .

Proof. Let ¢ € G, and pu(Ey) # 0. By Lemma 3.3, Ly € Lat(Th,T2) C
Lat A for ¢ € G, and thus it is enough to show that

(6.6) AlL,Tiln, = Til, AlL,.

We also have Lat(T1|r,,T2|z,) C Lat A|L,. The assumption (x*) is equiva-
lent to (+#x). Hence, by Theorem 5.5, the algebra W(T1|z,,, T>|z,,) is reflex-
ive. So, (6.6) holds.

Hence we can state a consequence of Theorem 6.5 and Proposition 6.6:

THEOREM 6.7. Let Ty, Ty be a pair of operator weighted shifts of IW
type. If (xx) (or (xxx)) is satisfied, then Ty, Ty is reflexive.

Remark 6.8. Theorem 6.7 can be proved directly from Theorem 6.2
without Theorem 6.5, which is of independent interest.

Remark 6.9. For the sake of simplicity of notation, our main theorems
are formulated for pairs. However, they can be easily generalized to N-tuples.
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7. Examples. We present a few examples.

EXAMPLE 7.1. Let AY) =1, ¢ € G, i = 1,2, in (3.1). Then we obtain
the unweighted shifts considered in [4]. The assumption (s#xx) holds and
the reflexivity of W(T3,T3) is shown as in [4].

ExampLE 7.2. Let Xy,..., X, be diagrams and consider the operators
T, T given in Example 3.4 for X = X;. Let T, = T\ @& ... & T,
1 =1,2. Assume that Tl(i), Tz(i), i=1,...,n, are of IW type and there is ¢;
such that o (T |ice, ), (T3 ica, )* # {0}, where Ko, = @yeq, Ho-
Hence (xx) holds for Ty, T, and thus W(T3,T3) is reflexive.

EXAMPLE 7.3. Let X be a bounded diagram (i.e. for each ¢ € X there is
n such that ¢ —ne; ¢ X, i =1,2). Let T1, Tz be given by Example 3.4 for
the diagram X. Assume that T3, T5 are of IW type and o, (17, T5) # {0}.
It is easy to see that (xx) holds, and so W(T1,T3) is reflexive.

EXAMPLE 7.4. Let Xo = {(4,5) : 4 > 0or j > 0} and u = 0x,. Let
Af;) = aL‘MI, 0 <a; <1for¢ = (p1,02) € Xo, i = 1,2. Then one can
calculate that o, (Th|x,)*, (T2]k,)* # {0}, because the pair Ti|k,, T>|k, is
unitarily equivalent to the pair B1®I, I® By, where B;, ¢ = 1, 2, are weighted
shifts with o,(B}) # {0}. Hence Example 7.2 implies the reflexivity of
W(T1, T»).
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