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A free boundary stationary magnetohydrodynamic problem

in connection with the electromagnetic casting process

by Tomasz Roliński (Warszawa)

Abstract. We investigate the behaviour of the meniscus of a drop of liquid aluminium
in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic
forces. The mathematical model comprises both Maxwell and Navier–Stokes equations in
2D. The meniscus is governed by the Young–Laplace equation, the data being the jump
of the normal stress. To show the existence and uniqueness of the solution we use the
classical implicit function theorem. Moreover, the differentiability of the operator solving
this problem is established.

1. Introduction. At the outset let us describe briefly the 2D mathe-
matical model presented in detail in [3].

Imagine three infinitely long cylindrical conductors with generating lines
parallel to the x3-axis in R

3. The cross sections of the conductors with the
Ox1x2 plane will be denoted by Ω0, Ω1, Ω2. Let Ω0 correspond to liquid
aluminium, and let Ω1, Ω2 correspond to solid conductors. From the point
of view of the industrial device Ω0 is related to the metal ingot, whereas Ω1,
Ω2 are related to the inductor. The region Ω0 is assumed to be bounded
and simply-connected with sufficiently smooth boundary (cf. Fig. 1).

An electric alternating sinusoidal current travels through the inductor,
the total intensity of the current being equal to J in Ω1 and −J in Ω2. The
inductor creates an electromagnetic field which is responsible for magneto-
hydrostatic and magnetohydrodynamic effects in the ingot, which in turn
influence the shape of the meniscus.

The above is a simplified description of the electromagnetic casting pro-
cess. The simplification concerns the negligence of other physical phenomena
as the natural convection in the ingot resulting from the temperature gra-
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Fig. 1

dient, solidification of the ingot as well as the thermal effects due to the
solidification.

The electromagnetic potential φ : R
2 → C (C is the set of complex

numbers) is governed by the Helmholtz equation in the plane, derived from
the Maxwell equations (cf. [3]):

(1.1) −∆φ+ αu.∇φ+ iβ(φ − I(φ)) =





µ0J/|Ω1| in Ω1,
−µ0J/|Ω2| in Ω2,
0 otherwise,

where u : Ω0 → R
2 (u = (u1, u2)) is the velocity field of the liquid metal

contained inΩ0 and J ∈ R is the given current intensity. Moreover, α = µ0σ,
β = ωµ0σ, where µ0 is the magnetic permeability of the vacuum, ω is the
angular velocity associated with the frequency of the alternating current, σ
is the electric conductivity of the media:

σ =

{
σk in Ωk, k = 0, 1, 2,
0 otherwise;

and I(φ) : R
2 → C is the function

I(φ) =

{
|Ωk|

−1
∫

Ωk
φdx in Ωk, k = 0, 1, 2,

0 in R
2 \ (Ω0 ∪Ω1 ∪Ω2).

The behaviour of the liquid metal in the interior of the ingot Ω0 is described
by the velocity field u and the pressure field p : Ω0 → R governed by the
Navier–Stokes equation, where the data is the Lorentz force (cf. [3]):

(1.2) −2 div D(u) + ρ(u.∇)u + ∇p = F(φ,u),

where D(u) = ((η/2)(∂jui+∂iuj))
2
i,j=1 is the symmetric deformation tensor;

η, ̺ are the kinematic viscosity and the density of the liquid, respectively.
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The Lorentz body force F results from interaction between the magnetic
induction and the current density. Since we seek stationary flows we must
average F over the period 2π/ω. After the averaging process this force reads
(cf. [3], [13])

F(φ,u) =
σω

2
(φI∇φR − φR∇φI) −

σ

2
((u.∇φR)∇φR + (u.∇φI )∇φI),

where φR and φI denote the real and imaginary parts of the potential
φ : R

2 → C. As we look for a divergence-free velocity field we assume
additionally

(1.3) divu = 0 in Ω0.

It follows from physical considerations that we must impose two con-
ditions describing the behaviour of the velocity field at the free boundary
Γ0 = ∂Ω0, i.e. at the meniscus of the ingot. The first one states that u shall
satisfy the slip condition

(1.4) u · n = 0 on Γ0,

where n = (n1, n2) is the exterior unit vector normal to Γ0. This means that
the velocity of the particles at Γ0 is tangent. The second condition expresses
the fact that the fluid cannot resist any tangential stresses:

(1.5) s(u, p) · t = 0 on Γ0,

where t = (t1, t2) is the unit vector tangent to Γ0, and

(1.6) s(u, p) = η(∂jui + ∂iuj)nj − np on Γ0

is the Cauchy stress tensor (we use the summation convention over repeated
indices).

Since we assume the presence of surface tension we shall give the Young–
Laplace condition governing the free boundary Γ0. It says that the change
in the curvature of the boundary is proportional to the sum of the jump of
the normal stress at the boundary and a constant. In our problem the jump
is equal to the normal component of the Cauchy stress tensor (1.6). The
constant is unknown.

In the absence of the Lorentz force the liquid assumes the shape of a cylin-
der with cross section denoted by Ω00, Γ00 = ∂Ω00. In our analysis we allow
for small departures from this state assuming that the perturbed boundary
Γ0(f) of Γ00 has a polar representation I ∋ θ → ((f(θ) + r0) cos θ, (f(θ) +
r0) sin θ), where I = (−2π, 2π), f : I → R, f(θ) = f(θ+2π), r0 is the radius
of Ω00. The function f can naturally be viewed as one defined on R and of
period 2π. Here we limit the domain to the interval I for purely technical
reasons. The angle θ can be defined as the angle between the x1-axis and
the radius of a point at Γ0(f) (cf. Fig. 1). Obviously Γ0(0) = Γ00. We de-
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note by Ω0(f) the star-shaped perturbed liquid region with boundary Γ0(f).
Obviously we have Ω0(0) = Ω00.

The announced Young–Laplace condition for f : I → R, together with
the side condition expressing the fact that the volume of Ω0(f) does not
change, read as follows:

(1.7) V (f, λ, J) = 0 on I

for the given current J ∈ R, where V = (κ + Sn + Λ, vol). The operator
f → κ(f) describes the curvature of Γ0(f) in polar coordinates:

κ(f) = τ
(f(θ) + r0)

2 + 2(f ′(θ))2 − (f(θ) + r0)f
′′(θ)

((f(θ) + r0)2 + (f ′(θ))2)3/2
, θ ∈ I,

where the constant τ ∈ R+ is the surface tension. Moreover, Sn denotes the
normal component of the Cauchy stress tensor,

Sn(J, f) = {s(u(J, f), p(J, f))|Γ0(f) · n} ◦ τf ,

where s(u, p) is defined in (1.6) and τf denotes the polar parametrization of
Γ0(f). We assume here that (u, p) corresponds uniquely to J and the fixed
boundary Γ0(f). By [13] this is true, at least for sufficiently regular f and
small J . Finally,

Λ(λ) = λ−
τ

r0
, vol(f) =

1

2

2π∫

0

(r0 + f)2 dθ − πr20 ,

where λ is the constant in the Young–Laplace condition and vol(f) is the
perturbation of the volume of Ω0(f).

In what follows we assume the symmetric setup for the inductor and the
ingot, which means that Ω1 ∪ Ω2 ∪ Ω00 is symmetric w.r.t. the x1- and
x2-axes (cf. Fig. 1). In the absence of the velocity field u : Ω0 → R

2 the
symmetry of the system implies that for the fixed open disk Ω00 and some
current J ∈ R the electromagnetic potential φ is antisymmetric w.r.t. the
x2-axis and symmetric w.r.t. the x1-axis (for short, x2-antisymmetric and
x1-symmetric). Thus the Lorentz force F = (F1, F2) satisfies the following
condition:F1 is x2-antisymmetric and x1-symmetric, F2 is x2-symmetric and
x1-antisymmetric. Hence we can expect that, at least for small currents, the
following symmetry conditions on the potential, velocity field, pressure and
polar representation of the boundary perturbation for the full free boundary
problem are satisfied:

(1.8a) φ is x2-antisymmetric and x1-symmetric,
(1.8b) u1 is x2-antisymmetric and x1-symmetric, u2 is x2-symmetric and

x1-antisymmetric,
(1.8c) p is symmetric w.r.t. both axes,
(1.8d) Ω0(f) is symmetric w.r.t. both axes, which means that
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a) f(θ) = f(−θ),

b) f(θ + π/2) = f(−θ + π/2), θ, θ + π/2 ∈ I.

Obviously, the assumed symmetries (1.8a–d) imply the symmetries for
the fields contained in the images of the operators involved. If we denote
by M , A, N, Sl, St, respectively, the Helmholtz operator on the left-hand
side of (1.1), the data on the right-hand side of (1.1), the Navier–Stokes
operator in (1.2), the normal component of the velocity (cf. (1.4)) and the
tangent component of the Cauchy stress tensor (cf. (1.6)), then we have the
following conditions:

(1.9a) the values of M and A are x2-antisymmetric and x1-symmetric,

(1.9b) the values of N1, F1 are x2-antisymmetric and x1-symmetric, the
values of N2, F2 are x2-symmetric and x1-antisymmetric (N =
(N1, N2)),

(1.9c) the values of div, Sl, κ, Sn are symmetric w.r.t. both axes,

(1.9d) the values of St are antisymmetric w.r.t. both axes.

In this paper we shall consider the case where the domains and images
of operators are sets of functions from suitable Sobolev spaces (cf. Sec. 2),
satisfying additionally the above symmetry conditions. The condition (1.8d)
implies that the center of gravity of the cross-section of the ingot Ω0(f) does
not change, which is a typical condition for this kind of problem (cf. [2]).
We want to show that for small currents J in the inductor the shape of the
ingot adjusts itself uniquely in a symmetric way to the change of the normal
stress coming from the Lorentz forces. Thus the main result of the paper is
the following theorem:

Theorem 1.1. There exist a neighbourhood UV of 0 in the domain of

the operator V and a function J → (f, λ) such that (f, λ, J) ∈ UV and

V (f, λ, J) = 0 (cf. (1.7)). This function is unique and continuously Fréchet

differentiable.

To prove Theorem 1.1 we study the differential properties of the oper-
ator V (cf. (1.7)). The crucial step here is to prove the differentiability of
the operator (J, f)→Sn(J, f). This can be done by considering an auxiliary
problem in which the domain of the operator consists of the deformed veloc-
ity fields and the deformed pressures that are defined on the same reference
open disk Ω00. The introduction of such a problem is useful since we want
to compare different velocity fields and pressures for different regions.

The definition of the auxiliary problem is based on a family of invertible
transformations Tf : R

2 → R
2 such that Tf (Ω0(f)) = Ω00. These trans-

formations are different from the identity in the vicinity of Γ00 only (cf.
Sec. 2, (2.1)). The relation to be satisfied for the deformed potential field
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φ : R
2 → C, u : Ω00 → R

2 (u = (u1, u2)) and p : Ω00 → R reads

(1.10) L(φ,u, p, J, f) = 0,

where J ∈ R is the given current, f : I → R is the given boundary pertur-
bation, and L = (M − A, N − F, Div, Sl, St), with

M(φ,u, f) = {M(φ ◦ Tf , u ◦ Tf )} ◦ T−1
f (u ◦ Tf = (u1 ◦ Tf , u2 ◦ Tf )),

A(J) = A(J),

N(u, p, f) = {N(u ◦ Tf , p ◦ Tf )} ◦ T−1
f ,

F(φ,u, f) = {F(φ ◦ Tf , u ◦ Tf )} ◦ T−1
f ,

Div(u, f) = {∂i(ui ◦ Tf )|J(T−1
f )|} ◦ T−1

f ,

Sl(u, f) = {(ui ◦ Tf )|Γ0(f) · ni · |J(τf )|} ◦ τf ,

St(u, f) = η{(∂j(ui ◦ Tf ) + ∂i(uj ◦ Tf ))|Γ0(f) njti |J(τf )|2} ◦ τf ,

where |J(T−1
f )| and |J(τf )| are the Jacobians of T−1

f and of the polar
parametrization τf of the boundary, respectively.

Notice that the domain and the image of the operator L consist of func-
tions defined on the fixed region Ω00, the plane R

2 and the interval I. More-
over, if (φ,u, p) is a solution of problem (1.10) for some J , f sufficiently
small then φ = φ ◦Tf , u = u ◦Tf , p = p ◦Tf satisfy (1.1)–(1.5) for the same
current J and the regions Ω1, Ω2, Ω0(f) (cf. Remark 2.2, Sec. 2).

We shall show that the operator L is differentiable and the partial deriva-
tive of L w.r.t. (φ,u, p) at 0 is an isomorphism in suitable Sobolev spaces.
Consequently, the classical implicit function theorem yields the local exis-
tence, uniqueness and differentiability of the function (J, f) → (φ,u, p) such
that (1.10) is satisfied. This means that if we run a small current through
the inductor and put the liquid metal into a container of the shape close
to a cylinder, symmetric w.r.t. both axes (cf. Fig. 1), we obtain a unique
electromagnetic potential, velocity field and pressure satisfying the symme-
try conditions (1.8abc). Moreover, these quantities change smoothly with
the change of the current and the shape of the cylinder. Then we establish
the differentiability of the function (J, f) → Sn(J, f) which is the normal
stress function from (1.7), modifying the shape of the free boundary Γ0(f).
Subsequently, we show that the operator V from (1.7) is differentiable and
the partial derivative of V w.r.t. (f, λ) at 0 is an isomorphism in suitable
Sobolev spaces. Finally, the local existence, uniqueness and differentiability
of the function J → (f, λ) are verified.

At this moment we stress that to prove that the linearization of L and V
yields isomorphisms between suitable spaces (cf. (1.10), (1.7) and Sec. 4) we
use the symmetry properties (1.8abcd) of the functions from the domains of
these operators. In the case of L the linearization process gives the Stokes
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operator together with the boundary operators Sl and St. We know that the
solutions of the linear problem for such operators are unique up to rigid ro-
tations of the liquid (cf. [15]). The latter can be rejected by assuming (1.8b).
Similarly, the linearization of V gives a Fredholm operator. The solutions
of the linear problem for this operator are unique up to the functions sin θ,
cos θ, θ ∈ I (cf. Sec. 3). The latter can be rejected by assuming condition
(1.8d) since it allows for functions of period π only.

The model described here was given treatment in [3], [13]. In [3] this
model was derived from the Maxwell and Navier–Stokes equations, and a
numerical iterative procedure based on the finite element technique and the
Newton method was proposed. Some references concerning a more detailed
description of the electromagnetic casting phenomena and suitable numeri-
cal procedures were given there as well.

In [13] the authors deal with the fixed boundary model and prove the
existence of a solution for strong magnetic fields via the Leray–Schauder
homotopy lemma. A uniqueness result is also given for weak magnetic fields
via the contraction principle.

There exists a review paper [14] concerning free boundary problems for
the Navier–Stokes equations in the presence of surface tension. In this paper
the results concerning non-stationary and stationary cases are cited. For
non-stationary problems the introduction of Lagrangian coordinates was a
major step in obtaining the local existence and uniqueness theorems.

For stationary problems the main tool was the coercive Schauder esti-
mates for the linearized problem and the contraction principle applied to
the free boundary condition to obtain the local existence and uniqueness
theorems. For example in [2] a sequence of successive approximations was
constructed by updating the free boundary via the free boundary conditions,
where the solution of the Navier–Stokes equations in the previous domain
was used. Then it was proved that this sequence converges to the solution.

In this paper we reduce the whole problem to a problem posed on fixed
reference domains. Then we use the classical implicit function theorem di-
rectly to the reduced problem without constructing a sequence of approxi-
mate solutions. Thus we obtain the desired result in a straightforward man-
ner. The analysis is performed in Sobolev spaces as opposed to the usual
analysis in Hölder spaces (cf. [14], [2]) and, consequently, we obtain the
uniqueness of the free boundary in a wider class of functions.

2.The supplementary problem. Existence and uniqueness of so-

lution for small currents and deformations. In what follows we use the
Sobolev spaces of scalar or 2-vector functions defined on a region O ⊂ R

2:
Wm,α(O)n, m = 0, 1, 2, n = 1, 2, α > 2, with the standard notation for
their seminorms: | · |m,α,O,n, and norms: ‖ · ‖m,α,O,n. The case m = 0 cor-
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responds to the spaces of functions integrable with exponent α, which we
denote by Lα(O)n. We also use the Sobolev spaces Hm(O)n of scalar or
2-vector functions which are square integrable together with their distribu-
tional derivatives, with the standard notation for their seminorms: | · |m,O,n,
and norms: ‖ · ‖m,O,n.

To deal efficiently with the external problem for electromagnetic poten-
tials we use the weighted Sobolev spaces Wm

l (R2), (m, l) = (1, 0), (0, 1),
(2, 1), of complex-valued functions defined as follows:

W 1
0 (R2) = {φ ∈ D′(R2) : φ · (1 + r2)−1/2(1 + log(1 + r2))−1/2 ∈ L2(R2),

∇φ ∈ L2(R2)2},

W 0
1 (R2) = {φ ∈ D′(R2) : (1 + r2)1/2φ ∈ L2(R2)},

W 2
1 (R2) = {φ ∈W 1

0 (R2) : (1 + r2)1/2Dγφ ∈ L2(R2), |γ| = 2},

where γ = (γ1, γ2), r
2 = x2

1 + x2
2, (x1, x2) ∈ R

2. The standard notation for
the seminorms and norms in these spaces is | · |m,l,R2 and ‖ · ‖m,l,R2 (for
details see [12]). The weighted Sobolev spaces were used by many authors
(cf. e.g. [12], [8], [9], [10]) to analyse external elliptic problems. Here we use
them for the potentials φ.

We also need spaces of functions defined on the sufficiently smooth
boundary ∂O of the region O: Wm−1/α,α(∂O), m = 1, 2, with the standard
notation for the seminorms: | · |m−1/α,α,∂O, and the norms: ‖ · ‖m−1/α,α,∂O,

as well as the spaces Hm−1/2(∂O), the seminorms and norms being de-
noted by | · |m−1/2,∂O and ‖ · ‖m−1/2,∂O. The latter spaces consist of the
traces of functions from Wm,α(O) or Hm(O) (for detailed description see
[11]). Moreover, we use some spaces defined on the interval I = (−2π, 2π):
Wm,α(I), Hm(I) for m = 0, 1, 2, Wm−1/α,α(I), Hm−1/2(I) for m = 1, 2, 3.
The symbols n,O,R2, ∂O, I in the notation of spaces, norms and seminorms
are often dropped in unambiguous situations.

In what follows we are concerned with the following regularities of the
functions introduced in Section 1: φ ∈ W 2

1 (R2), u ∈ W 2,α(Ω00)
2, p ∈

W 1,α(Ω00), f ∈ W 3−1/α,α(I). Functions from these spaces will also be de-
noted ψ,v, q, g, respectively (v = (v1, v2)). We stress that if we consider
these functions as elements of wider or narrower spaces it will be stated
explicitly.

Next, to complement the definition of L (cf. (1.10)) we must define the
transformations Tf . In polar coordinates they read

(2.1)

{
r = r − f(θ)µ(r),
θ = θ,

where r2 = y2
1 +y2

2, r
2 = x2

1+x2
2, µ : R+ → 〈0, 1〉, µ ∈ C∞(R+), µ(r) = 1 for

r0−δ1 ≤ r ≤ r0 +δ1 and suppµ ⊂ {r0−δ2 < r < r0 +δ2}, 0 < δ1 < δ2 < r0.
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The mapping Tf is of class C2, which is a consequence of f ∈W 3−1/α,α(I),
α > 2, and the embedding W 1−1/α,α(I) →֒ C0,β(I), 0 ≤ β < 1 − 2/α (cf.
[11]). The Jacobian |J(Tf )| of Tf in polar coordinates is equal to

dr

dr
= 1 − f(θ)

dµ

dr

and thus it is positive for f sufficiently small. Consequently, Tf is a C2-
diffeomorphism (cf. [4], Cor. 4.2.2, Th. 5.4.4, Ch. 1).

Lemma 2.1. The operator L maps

W 2
1 (R2) ×W 2,α(Ω00)

2 ×W 1,α(Ω00) × R ×W 3−1/α,α(I)

into

W 0
1 (R2) × Lα(Ω00)

2 ×W 1,α(Ω00) ×W 2−1/α,α(I) ×W 1−1/α,α(I).

P r o o f. We begin by the statement of some facts which we shall often
need in the further parts of the proof:

(2.2a) Since Tf is a C2-diffeomorphism, for any bounded region O ⊂ R
2

it induces (via superposition) an isomorphism between the spaces
Wm,α(O) (Hm(O)) and Wm,α(Tf (O)) (Hm(Tf (O))), m = 0, 1, 2
(cf. [11], Lemma 3.4, Ch. 2).

(2.2b) For any bounded region O with sufficiently smooth boundary there
exists a trace operator from Wm,α(O) onto Wm−1/α,α(∂O), m =
1, 2 (cf. [11], Th. 5.5, Ch. 2).

(2.2c) Tf is the identity beyond the annulus r0 − δ2 ≤ r ≤ r0 + δ2,
r2 = y2

1 + y2
2 (cf. (2.1)).

The image of M is in W 0
1 (R2) by the definition of the space W 0

1 (R2) and
the properties (2.2ac).

The image of A is in W 0
1 (R2), which is obvious (cf. (1.1)).

The image of N is in Lα(Ω00)
2 by the property (2.2a) and the fact that

u ∈ C0(Ω00)
2 by the embedding W 1,α(Ω00) →֒ C0,β(Ω00), β < 1 − 2/α

(cf. [11]).

The image of F is in Lα(Ω00)
2 since

φI , φR,

(
∂φI ◦ Tf

∂yi

)
◦ T−1

f ,

(
∂φR ◦ Tf

∂yi

)
◦ T−1

f

restricted to Ω00 are in Lδ(Ω00) for any δ ≥ 1 in view of (2.2a) and the
embedding H1(Ω00) →֒ Lδ(Ω00) (cf. [11]).

The image of Div is in W 1,α(Ω00) by (2.2a) and the fact that |J(T−1
f )| ∈

C2(Ω00) since f ∈ C2(I) in view of the embedding W 1−1/α,α(I) →֒ C0,β(I)
(cf. (2.1) and the formula for the Jacobian below).
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In order to show that the image of Sl is in W 2−1/α,α(I) observe that the
following formulae hold:

n1 = t2 =
f ′

θ sin θ + (f + r0) cos θ

(f ′2
θ + (f + r0)2)1/2

,(2.3a)

t1 = −n2 =
f ′

θ cos θ − (f + r0) sin θ

(f ′2
θ + (f + r0)2)1/2

,(2.3b)

|J(τf )| = (f ′2
θ + (f + r0)

2)1/2.(2.3c)

Hence it is clear that ni|J(τf )|∈W 2−1/α,α(I), i = 1, 2. On the other hand,
{tr |Γ0(f)(ui ◦ Tf )} ◦ τf ∈ W 2−1/α,α(I), which is a consequence of (2.2ab).

Now since the product of two functions from W 2−1/α,α(I) is in W 2−1/α,α(I)
by the embedding W 1−1/α,α(I) →֒ C0,β(I), β < 1−2/α, we see that Sl(u) ∈
W 2−1/α,α(I).

Finally, the image of St is inW 1−1/α,α(I) since {tr |Γ0(f)∂j(ui◦Tf )}◦τf ∈

W 1−1/α,α(I) by (2.2ab) and the fact that nj |J(τf )|, ti|J(τf )| ∈W 2−1/α,α(I)
by the formulae (2.3abc). The product of these functions is in W 1−1/α,α(I)
in view of the embedding W 1−1/α,α(I) →֒ C0,β(I).

R e m a r k 2.1. What needs some explanation here is the choice of the
potential spaces W 2

1 (R2) for the deformed electromagnetic potentials. First,
observe that by (2.2ac) the potentials φ = φ ◦ Tf are in W 2

1 (R2) as well.
In our problem (cf. (1.1)) the solution is a potential φ which is regular at
infinity, and the Biot–Savart formula for electromagnetic induction yields
φ(x) = O(log |x|) as |x| → ∞ (cf. [13]). Then from potential theory together
with the condition

∫
Ω0

φdx = 0 (this condition is satisfied naturally in view

of the symmetry condition (1.8a)) we obtain that (cf. [13]) φ(x)=c+O(r−1),
∇φ(x) = O(r−2), r → ∞, which implies φ ∈ W 1

0 (R2) since φ ∈ H1
loc(R

2).
The theory of potentials yields Dγφ(x) = O(r−3), γ = (γ1, γ2), |γ| = 2,
r → ∞, as well, which implies φ ∈W 2

1 (R2) since φ ∈ H2
loc(R

2).

R e m a r k 2.2. By the property (2.2a) the velocity field u=u◦Tf and the
pressure field p = p◦Tf are in W 2,α(Ω0(f))2 and W 1,α(Ω0(f)), respectively.
Moreover, we have already noticed in Remark 2.1 that the electromagnetic
potential φ = φ◦Tf is in W 2

1 (R2). Thus if we assume that f is small enough
so that the Jacobians of T−1

f and τf are positive, then (φ,u, p) is a solution
of problem (1.10) iff φ, u, p satisfy (1.1)–(1.5).

Our aim is to prove the following

Theorem 2.1. There exists a neighbourhood UL of zero in the domain

of L and a function (J, f) → (φ,u, p) such that (φ,u, p, J, f) ∈ UL and

L(φ,u, p, J, f) = 0 (cf. (1.10)). This function is unique and of class C1.

First, we formulate and prove some lemmas concerning the regularity
of L.
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Lemma 2.2. The Fréchet partial derivative of L w.r.t. (φ,u, p, J), which

we denote by D1L, exists and is continuous w.r.t. (φ,u, p, J).

P r o o f. The nonlinear operators in the definition of problem (1.10) are
sums of terms that are linear, bilinear or trilinear w.r.t. (φ,u, p, J). The
Gateaux derivatives of these terms w.r.t. (φ,u, p, J) are, respectively, con-
stant, linear and bilinear functions. Due to the well-known embeddings we
get

|u|0,δ ≤ C‖u‖1,α,

|∇ui|0,δ ≤ C‖u‖2,α, i = 1, 2,

|φ|0,δ,Ω0(f) ≤ C‖φ‖1,0,R2 ,

|∇φ|0,δ,Ω0(f) ≤ C‖φ‖2,1,R2 ,

for any δ ≥ 1. Thus the Hölder inequality implies that the Gateaux deriva-
tives are Fréchet derivatives that are continuous w.r.t. (φ,u, p, J).

Lemma 2.3. The Fréchet partial derivative of L w.r.t. f , which we de-

note by D2L, exists and is continuous.

Before we prove Lemma 2.3 we show some additional lemmas.

From the definition of L it follows that if we show the existence and
continuity of the Fréchet derivative of the following functions in suitable
Sobolev spaces:

(2.4)

a) f → {Dγ(φ ◦ Tf )} ◦ T−1
f , 1 ≤ |γ| ≤ 2,

b) f → {Dγ(ui ◦ Tf )} ◦ T−1
f , 1 ≤ |γ| ≤ 2, i = 1, 2,

c) f → {Dγ(p ◦ Tf )} ◦ T−1
f , |γ| = 1,

d) f → {ni|Γ0(f) · |J(τf )|} ◦ τf , i = 1, 2,

e) f → {ti|Γ0(f) · |J(τf )|} ◦ τf , i = 1, 2,

f) f → {|J(T−1
f )|} ◦ T−1

f ,

then the existence and continuity of D2L can be obtained easily.

Next, let H : R
3 → R be a function defined by H(r, r, f) = r− µ(r)f −

r, r, r ∈ R+, f ∈ (−f0, f0), f0 ∈ R+. For sufficiently small f0 we have
∂H/∂r > 0. The implicit function theorem (cf. [4], Th. 4.7.1, Cor. 5.4.5,
Ch. 1) yields the local existence and regularity of the function (r, f) → r =
ν(r, f) such that H(r, r, f) = 0. The monotonicity of H with respect to r
implies that ν is defined in the band R+ × (−f0, f0). Obviously, the inverse
of Tf can be expressed in polar coordinates as follows:

(2.5)

{
r = ν(r, f(θ)),
θ = θ.
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Let ̺ : R
2 → R be in C1

B(R2), the space of continuous functions that are
bounded on the whole plane together with their continuous first derivatives.
Let ̺ be the polar representation of ̺. Define ˜̺ : R+ × (−f0, f0) × I → R

by the following formula: ˜̺(r, f , θ) = ̺(ν(r, f), θ). Moreover, define

(2.6) d̺(f)[g](r, θ) =
∂ ˜̺
∂f

(r, f(θ), θ) · g(θ), ∀(r, θ) ∈ R+ × I

for any functions f, g ∈ C0(I), f having its graph in the band I× (−f0, f0).

R e m a r k 2.3. Observe that ∂ ˜̺/∂f = 0 in a neighbourhood of 0 in view
of the definition of the function µ.

In what follows we often use the spaces of linear operators from a space
X into a space Y, which we denote by [X → Y]. Now we are ready to
formulate:

Lemma 2.4. Let ̺ ∈ Cm+2
B (R2) and let d̺ be the function Cm(I) →

[Cm(I) → Cm
B (R2)] defined by (2.6) for f, g ∈ Cm(I), m = 0, 1. Then d̺ is

the continuous Fréchet derivative of the function f → ̺ ◦ T−1
f .

P r o o f. By (2.5) we have (̺ ◦ T−1
f )(r, θ) = ˜̺(r, f(θ), θ). Denote

J (r, θ) = ˜̺(r, f(θ) + g(θ), θ) − ˜̺(r, f(θ), θ) −
∂ ˜̺
∂f

(r, f(θ), θ) · g(θ).

In view of ̺ ∈ C2
B(R2) we get |J |0,∞ ≤ C(̺, ν)|g|20,∞ and Lemma 2.4 is

proved for m = 0.
By differentiating J w.r.t. r and θ and assuming ̺ ∈ C3

B(R2) we get
|∂J /∂r|0,∞ ≤ C(̺, ν)|g|20,∞ and |∂J /∂θ|0,∞ ≤ C(̺, ν)‖g‖2

1,∞(1 + |f |1,∞).
Thus in view of the formulae

(2.7)

a)
∂J

∂x1
= cos θ

∂J

∂r
− sin θ

1

r

∂J

∂θ
,

b)
∂J

∂x2
= sin θ

∂J

∂r
+ cos θ

1

r

∂J

∂θ

and Remark 2.3 we obtain Lemma 2.4 for m = 1 (the continuity of the
derivative is obvious in view of the formula (2.6)).

Using Lemma 2.4 we prove the following

Lemma 2.5. The functions in (2.4abc) are continuously Fréchet differ-

entiable, the derivatives being understood as C2(I) → [C2(I) → X ], where

X = W 0
1 (R2) for (2.4a) with |γ| = 2,

X = W 1
0 (R2) for (2.4a) with |γ| = 1,

X = Lα(Ω00) for (2.4b) with |γ| = 2 and for (2.4c),

X = W 1,α(Ω00) for (2.4b) with |γ| = 1.
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P r o o f. We concentrate on the calculation of the derivative of the func-
tions (2.4a), the cases (2.4bc) being analogous.

The chain rule yields

(2.8a)
∂(φ ◦ Tf )

∂yi
=

{
∂φ

∂x1

}
◦ Tf ·

∂x1

∂yi
+

{
∂φ

∂x2

}
◦ Tf ·

∂x2

∂yi
, i = 1, 2,

(2.8b)
∂2(φ ◦ Tf )

∂yi∂yj

=

2∑

k,l=0
k+l=2

C(k, l)

{
∂2φ

∂xk
1∂x

l
2

}
◦ Tf ·

(
∂x1

∂yi

)k(
∂x2

∂yj

)l

+
∑

(k,l)=(0,1)
(k,l)=(1,0)

{
∂φ

∂xk
1∂x

l
2

}
◦ Tf ·

(
∂2x1

∂yi∂yj

)k(
∂2x2

∂yi∂yj

)l

,

i, j = 1, 2,

where the constant C(k, l) = 2 if k = l = 1, and C(k, l) = 1 otherwise.
Using the formulae analogous to (2.7ab) to express the derivatives of Tf in
polar coordinates we arrive at

(2.9a)
∂xi

∂yj
=

∑

0≤|γ|≤2
0≤γk≤1
k=1,2,3

Pi,j,γ(sin θ, cos θ)
dγ1µ

drγ1

·
1

rγ2

·
dγ3f

dθγ3

, i, j = 1, 2,

where Pi,j,γ is a form of two variables of degree 2 (we assume that for γ = 0
the corresponding term in (2.9a) is 1), and

(2.9b)
∂2xi

∂yj∂yk

=
∑

2≤|γ|≤4
0≤γl≤2
l=1,2,3

Pi,j,k,γ(sin θ, cos θ)
dγ1µ

drγ1

·
1

rγ2

·
dγ3f

dθγ3

, i, j, k = 1, 2,

where Pi,j,k,γ is a form of two variables of degree 3.
Now by the formulae (2.8a), (2.9a) the function

f →

{
∂φ ◦ Tf

∂yj

}
◦ T−1

f

can be viewed as the sum of the following products:

(2.10)
∂φ

∂xi
Pi,j,γ(sin θ, cos θ)

{
dγ1µ

drγ1

·
1

rγ2

}
◦ T−1

f ·
dγ3f

dθ
γ3

for i = 1, 2, 0 ≤ |γ| ≤ 2, 0 ≤ γk ≤ 1, k = 1, 2, 3.



208 T. Roliński

The application of Lemma 2.4 for m = 1 gives the existence and conti-
nuity of the derivative of

f →

{
dγ1µ

drγ1

·
1

rγ2

}
◦ T−1

f .

The assumptions of Lemma 2.4 hold since µ has support in the annulus
r0 − δ2 ≤ r ≤ r0 + δ2, r

2 = y2
1 + y2

2 so that the function in braces is in
C3

B(R2). Moreover, the function f → dγ3f/dθ
γ3

is linear.

In this way the function (2.10) is continuously differentiable as the prod-
uct of differentiable functions and the case of functions of type (2.4a) for
|γ| = 1 is proved.

The case (2.4a) for |γ| = 2 is treated in a similar way by making use
of (2.8b), (2.9b) and Lemma 2.4 for m = 0. As mentioned above the cases
(2.4bc) can be treated analogously. Hence the lemma is proved.

Now we deal with the functions defined in (2.4def).

Lemma 2.6. The functions (2.4de) are continuously Fréchet differen-

tiable, the derivative being understood as a function W 3−1/α,α(I) →
[W 3−1/α,α(I)→W 2−1/α,α(I)]. The same statement is true for the function

(2.4f), the derivative being understood as a function C1(I) → [C1(I) →
C1

B(R2)].

P r o o f. The first statement is obvious since by the formulae (2.3abc) the
functions involved are affine.

For the second, notice that by the definition of the mapping Tf the
Jacobian of the inverse in Cartesian coordinates reads as follows:

(2.11) |J(T−1
f )| =

r

r

(
dr

dr

)−1

= J1 · J2,

where

J1(f) =
1

1 −

(
f
µ

r

)
◦ T−1

f

, J2(f) =
1

1 −

(
f
dµ

dr

)
◦ T−1

f

.

Let us deal with the function f → J1(f). Define σ : (−1/2, 1/2) → R by
σ(λ) = 1/(1 − λ) and let ̺̂∈ C1

B(R2) have values in (−1/2, 1/2). Then the
function ̺̂ → σ(̺̂) is continuously differentiable as a function C1

B(R2) →
C1

B(R2), the derivative being

dσ(̺̂)[ˇ̺] =
dσ

dλ
(̺̂) · ˇ̺.

Moreover, f →
(
f µ

r

)
◦ T−1

f is continuously differentiable as a function

C1(I) → C1
B(R2) (cf. the end of the proof of Lemma 2.5). Thus f → J1(f)
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as the superposition of two continuously differentiable functions is also con-
tinuously differentiable. The continuous differentiability of f → J2(f) can
be established in exactly the same way. Hence (2.11) is differentiable as well
and the lemma is proved.

P r o o f o f L e m m a 2.3. Denote

D2L = (D2M −D2A, D2N −D2F, D2 Div, D2Sl, D2St).

In view of Lemmas 2.5 and 2.6 we have:

• D2M is the sum of

— two derivatives of functions of type (2.4a) for |γ| = 2,

— two derivatives of functions of type (2.4a) for |γ| = 1 multiplied by αui

(cf. (1.1));

• D2A = 0;

• D2N is the sum of

— two derivatives of two vector-valued functions with components of type
(2.4b) for |γ| = 2, multiplied by η,

— two derivatives of two vector-valued functions with components of type
(2.4b) for |γ| = 1, multiplied by ̺ui,

— the derivative of a vector-valued function with components of type
(2.4c);

• D2F is the sum of

— two derivatives of two vector-valued functions whose components are
the real or imaginary parts of functions of type (2.4a) for |γ| = 1,
multiplied by 1

2σωφI or 1
2σωφR,

— four derivatives of four vector-valued functions whose components are
the real or imaginary parts of functions of type (2.4a) for |γ| = 1,
multiplied by 1

2σui{∂jφR ◦ Tf} ◦ T
−1
f or 1

2σui{∂jφI ◦ Tf} ◦ T
−1
f ;

• D2 Div is the sum of

— two derivatives of two functions of type (2.4b) for |γ| = 1, multiplied
by the function (2.4f),

— the derivative of the function (2.4f) multiplied by the sum of two func-
tions of type (2.4b) for |γ| = 1;

• D2Sl is the derivative of an affine function in view of (2.3abc);

• D2St is the sum of

— eight derivatives of eight functions of type (2.4b) for |γ| = 1 composed
with the trace operator on Γ0(f) and multiplied by the product of two
functions of type (2.4d) or (2.4e) and the square of the function (2.4f),
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— four derivatives of four bi-affine functions (comp. (2.3abc) and the def-
inition of St in (1.10)), multiplied by the traces of functions of type
(2.4b).

To end the proof notice that D2L is continuous since the functions de-
fined in (2.4) are continuously differentiable.

P r o o f o f T h e o r e m 2.1. By Lemma 2.2 the derivative D1L is contin-
uous w.r.t. (φ,u, p, J). The continuity of D1L w.r.t. f comes easily from the
continuity of the functions defined in (2.4), which in turn is a consequence
of the differentiability of these functions (cf. Lemmas 2.5, 2.6). Thus D1L

is continuous. The existence and continuity of D1L and, by Lemma 2.3,
of D2L yield the continuous Fréchet differentiability of L for sufficiently
small f .

The linearization process for the nonlinear problem (1.10) at 0 yields two
decoupled linear problems.

One of them is the Stokes problem on the disk Ω00 for the velocity field
v and the pressure q with the boundary conditions on the normal compo-
nent of the velocity and the tangent component of the Cauchy stress tensor
(cf. (4.1)). By Theorem 4.1 the linear Stokes operator together with the
divergence and boundary operators is an isomorphism between the space
W 2,α(Ω00)

2 ×W 1,α(Ω00)/P0 with the symmetry conditions(1.8bc) and the
space Lα(Ω00)

2×W 1,α(Ω00)×W
2−1/α,α(I)×W 1−1/α,α(I) with the symme-

try conditions (1.9bcd) and the compatibility condition (4.2). Notice that
by the definition of L (cf. (1.10)) the compatibility condition (4.2) is also
satisfied for the functions from its image.

The second linear problem is defined in (4.16). This is an elliptic problem
for the electromagnetic potential ψ. By Theorem 4.2 this problem defines an
isomorphism between the space W 2

1 (R2) with the symmetry condition (1.8a)
and the space Z = W 0

1 (R2)∩(W 1
0 (R2))′ with the symmetry condition (1.9a).

Notice that the operator L remains continuously differentiable if we replace
the space W 1

0 (R2) with the symmetry condition (1.9a) by the space Z with
the same symmetry condition. This is a consequence of the fact that the
derivative of the function

f →

{
∂2(φ ◦ Tf )

∂y2
i

}
◦ T−1

f

has its values in the space of functions with support in the annulus r0−δ2 ≤
r ≤ r0+δ2, r

2 = x2
1+x

2
2, since T−1

f is the identity beyond it (cf. Lemmas 2.4,
2.5 and (2.1)). In other words, the change of the function f does not affect
the behaviour of {∂2(φ ◦ Tf )/∂y2

i } ◦ T
−1
f at infinity.

Now a straightforward application of the implicit function theorem (cf.
[4]) yields the theorem.
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3. The free boundary problem. Existence and uniqueness of

solution for small currents. Problem (1.7) is studied in this section in
a similar way to the supplementary problem (1.10). This means that first
we establish the existence and continuity of the derivative of V . Next, we
show that the linearized problem defines an isomorphism between the spaces
involved. Finally, Theorem 1.1 is proved by the implicit function theorem.

Lemma 3.1. The operator V defined by (1.7) has a continuous Fréchet

derivative as an operator from W 3−1/α,α(I)×R×R into W 1−1/α,α(I)×R.

P r o o f. First, we establish the differentiability of the curvature operator
κ (cf. (1.7)) which can be written in the following way:

κ(f) = σ1(f, f
′
θ) + f ′′

θ σ2(f, f
′
θ),(3.1)

where

σ1(f, f θ) =
(f + r0)

2 + 2f
2

θ

((f + r0)2 + f
2

θ)
3/2

,(3.2a)

σ2(f, f θ) = −
f + r0

((f + r0)2 + f
2

θ)
3/2

,(3.2b)

for f ∈
(
−1

2
r0,

1
2
r0

)
, f θ ∈ R. Notice that σi(f, f

′
θ) ∈ C1(I) since f ∈ C2(I)

in view of the embedding W 3−1/α,α(I) →֒ C2,β(I), β < 1 − 2/α, and
f ′′

θ ∈ W 1−1/α,α(I). Hence κ(f) ∈ W 1−1/α,α(I). Now we can verify easily
that the derivative of f → σi(f, f

′
θ) reads

(3.3) dσi
(f)[g] =

∂σi

∂f
(f, f ′

θ) · g +
∂σi

∂f θ

(f, f ′
θ) · g

′
θ, i = 1, 2.

The above derivative can be understood as a function C2(I) → [C2(I) →
C1(I)]. Thus in view of the formulae (3.1), (3.2), (3.3) together with the
embedding W 3−1/α,α(I) →֒ C2,β(I) the operator f → κ(f) has a continuous
derivative as a function W 3−1/α,α(I) → [W 3−1/α,α(I) →W 1−1/α,α(I)].

Now we deal with the operator Sn (cf. (1.7)):

(J, f) → Sn(J, f) = η{tr |Γ0(f)(∂j(ui(J, f) ◦ Tf )

+ ∂i(uj(J, f) ◦ Tf )) · nj |Γ0(f)ni|Γ0(f)

− tr |Γ0(f)(p ◦ Tf )} ◦ τf

(τf stands for the polar parametrization of Γ0(f)). First, we establish the
differentiability of the function

(3.4) (J, f) → {∂j(ui(J, f) ◦ Tf )} ◦ T−1
f .

This function can be viewed as the superposition of (J, f) → (J, f, f) with

(3.5) (J, f, g) → {∂j(ui(J, f) ◦ Tg)} ◦ T
−1
g .
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The partial derivative of (3.5) w.r.t. (J, f) is equal to the derivative of
(J, f) → ui composed with the linear function ui → {∂j(ui ◦ Tg)} ◦ T−1

g .
The former is continuously differentiable by Theorem 2.1. Hence the par-
tial derivative of (3.5) w.r.t. (J, f) exists and is continuous as a function
R ×W 3−1/α,α(I) → [R ×W 3−1/α,α(I) → W 1,α(Ω00)]. The partial deriva-
tive of (3.5) w.r.t. g exists and is continuous, being the derivative of a func-
tion of type (2.4b) for |γ| = 1 (cf. Lemma 2.5). Thus (3.5) is continuously
differentiable and, consequently, the differentiability of (3.4) follows.

Next, we establish the differentiability of the function f → ni|Γ0(f). By
the formulae (2.3ab) this function can be written as f → sin θ · σi1(f, f

′
θ) +

cos θ · σi2(f, f
′
θ), where (f, f θ) → σij(f, f θ) ∈ R, i, j = 1, 2, are regular

functions of the parameters f θ ∈ R and f ∈ (− 1
2r0,

1
2r0). Now the derivative

of f → σij(f, f
′
θ) can be expressed by the following formula:

dσij
(f)[g] =

∂σij

∂f
(f, f ′

θ) · g +
∂σij

∂f θ

(f, f ′
θ) · g

′
θ, i, j = 1, 2,

and this derivative can be understood as a function C2(I) → [C2(I) →
C1(I)]. Hence f → ni|Γ0(f) is continuously differentiable.

Moreover, the function (J, f) → {tr |Γ0(f)(p(J, f)◦Tf )}◦τf = {tr |Γ00
p}◦

τ0 is differentiable in suitable spaces by Theorem 2.1.

Now the continuous differentiability of (J, f) → Sn(J, f) can be es-
tablished easily since this function is a polynomial in differentiable func-
tions, the derivative being understood as a function R × W 3−1/α,α(I) →
[R ×W 3−1/α,α(I) →W 1−1/α,α(I)].

Next, let us establish the differentiability of vol (cf. (1.7) and the expla-
nations below). Define a function L2(I) → [L2(I) → R] by

(3.6) dvol(f)[g] =
2π∫

0

(f + r0)g dθ.

One can easily verify that this is the continuous derivative of f → vol(f).

Next, the differentiability of Λ is obvious since it is an affine function
(cf. (1.7) and the explanations below).

In view of the differentiability of κ, Sn, Λ, vol the differentiability of V is
obvious and the lemma is proved.

Presently, let us calculate the partial derivative D1V of V w.r.t. (f, λ)
at 0. Denote D1V = (D1κ+D1Sn +D1Λ, D1 vol). We obtain:

D1κ(0)[g] = −
τ

r20
(g′′θ + g),(3.7a)

D1Sn(0, 0)[g] = 0,(3.7b)

D1Λ(0)[µ] = µ,(3.7c)
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D1 vol(0)[g] = r0

2π∫

0

g(θ) dθ.(3.7d)

The partial derivative D1Sn is zero since for J = 0 the solution (φ,u, p) of
problem (1.10) is zero so that Sn(0, f) = 0.

We want to show the following

Lemma 3.2. The partial derivative D1V of V w.r.t. (f, λ) at 0 is an

isomorphism.

P r o o f. In view of the formulae (3.7a–d) consider the following linear
problem: find g ∈ W 3−1/α,α(I), µ ∈ R such that g satisfies the symmetry
conditions (1.8d) and

(3.8)

a) −
τ

r20
(g′′ + g) + µ = h,

b) r0

2π∫

0

g(θ) dθ = ν,

where h ∈ W 1−1/α,α(I), ν ∈ R and h satisfies the symmetry conditions
(1.9c).

First, consider the following supplementary problem: find g ∈
W 3−1/α,α(I) satisfying (1.8d) such that

(3.9) −g′′ + g = h,

where h ∈W 1−1/α,α(I) and h satisfies (1.9c).

Problem (3.9) has the following variational formulation:

(3.10)
2π∫

−2π

g′χ′ dθ +
2π∫

−2π

gχ dθ =
2π∫

−2π

hχdθ, ∀χ ∈ C∞(I).

The variational problem (3.10) can be obtained from (3.9) by multiplica-
tion of (3.9) by χ ∈ C∞(I) and integration over the interval I. Then we
decompose χ into its symmetric and antisymmetric parts: χ = χ1 + χ2,
χ1(θ)= 1

2
(χ(θ) + χ(−θ)), χ2(θ)= 1

2
(χ(θ) − χ(−θ)). Obviously, the integrals

containing χ2 are zero since g′′, g, h are even. Then we integrate by parts
to obtain (3.10) for χ1 (the boundary terms disappear since χ1 is even and
g′ is π-periodic since g is (cf. (1.8d)). The last step is to replace χ1 by χ,
which is possible since the corresponding integrals containing χ2 are zero.

The form on the left-hand side of (3.10) is H1(I)-elliptic. Thus by the
Lax–Milgram theorem we obtain a unique solution g of (3.10) such that
g ∈ H1(I). Obviously this solution satisfies condition (1.8d).
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Moreover, the definition of distributional derivatives yields

(3.11) 〈g′′, χ〉 =
2π∫

−2π

(g − h)χdx, ∀χ ∈ C∞
0 (I),

which means g′′ ∈ H0.5(I) since W 1−1/α,α(I) →֒ H0.5(I), which in turn
means g ∈ H2.5(I). Next, by the embedding H2.5(I) →֒ W 1,α(I) and by
referring once again to (3.11) we obtain g′′ ∈ W 1−1/α,α(I). Hence g ∈
W 3−1/α,α(I) and g is a unique solution of problem (3.9). Thus the operator
g → h defined by (3.9) is an isomorphism between the spaces W 3−1/α,α(I)
and W 1−1/α,α(I) with the symmetry conditions (1.8d), (1.9c).

Now let us go back to the full problem (3.8). The above result concerning
problem (3.9), the fact that the operators in (3.7cd) are one-dimensional and
the operator g → −2(τ/r20)g is compact from W 3−1/α,α(I) into W 1−1/α,α(I)
(since the embedding W 3−1/α,α(I) →֒W 1−1/α,α(I) is compact) we see that
the operator (g, µ) → (h, ν) defined by (3.8) is a Fredholm operator.

We want to show that this operator is injective. Assume (h, ν) = 0 and

integrate (3.8a) over the interval (0, 2π). We have
∫ 2π

0
g′′ dθ = 0 since g is

π-periodic by the symmetry conditions (1.8d), and
∫ 2π

0
g dθ = 0 since ν = 0

in (3.8b). Thus µ = 0. The condition −g′′ − g = 0 yields two linearly inde-
pendent functions: sin θ, cos θ. On the other hand, we have already noticed
that g is π-periodic. Hence g = 0 and the injectivity follows.

Now the operator (g, µ) → (h, ν) is an injective Fredholm operator.
Hence it is an isomorphism and the lemma is proved.

The main result of this section and the main result of this paper is
Theorem 1.1 announced in Section 1. We are now ready to prove it.

P r o o f o f T h e o r e m 1.1. The operator V of the free boundary prob-
lem (1.7) is continuously differentiable by Lemma 3.1. Moreover, the partial
derivative of V w.r.t. (f, λ) at 0 is an isomorphism by Lemma 3.2. Thus a
straightforward application of the implicit function theorem (cf. [4]) yields
the existence and uniqueness of the function J → (f, λ) for J and (f, λ)
sufficiently small. This function is continuously differentiable in the spaces
involved.

4. The linear problems. The calculation of the partial derivative
of L w.r.t. (φ,u, p) at zero leads to the Helmholtz operator and the
Stokes operator together with the boundary operators Sl and St (cf. (1.4),
(1.5) and (1.9)). First, let us deal with the Stokes problem: find (v, q) ∈
W 2,α(Ω00)

2 ×W 1,α(Ω00)/P0 satisfying the respective symmetry conditions
(1.8bc) such that
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(4.1)

a) − 2 div D(v) + ∇q = h in Ω00,

b) divv = d in Ω00,

c) v.n = s1 on Γ00,

d) s(v, q).t = s2 on Γ00,

where h ∈ Lα(Ω00)
2, d ∈ W 1,α(Ω00), s1 ∈ W 2−1/α,α(Γ00), s2 ∈

W 1−1/α,α(Γ00), and h, d, s1, s2 satisfy the respective symmetry conditions
(1.9bcd); the symmetric deformation tensor D is defined in (1.2), the Cauchy
stress tensor s is defined in (1.6), P0 is the space of constant functions. We
recall thatΩ00 is an open disk of radius r0 and Γ00 is its boundary. Moreover,
the following compatibility condition is satisfied:

(4.2)
∫

Ω00

d dx =
∫

Γ00

s1 dσ.

Theorem 4.1. The operator (v, q) → (h, d, s1, s2) defined by problem

(4.1) is an isomorphism.

Before we prove Theorem 4.1 we need some auxiliary results. Let us
consider the following problem:

(4.3) find (v, q) ∈ H2(Ω00)
2 ×H1(Ω00)/P0 such that (4.1) is satisfied for

h ∈ L2(Ω00)
2, d ∈ H1(Ω00), s1 ∈ H1.5(Γ00), s2 ∈ H0.5(Γ00).

Next, define a partially homogeneous problem: find (v, q) ∈ H2(Ω00)
2 ×

H1(Ω00)/P0 such that

(4.4)

a) − 2 div D(v) + ∇q = h in Ω00,

b) divv = 0 in Ω00,

c) v.n = 0 on Γ00,

d) s(v, q).t = s2 on Γ00,

where h ∈ L2(Ω00)
2, s2 ∈ H0.5(Γ00). We have the following

Lemma 4.1. The pair (v, q) is a solution of problem (4.4) for h = h +
2div D(gradw), s2 = s2 − s(gradw, q).t iff (v = v + gradw, q = q) is a

solution of problem (4.3), where w is a solution of the following Neumann

problem: find w ∈ H3(Ω00) such that

(4.5)
∆w = d in Ω00,

∂w

∂n
= s1 on Γ00.

P r o o f. If we substitute v + gradw for v in (4.3) then we obtain that
(v, q) satisfies (4.4). Conversely, if we substitute v − gradw for v in (4.4)
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then we obtain that (v, q) satisfies (4.3). The existence of the solution w∈
H3(Ω00) follows from the compatibility condition (4.2) (cf. [16], [7]).

Since problem (4.4) is considered in dimension 2 we can represent its
solution v as

v = curlw =

(
∂w

∂x2
,−

∂w

∂x1

)
,

where w is a scalar function (cf. [16], Proposition 2.3, Ch. I). Condition
(4.4b) is then satisfied automatically, v.n = ∂w/∂t and condition (4.4c)
implies that w is constant along Γ00. Let then w = 0 on Γ00. By acting with
the curl operator (curlh = ∂h2/∂x1 − ∂h1/∂x2) on (4.4a) we arrive at the
following problem: find w ∈ H3(Ω00) such that

(4.6)

a) − 2 curl divD(curlw) = ĥ in Ω00,

b) w = 0 on Γ00,

c) s(curlw, q).t = ŝ2 on Γ00,

where ĥ ∈ H−1(Ω00), ŝ2 ∈ H0.5(Γ00).

We have the following:

Lemma 4.2. Let ĥ = curlh and ŝ2 = s2. If v is the first component

of a solution of problem (4.4), then there exists w ∈ H3(Ω00) such that

curlw = v and w is a solution of (4.6). Conversely , if w ∈ H3(Ω00) is a

solution of problem (4.6), then there exists a unique q ∈ H1(Ω00)/P0 such

that (v = curlw, q) is a solution of (4.4).

P r o o f. For the first part of the lemma it remains to notice that if v ∈
H2(Ω00)

2 satisfies (4.4b), then there exists a stream function w ∈ H3(Ω00)
such that v = curlw (cf. [7], Th. 3.1, Ch. I, and the remark just after
the proof). Assume now that w ∈ H3(Ω00) is a solution of (4.6). Then
by Theorem 2.9, Ch. I of [7] we obtain the existence and uniqueness of a
pressure field q ∈ H1(Ω00)/P0 such that the second assertion holds.

Now we study problem (4.6). We are interested in obtaining the existence
and uniqueness of the stream function w ∈ H3(Ω00). To this end we derive
a suitable Green formula and, consequently, a generalized (variational) form
of problem (4.6). Then we study the coercivity and ellipticity of the bilinear
form of the variational problem.

By the definition of distributional derivatives we obtain

(4.7) − 〈2 curl divD(curlw), χ〉H−1×H1

= −
∫

Ω00

(2 div D(curlw)).curlχdx, ∀χ ∈ C∞(Ω00) ∩H
1
0 (Ω00).
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After writing out the integrand on the right-hand side of (4.7) and using the
Gauss formula we arrive at

(4.8) −
∫

Ω00

{(2∂2
1∂2w − ∂2∂

2
1w + ∂3

2w) · ∂2χ

− (−∂3
1w + ∂1∂

2
2w − 2∂2

2∂1w) · ∂1χ} dx

= A(w,χ) −
∫

Γ00

{2∂1∂2w∂2χ · n1 − ∂2
1w∂2χ · n2

+ ∂2
2w∂2χ · n2 + ∂2

1w∂1χ · n1 − ∂2
2w∂1χ · n1

+ 2∂2∂1w∂1χ · n2} dσ, ∀χ ∈ C∞(Ω00) ∩H
1
0 (Ω00),

where the linear form A is defined as follows:

A(w,χ) =
∫

Ω00

{2∂1∂2w∂1∂2χ− ∂2
1w∂

2
2χ+ ∂2

2w∂
2
2χ(4.9)

+ ∂2
1w∂

2
1χ− ∂2

2w∂
2
1χ+ 2∂2∂1w∂2∂1χ} dx.

Now we use the following formulae:

∂2χ = +
∂χ

∂t
n1 −

∂χ

∂n
t1 on Γ00,

∂1χ = −
∂χ

∂t
n2 +

∂χ

∂n
t2 on Γ00,

which, in view of ∂χ/∂t = 0 and (4.7), (4.8), yield

(4.10) − 〈2 curl divD(curlw), χ〉H−1×H1 = A(w,χ) +
∫

Γ00

s(w) ·
∂χ

∂n
dσ,

where

s(w) = 2∂1∂2w · n1t1 − 2∂2∂1w · n2t2 + (∂2
2w − ∂2

1w) · (n1t2 − n2t1).

The expression s(w) is just the boundary operator on the left-hand side of
(4.6c): s(w) = s(curlw, q).t (we omitted q in the definition of s since the
tangent component of s does not depend on q). Formula (4.10) is just the
desired Green formula for problem (4.6), which justifies the introduction of
the following variational problem: find w ∈ H2(Ω00) such that

(4.11) A(w,χ)

= 〈ĥ, χ〉H−1×H1 −
∫

Γ00

ŝ2(w)
∂χ

∂n
dσ, ∀χ ∈ H2(Ω00) ∩H

1
0 (Ω00).

We introduce the following space:

X = {χ ∈ H2(Ω00) ∩H
1
0 (Ω00) : χ(x1, x2) = −χ(−x1, x2) = −χ(x1,−x2)},

with the standard norm ofH2(Ω00). Now we are ready to prove the following
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Lemma 4.3. The form A : X ×X → R defined in (4.9) is X -elliptic and

continuous.

P r o o f. We first prove the coercivity of A in H2(Ω00), i.e.

(4.12) A(χ, χ) + ‖χ‖2
1,Ω00

≥ C‖χ‖2
2,Ω00

, ∀χ ∈ H2(Ω00).

We have

(4.13) A(χ, χ) =
∫

Ω00

{4(∂1∂2χ)2 + (∂2
2χ− ∂2

1χ)2} dx.

Define the space

Y = {χ ∈ H1(Ω00) : ∂1∂2χ ∈ L2(Ω00), ∂
2
2χ− ∂2

1χ ∈ L2(Ω00)},

with the norm (A(χ, χ)+‖χ‖2
1,Ω00

)1/2. Let χ∈Y. We have ∂2
2χ∈H

−1(Ω00),

∂1∂
2
2χ = ∂2(∂1∂2χ) ∈ H−1(Ω00) and ∂2∂

2
2χ = ∂2(∂

2
2χ− ∂2

1χ) + ∂1(∂1∂2χ) ∈
H−1(Ω00) since ∂1∂2χ and ∂2

2χ− ∂2
1χ are in L2(Ω00).

Now using Theorem 3.2, Ch. 3 of [6] we get ∂2
2χ ∈ L2(Ω00) and, conse-

quently, ∂2
1χ ∈ L2(Ω00), which means Y = H2(Ω00). The identity operator

from H2(Ω00) onto Y is obviously continuous, and so is its inverse, which
yields (4.12).

To prove the ellipticity we want to show that A(·, ·)1/2 is a norm equiv-
alent to ‖ · ‖2,Ω00

in X . First, we check that

(4.14) A(χ, χ) = 0 ⇔ χ = 0, ∀χ ∈ X .

By (4.13) the condition A(χ, χ) = 0 implies ∂1∂2χ = 0, which means
χ(x1, x2) = χ1(x1)+χ2(x2). Moreover, ∂2

2χ=∂2
1χ (cf. (4.13)), which implies

χ′′
1(x1) = χ′′

2(x2) = c, where c is a constant. Hence χ1 = cx2
1 + c1x1 + c2,

χ2 = cx2
2 + c3x2 + c4 a.e., where ci, i = 1, . . . , 4, are some constants. On the

other hand, we have χ ∈ X , which implies χ ≡ 0.
We show that

(4.15) A(χ, χ) ≥ C‖χ‖2
2,Ω00

, ∀χ ∈ X .

Assume the contrary to (4.15), from which it follows that there exists a
sequence {χn}

∞
n=1 such that ‖χn‖2,Ω00

= 1 and A(χn, χn) → 0. We can
derive a subsequence of the above sequence, still denoted by χn, that con-
verges weakly in X to some χ ∈ X . Since H2(Ω00) is compactly embedded
in H1(Ω00), χn → χ strongly in H1(Ω00).

Moreover, since the function R
3 ∋ (x1, x2, x3) → 4x2

1 + (x2 − x3)
2 ∈

R is convex the form A is weakly lower semicontinuous in H2(Ω00) (cf.
[5], Th. 1.1, Ch. 1, and remark (iii) after it), i.e. lim infn→∞ A(χn, χn) ≥
A(χ, χ), which implies A(χ, χ) = 0 and, consequently, by (4.14), χ = 0.
Now by referring to the coercivity of A (cf. (4.12)) we see that the sequence
{χn}

∞
n=1 converges strongly to 0 inH2(Ω00).On the other hand, ‖χn‖2,Ω00

=
1, which is a contradiction.
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We have proved that the form A is X -elliptic. The continuity of A is
obvious. Hence the lemma follows.

Now we are ready to prove Theorem 4.1.

P r o o f o f T h e o r e m 4.1. First, we show the injectivity of the operator.
Let (h, d, s1, s2)=0 and let (v, q) be a solution of (4.1). Consequently, there
exists a stream function w ∈ H3(Ω00) such that curlw = v and w is a

solution of (4.6) for (ĥ, ŝ2) = 0. Moreover, in view of the Green formula
(4.10), w is a solution of the variational problem (4.11) as well. Moreover,
we can choose w in such a way that w ∈ X since v satisfies the symmetry
condition (1.8b) and by the relation v.n = ∂w/∂t the stream function w is
constant along the boundary, so that we can always change it by a constant
to obtain w ∈ H1

0 (Ω00). The Lax–Milgram theorem and the X -ellipticity of
the form A (cf. Lemma 4.3) yield the uniqueness of the solution in X . Hence
we get w = 0. Consequently, v = 0 and by Lemma 4.2 (uniqueness in the
quotient space) q ∈ P0. This shows the injectivity.

Now we want to check that the operator (v, q) → (h, d, s1, s2) is sur-
jective. By Lemmas 4.1, 4.2 and the derivation of the variational prob-
lem (4.11) we know that v is the first component of a solution of problem
(4.3) iff w ∈ H3(Ω00) is a solution of the variational problem (4.11), where
curlw = v, v = v − gradw, and w ∈ H3(Ω00) is a solution of the Neu-

mann problem (4.5), ĥ = curl(h+2div D(gradw)), ŝ2 = s2−s(gradw, q).t
(cf. (4.11)).

Now the form A is X -elliptic by Lemma 4.3. Thus the Lax-Milgram
theorem yields the existence of a solution w ∈ X such that the variational
equation (4.11) is satisfied for any χ ∈ X . The symmetry conditions for h,
d, s1, s2 (cf. (4.1)) imply that ŝ2 satisfies the same symmetry condition as
s2 and h = h + 2divD(gradw) satisfies the same symmetry conditions as
h. Moreover, for every χ we have the decomposition χ = χ1+χ2+χ3, where
χ1 is antisymmetric w.r.t. both axes, χ2 is antisymmetric w.r.t. one axis and
symmetric w.r.t. to the other and χ3 is symmetric w.r.t. to one axis. This
yields that the variational equation (4.11) is satisfied for all χ ∈ H2(Ω00) ∩
H1

0 (Ω00). The form A is coercive in H2(Ω00) (cf. (4.12)). Thus taking into
account standard results concerning the regularity of solutions of elliptic
problems (cf. e.g. [11], Ch. 4) we conclude that w ∈ H3(Ω00)∩X . In view of
Lemmas 4.1 and 4.2 we see that there exists a pressure field q ∈ H1(Ω00)/P0

such that (v = curlw+gradw, q) satisfies problem (4.3). Since w ∈ X and
w is obviously symmetric w.r.t. both axes, v and q satisfy the appropriate
symmetry conditions (cf. (4.1)). Thus if we add the symmetry conditions
(1.8bc) and (1.9bcd) to the formulation of problem (4.3), then this problem
defines an isomorphism, so that we can estimate (v, p) in the norm of the
space H2(Ω00)

2 ×H1(Ω00)/P0 by the data.
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Now we show that v ∈ W 2,α(Ω00)
2 and q ∈ W 1,α(Ω00)/P0, α > 2. To

this end we use the theory presented in [1]. First, observe that there exists
a sequence {hn, dn, s1n, s2n}

∞
n=1 satisfying

hn ∈ H1(Ω00)
2 and hn → h in Lα(Ω00)

2,

dn ∈ H2(Ω00 and dn → d in W 1,α(Ω00),

s1n ∈ H2.5(Γ00) and s1n → s1 in W 2−1/α,α(Γ00),

s2n ∈ H1.5(Γ00) and s2n → s2 in W 1−1/α,α(Γ00).

Moreover, hn, dn, s1n, s2n satisfy the symmetry conditions analogous to
those for h, d, s1, s2 (cf. (4.1) and Sec. 1). The system of three scalar equa-
tions (4.1ab) for the three unknowns v1, v2, q is equivalent to the same
system with −2 divD(v) replaced by −∆v. After this change it is easy to
see that this last system is uniformly elliptic and satisfies the “Supplemen-
tary Condition on L” from [1] (cf. also [16], Proposition 2.2, Ch. I). The
boundary conditions (4.1cd) satisfy the “Complementing Boundary Condi-
tion” from [1] (cf. also [15]). Thus by Theorem 10.5 of [1], bearing in mind
that for hn, dn, s1n, s2n the solution (vn, qn) ∈ H2(Ω00)

2 × H1(Ω00) of
problem (4.3) exists, we get vn ∈ H3(Ω00)

2 and qn ∈ H2(Ω00). By the
appropriate embeddings of Sobolev spaces we obtain vn ∈ W 2,α(Ω00)

2,
qn ∈ W 1,α(Ω00), hn ∈ Lα(Ω00)

2, dn ∈ W 1,α(Ω00), s1n ∈ W 2−1/α,α(Γ00),
s2n ∈ W 1−1/α,α(Γ00). Then we apply once again Theorem 10.5 of [1] to
estimate (vn, qn) in terms of (hn, dn, s1n, s2n) in the norms of the above
spaces. In this estimation the term on the right-hand side involving the Lα

norms of vn and qn can be estimated by the data since, as we have already
stated, problem (4.3) with the appropriate symmetry conditions defines an
isomorphism. Since {(hn, dn, s1n, s2n)}∞n=1 is a Cauchy sequence the linear-
ity of problem (4.1) and the above estimate imply that {(vn, qn)}∞n=1 is a
Cauchy sequence in W 2,α(Ω00)

2 ×W 1,α(Ω00)/P0. On the other hand, the
sequence {(vn, qn)}∞n=1 converges to the solution (v, q) of problem (4.3) in
H2(Ω00)

2 ×H1(Ω00)/P0. Hence (v, q) ∈ W 2,α(Ω00)
2 ×W 1,α(Ω00)/P0 and

the surjectivity of the operator (v, q) → (h, d, s1, s2) follows. The injectivity
and surjectivity imply that the linear operator is an isomorphism.

Presently, we deal with the linearized problem for the potential ψ: find
ψ ∈W 2

1 (R2) satisfying the symmetry condition (1.8a) such that

(4.16) −∆ψ + iβ(ψ − I(ψ)) = ξ,

where ξ ∈ Z = W 0
1 (R2) ∩ (W 1

0 (R2))′ and ξ satisfies (1.8a).

In view of the density of the space D(R2) of smooth complex-valued
functions with compact support in the space W 1

0 (R2) (cf. [12], [10]) and the
definition of the distributional differentiation we can consider a generalized
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problem for the potential: find ψ ∈W 1
0 (R2) such that

(4.17) B(ψ,χ) = 〈ξ, χ〉(W 1

0
)′×W 1

0

, ∀χ ∈ D(R2),

where B is a sesquilinear form defined as follows:

B(ψ,χ) =
2∑

i=1

∫

R
2

∂ψ

∂xi
·
∂χ

∂xi
dx(4.18a)

+

2∑

k=0

{
iβ
∫

Ωk

ψχdx−
iβ

|Ωk|

∫

Ωk

ψ dx
∫

Ωk

χdx
}
,

where

(4.18b) 〈ξ, χ〉(W 1

0
)′×W 1

0

=
∫

R
2

ξχ dx.

The integration in the second term on the right-hand side of (4.18a)
extends over the bounded regions Ωk, k = 0, 1, 2 only, since β is zero beyond
them. We need the following

Theorem 4.2. The operator ψ → ξ defined by problem (4.16) is an

isomorphism.

P r o o f. The form B is continuous in the space W 1
0 (R2) ×W 1

0 (R2) and
W 1

0 (R2)/P0-elliptic. The continuity comes from the Schwarz inequality ap-
plied to both members in the definition (4.18a) of B, and the fact that
W 1

0 (R2) →֒ H1
loc(R

2). The W 1
0 (R2)/P0-ellipticity comes from the fact that

the seminorm |·|1,0,R2 ofW 1
0 (R2) is a norm in the quotient space W 1

0 (R2)/P0,
equivalent to the standard one (cf. [12], [9] or [10]).

First, we check the injectivity. Assume that ξ = 0. If ψ is a solution of
(4.16) then it is a solution of the variational problem (4.17). Since the form
B is W 1

0 (R2)/P0-elliptic the Lax–Milgram theorem yields the uniqueness of
solution of (4.17) in the quotient space. Thus ψ ∈ P0, and the symmetry
condition (1.8a) yields ψ = 0, which means that the operator ψ → ξ is
injective.

Next, we verify the surjectivity. Assume that ξ ∈ Z. Since ξ satisfies the
symmetry condition (1.8a) as well we infer that ξ ∈W 0

1 (R2)∩(W 1
0 (R2)/P0)

′.
The Lax–Milgram theorem yields the existence of the potential ψ in W 1

0 (R2)

satisfying (4.17). If we substitute ψ̂ for ψ and χ̂ for χ in (4.17), where

ψ̂(x1, x2) = −ψ(−x1, x2) and χ̂(x1, x2) = −χ(−x1, x2), then, in view of the

symmetry condition for ξ, ψ̂ again satisfies (4.17). Similarly, ψ̌(x1, x2) =
ψ(x1,−x2) satisfies this equation. The uniqueness in the quotient space im-
plies ψ(x1, x2) = −ψ(−x1, x2)+ c1 = ψ(x1,−x2)+ c2, where c1, c2 are some
constants. On the other hand, ψ ∈ W 1

0 (R2), which implies that c2 = 0,
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and thus we have the symmetry conditions for ψ− c1/2. It remains to show
that ψ ∈ W 2

1 (R2). Equation (4.16) can be written as −∆ψ = ξ, where
ξ = ξ − iβ(ψ − I(ψ)). Obviously, ξ ∈ Z since β = 0 beyond Ω0 ∪ Ω1 ∪ Ω2.
Now we can use the regularity result of [10] to obtain ψ ∈ W 2

1 (R2), which
gives the surjectivity of the operator ψ → ξ. Obviously, this operator is
continuous from W 2

1 (R2) into Z. Thus the operator is injective, surjective
and continuous. Hence it is an isomorphism.
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