On extremal mappings in complex ellipsoids

by Armen Edigarian (Kraków)

Abstract. Using a generalization of [Pol] we present a description of complex geodesics in arbitrary complex ellipsoids.

1. Introduction and the main results. Let $\mathcal{E}(p) := \{|z_1|^{2p_1} + \ldots + |z_n|^{2p_n} < 1\} \subset \mathbb{C}^n$, where $p = (p_1, \ldots, p_n), p_j > 0, j = 1, \ldots, n; \mathcal{E}(p)$ is called a *complex ellipsoid*.

The aim of the paper is to characterize complex $\varkappa_{\mathcal{E}(p)}$ - and $k_{\mathcal{E}(p)}$ -geodesics. The case where $\mathcal{E}(p)$ is convex (i.e. $p_1, \ldots, p_n \geq 1/2$) has been solved in [Jar-Pfl-Zei]. The paper is inspired by methods of [Pol].

Let $D \subset \mathbb{C}^n$ be a domain and let $\varphi \in \mathcal{O}(E, D)$, where E denotes the unit disk in \mathbb{C} and $\mathcal{O}(\Omega, D)$ is the set of all holomorphic mappings $\Omega \to D$. Recall that φ is said to be a \varkappa_D -geodesic if there exists $(z, X) \in D \times \mathbb{C}^n$ such that:

• $\varphi(0) = z$ and $\varphi'(0) = \lambda_{\varphi} X$ for some $\lambda_{\varphi} > 0$,

• for any $\psi \in \mathcal{O}(E, D)$ such that $\psi(0) = z$ and $\psi'(0) = \lambda_{\psi} X$ with $\lambda_{\psi} > 0$, we have $\lambda_{\psi} \leq \lambda_{\varphi}$.

We say that φ is a \tilde{k}_D -geodesic if there exists $(z, w) \in D \times D$ such that:

• $\varphi(0) = z$ and $\varphi(\sigma_{\varphi}) = w$ for some $\sigma_{\varphi} \in (0, 1)$,

• for any $\psi \in \mathcal{O}(E, D)$ such that $\psi(0) = z$ and $\psi(\sigma_{\psi}) = w$ with $\sigma_{\psi} > 0$, we have $\sigma_{\varphi} \leq \sigma_{\psi}$; cf. [Pan].

Let us fix some further notations:

• $H^{\infty}(\Omega, \mathbb{C}^n) :=$ the space of all bounded holomorphic mappings $\Omega \to \mathbb{C}^n$;

• $||f||_{\infty} := \sup\{||f(z)|| : z \in \Omega\}, f \in H^{\infty}(\Omega, \mathbb{C}^n)$, where || || denotes the Euclidean norm in \mathbb{C}^n ;

¹⁹⁹¹ Mathematics Subject Classification: Primary 32H15.

Key words and phrases: complex ellipsoid, geodesics, extremal mapping.

^[83]

• $f^*(\zeta) :=$ the non-tangential boundary value of f at $\zeta \in \partial E$, $f \in H^{\infty}(E, \mathbb{C}^n)$;

• $\mathcal{A}(\Omega, \mathbb{C}^n) := \mathcal{C}(\overline{\Omega}, \mathbb{C}^n) \cap \mathcal{O}(\Omega, \mathbb{C}^n);$

• $z \cdot w := (z_1 w_1, \dots, z_n w_n), \ z \bullet w := \sum_{j=1}^n z_j w_j, \ z = (z_1, \dots, z_n), \ w = (w_1, \dots, w_n) \in \mathbb{C}^n;$

• $A_{\nu} := \{ z \in \mathbb{C} : \nu < |z| < 1 \}, \ \nu \in (0, 1);$

• $PSH(\Omega) :=$ the set of all plurisubharmonic functions on Ω .

Fix $w_1, \ldots, w_N \in \mathcal{A}(A_{\nu}, \mathbb{C}^n)$ and define

$$\Phi_j(h) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{Re}(h^*(e^{i\theta}) \bullet w_j(e^{i\theta})) \, d\theta, \quad h \in H^\infty(E, \mathbb{C}^n), \ j = 1, \dots, N.$$

We say that the functionals Φ_1, \ldots, Φ_N are *linearly independent* if for arbitrary $s = (s_1, \ldots, s_n), g \in H^{\infty}(E, \mathbb{C}^n)$, and $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ such that s_k nowhere vanishes on $E, k = 1, \ldots, n$, and g(0) = 0 the following implication is true: if $\sum_{j=1}^N \lambda_j w_j \cdot s^* = g^*$ on a subset of ∂E of positive measure, then $\lambda_1 = \ldots = \lambda_N = 0$.

Later on, we always assume that the functionals Φ_1, \ldots, Φ_N are linearly independent.

PROBLEM (\mathcal{P}). Given a bounded domain $D \subset \mathbb{C}^n$ and numbers a_1, \ldots $\ldots, a_N \in \mathbb{R}$, find a mapping $f \in \mathcal{O}(E, D)$ such that $\Phi_j(f) = a_j, j = 1, \ldots, N$, and there is no mapping $g \in \mathcal{O}(E, D)$ with

$$\Phi_j(g) = a_j, \quad j = 1, \dots, N, \quad g(E) \in D.$$

Any solution of (\mathcal{P}) is called an *extremal mapping for* (\mathcal{P}) or, simply, an *extremal*.

Problem (\mathcal{P}) is a generalization of Problem (P) from [Pol].

We say that problem (\mathcal{P}) is of *m*-type if there exists a polynomial $Q(\zeta) = \prod_{k=1}^{m} (\zeta - \sigma_k)$ with $\sigma_1, \ldots, \sigma_m \in E$ such that Qw_j extends to a mapping of class $\mathcal{A}(E, \mathbb{C}^n), j = 1, \ldots, N$.

One can prove that (for bounded domains $D \subset \mathbb{C}^n$) any complex \varkappa_D or \widetilde{k}_D -geodesic may be characterized as an extremal for a suitable problem (\mathcal{P}) of 1-type (cf. §4).

The main result of the paper is the following

THEOREM 1. Let $D \Subset G \Subset \mathbb{C}^n$ be domains and let $u \in PSH(G) \cap \mathcal{C}(G)$ be such that $D = \{u < 0\}, \ \partial D = \{u = 0\}$. Suppose that $f \in \mathcal{O}(E, D)$ is an extremal for (\mathcal{P}) . Assume that there exist a set $S \subset \partial E$, a mapping $s = (s_1, \ldots, s_n) \in H^{\infty}(E, \mathbb{C}^n)$, a number $\varepsilon > 0$, and a function $v : S \times \mathcal{A}(E, \mathbb{C}^n) \to \mathbb{C}$ such that:

(a) $\partial E \setminus S$ has zero measure,

(b) $f^*(\zeta)$, $\nabla u(f^*(\zeta))$ and $s^*(\zeta)$ are defined for all $\zeta \in S$,

(d) $u(f^*(\zeta) + s^*(\zeta) \cdot h(\zeta)) = u(f^*(\zeta)) + 2\operatorname{Re}(\nabla u(f^*(\zeta)) \bullet (s^*(\zeta) \cdot h(\zeta))) + v(\zeta, h), \ \zeta \in S, \ h \in \mathcal{A}(E, \mathbb{C}^n), \ \|h\|_{\infty} \le \varepsilon,$ (e) $\lim_{h \to 0} \sup\{|v(\zeta, h)| : \zeta \in S\}/\|h\|_{\infty} = 0.$

Then

$$f^*(\zeta) \in \partial D$$
 for a.a. $\zeta \in \partial E$

and there exist $\rho \in L^{\infty}(\partial E)$, $\rho > 0$, $g \in H^{\infty}(E, \mathbb{C}^n)$, and $(\lambda_1, \ldots, \lambda_N) \in \mathbb{R}^N \setminus \{0\}$ such that

$$\sum_{k=1}^{N} \lambda_k w_k(\zeta) \cdot s^*(\zeta) + g^*(\zeta) = \varrho(\zeta) s^*(\zeta) \cdot \nabla u(f^*(\zeta)) \quad \text{for a.a. } \zeta \in \partial E.$$

Remark 2. Under the assumptions of Theorem 1, if $u \in \mathcal{C}^1(G) \cap PSH(G)$, then one can take $s :\equiv (1, \ldots, 1)$.

As an easy corollary to Theorem 1 we obtain

COROLLARY 3. Under the assumptions of Theorem 1, if problem (\mathcal{P}) is of m-type, then there exist $\rho \in L^{\infty}(\partial E)$, $\rho > 0$, and $g \in H^{\infty}(E, \mathbb{C}^n)$ such that

$$g^*(\zeta) = Q(\zeta)\varrho(\zeta)s^*(\zeta) \cdot \nabla u(f^*(\zeta)) \quad \text{for a.a. } \zeta \in \partial E.$$

Theorem 1 generalizes Theorems 2 and 3 of [Pol] (cf. Remark 2). The proof of Theorem 1 will be presented in §2.

Corollary 3 gives a tool for describing the extremal mappings for problems (\mathcal{P}) of *m*-type in the case where *D* is an arbitrary complex ellipsoid $\mathcal{E}(p)$.

THEOREM 4. Let $\varphi : E \to \mathcal{E}(p)$ be an extremal for problem (\mathcal{P}) of m-type such that $\varphi_j \not\equiv 0, \ j = 1, \ldots, n$. Then

$$\varphi_j(\lambda) = a_j \prod_{k=1}^m \left(\frac{\lambda - \alpha_{kj}}{1 - \overline{\alpha}_{kj}\lambda}\right)^{r_{kj}} \left(\frac{1 - \overline{\alpha}_{kj}\lambda}{1 - \overline{\alpha}_{k0}\lambda}\right)^{1/p_j}, \quad j = 1, \dots, n,$$

where

•
$$a_1,\ldots,a_n \in \mathbb{C} \setminus \{0\},\$$

•
$$\alpha_{kj} \in E, \ k = 1, \dots, m, \ j = 0, \dots, n$$

• $r_{kj} \in \{0, 1\}$ and, if $r_{kj} = 1$, then $\alpha_{kj} \in E$,

•
$$\sum_{j=1}^{n} |a_j|^{2p_j} \prod_{k=1}^{m} (\zeta - \alpha_{kj})(1 - \overline{\alpha}_{kj}\zeta) = \prod_{k=1}^{m} (\zeta - \alpha_{k0})(1 - \overline{\alpha}_{k0}\zeta), \ \zeta \in E$$

In particular, if φ is a complex $\varkappa_{\mathcal{E}(p)}$ - or $\widetilde{k}_{\mathcal{E}(p)}$ -geodesic, then φ is of the above form with m = 1.

Theorem 4 generalizes §6 of [Pol] and Theorem 1 of [Jar-Pfl-Zei]. The proof of Theorem 4 will be given in §§3, 4.

R e m a r k 5. In the case where $\mathcal{E}(p)$ is convex any mapping described in Theorem 4 with m = 1 is a complex geodesic in $\mathcal{E}(p)$ ([Jar-Pfl-Zei]). This is no longer true if $\mathcal{E}(p)$ is not convex (cf. [Pfl-Zwo] for the case $n = 2, p_1 = 1, p_2 < 1/2$).

2. Proof of Theorem 1. Note that there are two possibilities: either $u \circ f^* = 0$ a.e. on ∂E or there exists $\tau > 0$ such that the set $\{\theta : u(f^*(e^{i\theta})) < -\tau\}$ has positive measure. If such a τ exists, fix one of them. We put

$$P_0 := \begin{cases} \emptyset & \text{in the first case,} \\ \{\theta : u(f^*(e^{i\theta})) < -\tau\} & \text{in the second case,} \end{cases}$$

 $A_0 := [0, 2\pi) \setminus P_0$, and

$$p_s(h) := \frac{1}{2\pi} \int_{A_0} \left[\operatorname{Re}(s^*(e^{i\theta}) \cdot \nabla u(f^*(e^{i\theta})) \bullet h(e^{i\theta})) \right]^+ d\theta \quad \text{for } h \in L^1(\partial E, \mathbb{C}^n),$$

where $L^1(\partial E, \mathbb{C}^n)$ denotes the space of all Lebesgue integrable mappings $\partial E \to \mathbb{C}^n$.

 ${\rm R}\,{\rm e}\,{\rm m}\,{\rm a}\,{\rm r}\,{\rm k}\,$ 6. (a) Under the assumptions of Theorem 1, there exists M>0 such that

$$||s^*(\zeta) \cdot \nabla u(f^*(\zeta))|| \le M \quad \text{for a.a. } \zeta \in \partial E.$$

(b) $p_s(h)$ is a seminorm on $H^1(E, \mathbb{C}^n)$ and $p_s(h) \leq M ||h||_1$, where $H^1(E)$ denotes the first Hardy space of holomorphic functions,

$$H^1(E, \mathbb{C}^n) := \{ (f_1, \dots, f_n) : f_j \in H^1(E) \},\$$

and $\| \|_1$ denotes the norm in $H^1(E, \mathbb{C}^n)$.

The proof of Theorem 1 is based on the following result.

LEMMA 7 (cf. [Pol], Lemma 6). Under the assumptions of Theorem 1 there exist T > 0, $j \in \{1, ..., N\}$, and $\delta \in \{-1, 1\}$ such that

$$\delta \Phi_j(s \cdot h) \le T p_s(h)$$

for $h \in X_j := \{h \in H^1(E, \mathbb{C}^n) : \Phi_l(s \cdot h) = 0, \ l \neq j\}.$

Let us for a while assume that we already have Lemma 7.

Proof of Theorem 1. By Lemma 7 there exist $T > 0, \delta \in \{-1, 1\}$, and $j \in \{1, \ldots, N\}$ such that

$$\delta \Phi_j(s \cdot h) \le T p_s(h) \quad \text{ for } h \in X_j.$$

Let $\widetilde{\Phi}(h) := \delta \Phi_j(s \cdot h), h \in X_j$. Using the Hahn–Banach theorem we can extend $\widetilde{\Phi}$ to $L^1(\partial E, \mathbb{C}^n)$ (we denote this extension by Φ) in such a way that

$$\Phi(h) \le T p_s(h) \quad \text{for } h \in L^1(\partial E, \mathbb{C}^n).$$

We know that $p_s(h) \leq M|h|_1$, where $|h|_1$ denotes the norm in $L^1(E, \mathbb{C}^n)$. So Φ is continuous on $L^1(\partial E, \mathbb{C}^n)$. By Riesz's theorem, Φ can be represented as

$$\varPhi(h) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}(h^{*}(e^{i\theta}) \bullet \widetilde{w}(e^{i\theta})) \, d\theta, \quad \text{ where } \widetilde{w} \in L^{\infty}(\partial E, \mathbb{C}^{n}).$$

It is easy to see that there are $\lambda_1, \ldots, \lambda_N$, not all zero, such that $\Phi(h) = \sum_{k=1}^N \lambda_k \Phi_k(s \cdot h)$ for $h \in H^1(E, \mathbb{C}^n)$. We denote by G the linear functional on $L^1(\partial E, \mathbb{C}^n)$ defined by the formula

$$G(h) := \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}\left(\sum_{k=1}^{N} \lambda_{k} w_{k}(e^{i\theta}) \bullet s^{*}(e^{i\theta}) \cdot h(e^{i\theta})\right) d\theta.$$

Then $\Phi(h) - G(h) = 0$ for $h \in H^1(E, \mathbb{C}^n)$. By the theorem of F. & M. Riesz it follows that there exists $g \in H^{\infty}(E, \mathbb{C}^n)$, g(0) = 0, such that

$$\widetilde{w} - s^* \cdot \sum_{k=1}^N \lambda_k w_k = g^*.$$

We have

(1)
$$\Phi(h) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}\left[\left(\sum_{k=1}^{N} \lambda_{k} w_{k}(e^{i\theta}) \cdot s^{*}(e^{i\theta}) + g^{*}(e^{i\theta})\right) \bullet h^{*}(e^{i\theta})\right] d\theta$$
$$\leq T \frac{1}{2\pi} \int_{A_{0}} \left[\operatorname{Re}\left(s^{*}(e^{i\theta}) \cdot \nabla u(f^{*}(e^{i\theta})) \bullet h^{*}(e^{i\theta}))\right]^{+} d\theta$$

for any $h \in H^1(E, \mathbb{C}^n)$. We see that the right-hand side is zero for any $h \in H^1(E, \mathbb{C}^n)$ (hence, for any $h \in L^1(\partial E, \mathbb{C}^n)$) such that

$$\operatorname{Re}(s^*(e^{i\theta}) \cdot \nabla u(f^*(e^{i\theta})) \bullet h^*(e^{i\theta})) \le 0$$

on $\partial E \setminus (P_0 \cup \{\zeta \in \partial E : s^*(\zeta) \cdot \nabla u(f^*(\zeta)) = 0\}).$ Hence

$$\sum_{k=1}^N \lambda_k w_k \cdot s^* + g^* = 0 \quad \text{ a.e. on } P_0 \cup \{\zeta \in \partial E : s^*(\zeta) \cdot \nabla u(f^*(\zeta)) = 0\}.$$

We know that Φ_1, \ldots, Φ_N are linearly independent, so the Lebesgue measures of P_0 and of $\{\zeta \in \partial E : s^*(\zeta) \cdot \nabla u(f^*(\zeta)) = 0\}$ are zero. Hence

$$\sum_{k=1}^{N} \lambda_k w_k(\zeta) \cdot s^*(\zeta) + g^*(\zeta) = \varrho(\zeta) s^*(\zeta) \cdot \nabla u(f^*(\zeta)),$$

where $\rho(\zeta) \in \mathbb{C} \setminus \{0\}$ for a.a. $\zeta \in \partial E$. Now, it is enough to remark that condition (1) implies that $0 < \rho \leq T$ a.e. on ∂E .

Now, we are going to prove Lemma 7.

Proof of Lemma 7. Suppose that the lemma is not true. Then for each $j \in \{1, \ldots, N\}$ and $m \in \mathbb{N}$ there are $h_{jm}^+, h_{jm}^- \in X_j$ such that

$$\Phi_j(s \cdot h_{jm}^+) > mp_s(h_{jm}^+), \quad -\Phi_j(s \cdot h_{jm}^-) > mp_s(h_{jm}^-).$$

We may assume that $h_{jm}^+, h_{jm}^- \in \mathcal{A}(E, \mathbb{C}^n)$ and that

$$\Phi_j(s \cdot h_{jm}^+) = 1, \quad \Phi_j(s \cdot h_{jm}^-) = -1.$$

For any $q = (q_1^+, q_1^-, \dots, q_N^+, q_N^-) \in \mathbb{R}^{2N}_+$ we define the function

$$f_{qm} = f + \sum_{j=1}^{N} (q_j^+ s \cdot h_{jm}^+ + q_j^- s \cdot h_{jm}^-) = f + s \cdot h_{qm}$$

and the linear mapping $A : \mathbb{R}^{2N}_+ \to \mathbb{R}^N$, $A(q) := (q_1^+ - q_1^-, \dots, q_N^+ - q_N^-)$. Note that $\Phi_j(f_{qm}) - \Phi_j(f) = A(q)_j$.

LEMMA 8 (see [Pol], Lemma 7). Let u be a non-positive subharmonic function in E and let Δu be the Riesz measure of u. Suppose that one of the following conditions is true:

(a) $\triangle u(r_0 E) > a > 0$ for some $r_0 \in (0, 1)$,

(b) for some set $Z \subset [0, 2\pi)$ with positive measure, the upper radial limit of u at $\zeta \in Z$ does not exceed -a < 0 (i.e. $\limsup_{r \to 1} u(r\zeta) \leq -a$).

Then $u(\zeta) \leq -C(1-|\zeta|)$, where C > 0 is a constant depending only on r_0 , a, and Z.

Let $u_0 := u \circ f$.

LEMMA 9. There exist a constant C > 0 and constants $t_m > 0$, $m \in \mathbb{N}$, such that for $||q|| < t_m$ we have

(a) $f_{qm} \in \mathcal{O}(E, G)$ (so, we define $u_{qm} := u \circ f_{qm}$), (b) $u_{qm}(\zeta) \le v_{qm}(\zeta) := C \ln |\zeta| + \frac{1}{2\pi} \int_{A_0} [u_{qm}^*(e^{i\theta})]^+ P(\zeta, \theta) d\theta$

for $|\zeta| > 1/2$.

Proof. (a) follows from the assumption that $D \Subset G$.

(b) Suppose that there exists $r_0 \in (0,1)$ such that $\Delta u_0(r_0 E) > a > 0$. The continuity of u implies that for

$$\widetilde{u}_{qm}(\zeta) := u_{qm}(\zeta) - \frac{1}{2\pi} \int_{A_0} [u_{qm}^*(e^{i\theta})]^+ P(\zeta,\theta) \, d\theta, \quad \zeta \in E,$$

if t_m is small enough then $\Delta \tilde{u}_{qm}(rE) > a/2$. Hence, from Lemma 8 we get the required result.

If $\Delta u_0(rE) = 0$ for any $r \in (0, 1)$ and $u_0^*(\zeta) = 0$ for a.a. $\zeta \in \partial E$, then by the Riesz representation theorem ([Hay-Ken], Ch. 3.5) we see that u_0 is harmonic in E. But this is a contradiction, since $u_0 \neq 0$. Hence, P_0 has positive measure. From the continuity of u we conclude that if t_m are small enough, then $\{\zeta : \tilde{u}_{qm}(\zeta) < -\tau/2\}$ has positive measure. By Lemma 8 we get the required result.

Let us introduce some new notation: $E_{qm} := \{\zeta \in E : v_{qm}(\zeta) < 0\}$ and

$$g_{qm}(\zeta) := \zeta \exp\left\{\frac{1}{2\pi C} \int_{A_0} [u_{qm}^*(e^{i\theta})]^+ S(\zeta,\theta) \, d\theta\right\}.$$

Here $S(\zeta, \theta) := (\zeta + e^{i\theta})/(\zeta - e^{i\theta})$ is the Schwarz kernel.

Remark 10. Note that $C \ln |g_{qm}| = v_{gm}, v_{qm}(\zeta) \ge C \ln |\zeta|$ (hence, $|g_{qm}(\zeta)| \ge |\zeta|$), and $E_{qm} = g_{qm}^{-1}(E)$.

LEMMA 11 (cf. [Pol], Statement 2). (a) E_{qm} is connected, $0 \in E_{qm}$, (b) g_{qm} maps E_{qm} conformally onto E.

Proof. (a) Note that $E_{qm} = \bigcup_{\delta > 0} \{\zeta : v_{qm}(\zeta) < -\delta\}$ and $\{\zeta : v_{qm}(\zeta) < -\delta\} \subset \{\zeta : |\zeta| < e^{-\delta/C}\}.$

Since v_{qm} is harmonic outside 0 and $v_{qm}^*(e^{i\theta}) \ge 0$, any connected component of $\{\zeta : v_{qm}(\zeta) < -\delta\}$ must contain 0.

(b) First let us see that $g_{qm} : E_{qm} \to E$ is proper. Let $\zeta_k \to \zeta_0 \in \partial E_{qm}$. If $\zeta_0 \in \partial E$, then $|g_{qm}(\zeta_k)| \to 1$ (since $|g_{qm}| \ge |\zeta|$). If $\zeta_0 \in E$, then $|g_{qm}(\zeta_k)| \to |g_{qm}(\zeta_0)| = 1$.

Since $g'_{qm}(0) \neq 0$ and $g^{-1}_{qm}(0) = \{0\}, g_{qm}$ is conformal.

We define
$$\widetilde{f}_{qm}(\zeta) = f_{qm}(g_{qm}^{-1}(\zeta)), \ \widehat{f}_{qm}(\zeta) = \widetilde{f}_{qm}(e^{-\|q\|/m}\zeta),$$

$$\widetilde{A}_m(q) = (\Phi_1(\widetilde{f}_{qm}) - \Phi_1(f), \dots, \Phi_N(\widetilde{f}_{qm}) - \Phi_N(f)),$$

and

$$\widehat{A}_m(q) = (\Phi_1(\widehat{f}_{qm}) - \Phi_1(f), \dots, \Phi_N(\widehat{f}_{qm}) - \Phi_N(f))$$

Remark 12. It is easy to see that $\tilde{f}_{qm}(E) \subset D$, $\hat{f}_{qm}(E) \subseteq D$, and $\tilde{A}_m(0) = \hat{A}_m(0) = 0$.

The following result explains why we have used functionals of the special form.

LEMMA 13. Suppose that

$$\Phi(h) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}(h^{*}(e^{i\theta}) \bullet w(e^{i\theta})) d\theta,$$

where $w \in \mathcal{A}(A_{\nu}, \mathbb{C}^n)$ for some $\nu \in (0, 1)$, $f \in H^{\infty}(E, \mathbb{C}^n)$, and that $g \in \mathcal{O}(E, E)$, g(0) = 0. Then

$$\Phi(f \circ g) - \Phi(f)| \le K ||f||_{\infty} \sup_{\zeta \in E} |g(\nu\zeta) - \nu\zeta|.$$

where K > 0 depends only on Φ .

Proof. We have

(2)
$$\Phi(h) = \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re}(h(\nu e^{i\theta}) \bullet w(\nu e^{i\theta})) d\theta.$$

Hence

$$|\Phi(h)| \le (\max_{\zeta \in \partial E} \|w(\nu\zeta)\|)(\max_{\zeta \in \partial E} \|h(\nu\zeta)\|).$$

But

$$\|f(g(\nu\zeta)) - f(\nu\zeta)\| \le (\sup_{\xi \in F} |f'(\nu\xi)|)|g(\nu\zeta) - \nu\zeta|$$

and $\sup_{\xi \in E} |f'(\nu\xi)| \le ||f||_{\infty}/(1-\nu^2)$.

LEMMA 14 (cf. [Pol], Statement 3). The mappings \widetilde{A}_m , \widehat{A}_m are continuous in q for $||q|| < t_m$.

Proof. It is enough to remark that if $q_k \to q$, then $u_{q_km}^* \to u_{qm}^*$ uniformly on ∂E . Hence $g_{q_km} \to g_{qm}$ uniformly on compact subsets of E. It is evident from the last assertion that also $g_{q_km}^{-1} \to g_{qm}^{-1}$, $\tilde{f}_{q_km} \to \tilde{f}_{qm}$, and $\hat{f}_{q_km} \to \hat{f}_{qm}$ uniformly on compact sets. Since the Φ_j are continuous with respect to this convergence (this follows easily from (2)), we conclude the proof.

LEMMA 15. For each b > 0 there is $m_0 \in \mathbb{N}$ such that for any $m \ge m_0$ there is $q_m > 0$ such that $||A(q) - \widetilde{A}_m(q)|| \le b||q||$ whenever $||q|| \le q_m$.

Proof. It follows from the definition of A, \tilde{A}_m that it is enough to prove the inequality

$$|\Phi(f_{qm}) - \Phi(f_{qm})| \le b ||q|$$

for small q, where \varPhi is a functional of our special form. By Lemma 14 it is enough to show that

$$\sup_{\zeta \in \nu E} |g_{qm}^{-1}(\zeta) - \zeta| \le b \|q\|$$

for small q. Note that

$$\sup_{\zeta \in \nu E} |g_{qm}^{-1}(\zeta) - \zeta| \le \sup_{\zeta \in \nu E} |g_{qm}(\zeta) - \zeta|$$

and for small q_m (such that $|1 - \exp q_m| \le 2q_m$) and $||q|| \le q_m$,

$$\left| 1 - \exp\left(\frac{1}{2\pi C} \int_{A_0} \left[u_{qm}^*(e^{i\theta}) \right]^+ S(\zeta, \theta) \, d\theta \right) \right|$$

$$\leq 2 \frac{1+\nu}{1-\nu} \left(\frac{1}{2\pi C} \int_{A_0} \left[u_{qm}^*(e^{i\theta}) \right]^+ \, d\theta \right)$$

90

for $\zeta \in \nu E$. Hence, it is enough to show that

$$\int_{A_0} [u_{qm}^*(e^{i\theta})]^+ d\theta \leq \int_{A_0} 2[\operatorname{Re}(\nabla u(f^*(e^{i\theta})) \bullet s^*(e^{i\theta}) \cdot h_{qm}(e^{i\theta}))]^+ d\theta + o(\|h_{qm}\|_{\infty}).$$

But $p_s(h_{qm}) \leq ||q|| \max\{p_s(h_{jm}) : j = 1, ..., N\} \leq ||q||/m$. Hence, if m is large and q_m is small enough, we get the required result.

LEMMA 16. For each b > 0 there is $m_0 \in \mathbb{N}$ such that for any $m \ge m_0$ there is $q_m > 0$ such that $\|\widetilde{A}_m(q) - \widehat{A}_m(q)\| \le b \|q\|$ whenever $\|q\| \le q_m$.

 ${\tt Proof.}\,$ As in Lemma 15, by Lemma 13 it is enough to prove the inequality

$$\sup_{\zeta \in \nu E} |e^{-\|q\|/m} \zeta - \zeta| \le b \|q\|$$

for small ||q||. But for small ||q||/m we have $|1 - e^{-||q||/m}| \le 2||q||/m$. Hence, we get the required result.

LEMMA 17 (cf. [Pol], Lemma 8). For any continuous mapping $F : \mathbb{R}^{2N}_+ \to \mathbb{R}^N$, if

$$||F(x) - A(x)|| \le b||x||$$
 for $x \in B(0, r) \cap \mathbb{R}^{2N}_+$

where $b = 1/(2\sqrt{N})$, then there exists $q \in B(0,r) \cap \mathbb{R}^{2N}_+ \setminus \{0\}$ such that F(q) = 0.

Proof. Define

$$Q := \{(x_1, \dots, x_N): 0 < x_j < t_0, j = 1, \dots, N\}$$

and

$$\pi: \mathbb{R}^N \ni (x_1, \dots, x_N) \to (x_1, t_0 - x_1, \dots, x_N, t_0 - x_N) \in \mathbb{R}^{2N},$$

where $t_0 = (2\sqrt{N})^{-1} \min\{1, r\}$. It is easy to check that $\|\pi(l)\| \le t_0\sqrt{N}$ for $l \in \overline{\mathcal{Q}}$ and $\pi(\mathcal{Q}) \subset B(0, r) \cap \mathbb{R}^{2N}_+$. Note that

$$||F \circ \pi(l) - A \circ \pi(l)|| \le b ||\pi(l)|| \le t_0/2 \text{ for } l \in \overline{\mathcal{Q}}$$

Consider the homotopy defined by the formula $\widetilde{F}_t = tF \circ \pi + (1-t)A \circ \pi$. It is enough to show that $0 \notin \widetilde{F}_t(\partial \mathcal{Q})$. Then from the homotopical invariance of the degree of mappings [Zei] we have $\deg(F \circ \pi, \mathcal{Q}, 0) = \deg(A \circ \pi, \mathcal{Q}, 0) \neq 0$, hence $0 \in F \circ \pi(\mathcal{Q})$.

It is easy to see that for any $l \in \partial \mathcal{Q}$,

$$t_0 \le \|A \circ \pi(l)\| \le \|F_t(l)\| + t\|F \circ \pi(l) - A \circ \pi(l)\| \le \|F_t(l)\| + t_0/2.$$

Hence, we get the required result. \blacksquare

Let us return to the proof of Lemma 9. By Lemmas 14–16 it follows that \widehat{A}_m is continuous in \mathbb{R}^{2N}_+ and for each b > 0 there are $m \in \mathbb{N}$ and $q_m > 0$

such that $\|\widehat{A}_m(q) - A(q)\| \leq b \|q\|$ for $\|q\| \leq q_m$. By Lemma 17, for some m we can find q_0 which is a solution of the equation $\widehat{A}_m(q_0) = 0$. Hence, we have

$$\Phi_j(\widehat{f}_{q_0m}) = a_j \quad \text{for } j = 1, \dots, N.$$

But this contradicts the extremality of f, since $\hat{f}_{q_0m}(E) \subseteq D$.

3. Proof of Theorem 4. Before we prove the theorem we recall some auxiliary results.

LEMMA 18. Let $\varphi \in H^1(E)$ be such that

$$\frac{\varphi^*(\zeta)}{\prod_{k=1}^m (\zeta - \sigma_k)} \in \mathbb{R}_{>0} \quad \text{for a.a. } \zeta \in \partial E,$$

where $\sigma_k \in \mathbb{C}, \ k = 1, ..., m$. Then there exist $r \in \mathbb{R}$ and $\alpha_k \in \overline{E}, \ k = 1, ..., m$, such that

$$\varphi(\zeta) = r \frac{\prod_{k=1}^{m} (\zeta - \alpha_k) (1 - \overline{\alpha}_k \zeta)}{\prod_{k=1}^{m} (1 - \overline{\sigma}_k \zeta)}, \quad \zeta \in E.$$

This lemma is a generalization of Lemma 8.4.6 of [Jar-Pfl].

Proof. Put $\widetilde{\varphi}(\zeta) = \varphi(\zeta) \prod_{k=1}^m (1 - \overline{\sigma}_k \zeta)$. Then $\widetilde{\varphi} \in H^1(E)$ and

$$\frac{1}{\zeta^m} \widetilde{\varphi}^*(\zeta) \in \mathbb{R}_{>0} \quad \text{ for a.a. } \zeta \in \partial E$$

Hence, it is enough to prove the lemma for $\sigma_k = 0, k = 1, ..., m$. Set

$$P(\zeta) = \sum_{k=0}^{m} \frac{\varphi^{(k)}(0)}{k!} \zeta^{k} + \sum_{k=0}^{m-1} \frac{\overline{\varphi^{(k)}(0)}}{k!} \zeta^{2m-k}.$$

It is easy to see that if $\psi(\zeta) := (\varphi(\zeta) - P(\zeta))/\zeta^m$, then $\psi \in H^1(E)$ and $\psi^*(\zeta) \in \mathbb{R}$ for a.a. $\zeta \in \partial E$. Hence $\psi \equiv 0$.

Let $t(\theta) := P(e^{i\theta})/e^{i\theta m}$. We know that t is \mathbb{R} -analytic and $t(\theta) \ge 0$ for $\theta \in \mathbb{R}$. If for some $\theta_0 \in \mathbb{R}$ we have $t(\theta_0) = 0$ then $t(\theta) = (\theta - \theta_0)^k \tilde{t}(\theta)$, where k is even.

Note that $\overline{P(1/\overline{\zeta})} = P(\zeta)/\zeta^{2m}$ and if P(0) = 0, then $P(\zeta) = \zeta^k \widetilde{P}(\zeta)$, $\widetilde{P}(0) \neq 0$, deg $\widetilde{P} = 2m - 2k$, and $\overline{\widetilde{P}(1/\overline{\zeta})} = \widetilde{P}(\zeta)/\zeta^{2(m-k)}$. Now, it is enough to note that if $P(\zeta_0) = 0$, $\zeta_0 \neq 0$, then $P(1/\overline{\zeta}_0) = 0$ and if

$$Q(\zeta) := \frac{P(\zeta)}{(\zeta - \zeta_0)(1 - \overline{\zeta}_0 \zeta)}$$

then $\overline{Q(1/\overline{\zeta})} = Q(\zeta)/\zeta^{2(m-1)}$.

LEMMA 19. Let S_1 , S_2 be singular inner functions and let $S_1S_2 \equiv 1$. Then $S_1, S_2 \equiv 1$.

$$S_j(z) = \exp\left(-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu_j(t)\right), \quad j = 1, 2,$$

where μ_1 and μ_2 are non-negative Borel measures, singular w.r.t. Lebesgue measure. Then $S_1S_2 \equiv 1$ is equivalent to $\mu_1 + \mu_2 = 0$. Since $\mu_j \ge 0$, j = 1, 2, we get $\mu_1 = \mu_2 = 0$.

Proof of Theorem 4. We know that $\varphi_j = B_j S_j F_j$, where B_j is a Blaschke product, S_j is a singular inner function and F_j is an outer function. Take $s := (F_1, \ldots, F_n)$. Note that $|\varphi_j^*(\zeta)/F_j^*(\zeta)| = 1$ for a.a. $\zeta \in \partial E$ and

$$\frac{\partial u}{\partial z_j}(\varphi) = p_j \frac{|\varphi_j|^{2p_j}}{\varphi_j} \quad \text{for } j = 1, \dots, n$$

We want to show that the assumptions of Theorem 1 are satisfied. Let $u(z) := \sum_{j=1}^{n} |z_j|^{2p_j} - 1$ be the defining function for $\mathcal{E}(p)$.

We know that $\varphi_j \neq 0, j = 1, ..., n$. Hence $\nabla u(\varphi^*(\zeta))$ exists for a.a. $\zeta \in \partial E$. We have

$$\frac{|\varphi_j + F_j h_j|^{2p_j} - |\varphi_j|^{2p_j} - 2\operatorname{Re}\left(p_j \frac{|\varphi_j|^{2p_j}}{\varphi_j} F_j h_j\right)}{|h_j|}$$
$$= |\varphi_j|^{2p_j} \frac{\left|1 + \frac{F_j}{\varphi_j} h_j\right|^{2p_j} - 1 - 2p_j \operatorname{Re}\left(\frac{F_j}{\varphi_j} h_j\right)}{|h_j \frac{F_j}{\varphi_j}|}.$$

From the equality

$$\lim_{z \to 0} \frac{|1 + z|^{\alpha} - 1 - \alpha \operatorname{Re} z}{|z|} = 0, \quad \alpha > 0,$$

we see that all the assumptions of Theorem 1 are satisfied.

Hence, by Corollary 3, there exist $g \in H^{\infty}(E, \mathbb{C}^n)$ and $\varrho \in L^{\infty}(\partial E)$, $\varrho > 0$, such that

$$Q(\zeta)\varrho(\zeta)F_j^*(\zeta)\frac{|\varphi_j^*(\zeta)|^{2p_j}}{\varphi_j^*(\zeta)} = g_j^*(\zeta) \quad \text{for a.a. } \zeta \in \partial E, \ j = 1, \dots, n,$$

where $Q(\zeta) = \prod_{k=1}^{m} (\zeta - \sigma_k)$ is a polynomial witnessing the *m*-type. This is equivalent to

$$Q(\zeta)\varrho(\zeta)|F_j^*(\zeta)|^{2p_j} = B_j^*(\zeta)S_j^*(\zeta)g_j^*(\zeta) \quad \text{for a.a. } \zeta \in \partial E, \ j = 1, \dots, n.$$

By Lemma 18 there exist $r_j > 0$ and $\alpha_{kj} \in \overline{E}$ such that

(3)
$$B_j^*(\zeta)S_j^*(\zeta)g_j^*(\zeta) = r_j \frac{\prod_{k=1}^m (\zeta - \alpha_{kj})(1 - \overline{\alpha}_{kj}\zeta)}{\prod_{k=1}^m (1 - \overline{\sigma}_k\zeta)}$$

and there exist $r_0 > 0$ and $\alpha_{k0} \in \overline{E}$ such that

(4)
$$Q(\zeta)\varrho(\zeta) = \sum_{j=1}^{n} B_{j}^{*}(\zeta)S_{j}^{*}(\zeta)g_{j}^{*}(\zeta) = r_{0}\frac{\prod_{k=1}^{m}(\zeta - \alpha_{k0})(1 - \overline{\alpha}_{k0}\zeta)}{\prod_{k=1}^{m}(1 - \overline{\sigma}_{k}\zeta)}$$

We have

(5)
$$r_0 \prod_{k=1}^m (\zeta - \alpha_{k0}) (1 - \overline{\alpha}_{k0}\zeta) |F_j(\zeta)|^{2p_j} = r_j \prod_{k=1}^m (\zeta - \alpha_{kj}) (1 - \overline{\alpha}_{kj}\zeta).$$

Hence

(6)
$$F_j(\zeta) = a_j \prod_{k=1}^m \left(\frac{1 - \overline{\alpha}_{kj} \zeta}{1 - \overline{\alpha}_{k0} \zeta} \right)^{1/p_j},$$

where $a_j \in \mathbb{C} \setminus \{0\}$. From (6) it follows that

$$B_j(\zeta) = \prod_{k=1}^m \left(\frac{\zeta - \alpha_{kj}}{1 - \overline{\alpha}_{kj}\zeta}\right)^{r_{kj}}, \quad \text{where } r_{kj} \in \{0, 1\}.$$

Hence

$$S_j(\zeta)g_j(\zeta) = r_j \frac{\prod_{k=1}^m (\zeta - \alpha_{kj})^{1-r_{kj}} (1 - \overline{\alpha}_{kj}\zeta)^{1+r_{kj}}}{\prod_{k=1}^m (1 - \overline{\sigma}_k\zeta)}.$$

Since the right-hand side is an outer function, from Lemma 19 we conclude that $S_j \equiv 1, j = 1, \ldots, n$.

From (5) and (6) we see that $|a_j|^{2p_j} = r_j/r_0$ and from (3) and (4) it follows that

$$\sum_{j=1}^{n} |a_j|^{2p_j} \prod_{k=1}^{m} (\zeta - \alpha_{kj})(1 - \overline{\alpha}_{kj}\zeta) = \prod_{k=1}^{m} (\zeta - \alpha_{k0})(1 - \overline{\alpha}_{k0}\zeta), \quad \zeta \in E.$$

So, we get the required result. \blacksquare

4. The case of complex geodesics

LEMMA 20. Any \varkappa_D - and \widetilde{k}_D -geodesic is extremal for an appropriate problem (\mathcal{P}) of 1-type.

Proof. The case of a \varkappa_D -geodesic. Consider problem (\mathcal{P}) with linear functionals such that:

• N = 4n,

• $w_j := (0, \ldots, 1, \ldots, 0)$ and $a_j := \operatorname{Re} z_j$ for $j = 1, \ldots, n$,

• $w_j := (0, \ldots, -i, \ldots, 0)$ and $a_j := \operatorname{Im} z_j$ for $j = n + 1, \ldots, 2n$,

• $w_j := (0, \ldots, 1/\zeta, \ldots, 0)$ and $a_j := \operatorname{Re} X_j$ for $j = 2n + 1, \ldots, 3n$,

• $w_j := (0, \dots, -i/\zeta, \dots, 0)$ and $a_j := \operatorname{Im} X_j$ for $j = 3n + 1, \dots, 4n$,

where $z \in D$ and $X \in \mathbb{C}^n \setminus \{0\}$.

It is easy to see that the corresponding linear functionals are linearly independent and problem (\mathcal{P}) is of 1-type.

Let us show that any \varkappa_D -geodesic f for (z, X) is extremal for this problem (\mathcal{P}) . Suppose that there exists a mapping $g \in \mathcal{O}(E, D)$ such that g(0) = z, g'(0) = X, and $g(E) \Subset D$. Write $\tilde{g}(\zeta) := g(\zeta) + \zeta t X$, where t > 0will be defined later. Then $\tilde{g}(0) = g(0) = z$ and $\tilde{g}'(0) = g'(0) + tX = (1+t)X$. If we take t such that $\tilde{g}(E) \subset D$ (that is possible, because $g(E) \Subset D$), then we have a contradiction with f being a \varkappa_D -geodesic.

The case of a k_D -geodesic. Consider problem (\mathcal{P}) with linear functionals such that $f \in \mathcal{O}(E, D)$ is extremal iff f(0) = z, $f(\sigma) = w$, where $\sigma > 0$, and there is no mapping $g \in \mathcal{O}(E, D)$ such that

- (1) $g(0) = z, g(\sigma) = w,$
- (2) $g(E) \Subset D$.

(The functions w_j in this case can be constructed similarly to the case of a \varkappa_D -geodesic. It is enough to replace $1/\zeta$ by $1/(\zeta-\sigma)$ and $-i/\zeta$ by $-i/(\zeta-\sigma)$.) It is easy to see that the relevant linear functionals are linearly independent and that the problem (\mathcal{P}) is of 1-type.

Let us show that any k_D -geodesic f is extremal for this problem. Suppose that there exists a mapping $g \in \mathcal{O}(E, D)$ such that g(0) = z, $g(\sigma) = w$, and $g(E) \subseteq D$. Define

$$\widetilde{g}(\zeta) := g(\zeta) + \frac{\zeta}{t\sigma}(g(\sigma) - g(t\sigma)),$$

where 0 < t < 1 will be defined later. Then $\tilde{g}(0) = g(0) = z$ and $\tilde{g}(t\sigma) = g(\sigma) = w$. If we take t such that $\tilde{g}(E) \subset D$ (use $g(E) \subseteq D$), then we have a contradiction, because f is a \tilde{k}_D -geodesic.

Acknowledgements. The ideas of the paper come from fruitful conversations with Professors M. Jarnicki and W. Zwonek. I would like to thank them.

References

- [Hay-Ken] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976.
- [Jar-Pfl] M. Jarnicki and P. Pflug, *Invariant Distances and Metrics in Complex Analysis*, Walter de Gruyter, 1993.
- [Jar-Pfl-Zei] M. Jarnicki, P. Pflug, and R. Zeinstra, *Geodesics for convex complex ellipsoids*, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535–543.
 - [Pan] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953–987.
 - [Pfl-Zwo] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, preprint, 1994.

- [Pol] E. A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), 317-333.
- [Zei] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I: Fixed-Point Theorems, Springer, 1986.

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND E-mail: EDIGARIA@IM.UJ.EDU.PL

Reçu par la Rédaction le 9.1.1995

96