Resultant and the Lojasiewicz exponent

by J. CHĄDZYŃSKI and T. KRASIŃSKI (Łódź)

Abstract. An effective formula for the Lojasiewicz exponent of a polynomial mapping of \mathbb{C}^2 into \mathbb{C}^2 at an isolated zero in terms of the resultant of its components is given.

1. Introduction. Let $H = (f,g) : U \to \mathbb{C}^2$, $0 \in U \subset \mathbb{C}^2$, be a holomorphic mapping having an isolated zero at the origin. The *Lojasiewicz* exponent of H at 0 is the number

 $\mathcal{L}_{0}(H) = \inf \{ \nu \in \mathbb{R} : \exists A > 0, \ \exists B > 0, \ \forall |z| < B, \ A|z|^{\nu} \le |H(z)| \},\$

where $|z| = \max(|x|, |y|)$ for $z = (x, y) \in \mathbb{C}^2$. This exponent plays an important role in the theory of singularities and has been studied by several authors. Information on this subject can be found in [CK₁].

The aim of the present paper is to give an effective formula for $\mathcal{L}_0(H)$. The previous results have not given such possibilities. The formula obtained in [CK₁] and, in another way, in [CP] needs parametrizations of the branches of the curve $\{fg = 0\}$, whereas the formula in [P] uses the characteristic polynomials of both x and y relative to H. The formulae in [LT] are not effective.

The main result of our paper is Theorem 3.1 which enables us to find $\mathcal{L}_0(H)$ effectively for a polynomial mapping H in terms of the resultant. The restriction to polynomial mappings is inspired only by the wish of preparing a computer programme for calculating the Lojasiewicz exponent. A possible extension of Theorem 3.1 to the whole class of holomorphic mappings is given in Remark 3.4.

We follow our paper $[CK_2]$ in which an effective formula for the Lojasiewicz exponent at infinity was given.

This research was realized within the project No. 2 1096 91 01 financed in 1991–1994 by KBN.

¹⁹⁹¹ Mathematics Subject Classification: 14B05, 32S05.

Key words and phrases: holomorphic mapping, polynomial mapping, Lojasiewicz exponent, resultant.

2. Notations and definitions. We use the same notations and definitions as in $[CK_1]$, except for the symbol $\mathcal{L}_0(H)$.

3. The main result. Let $H = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial mapping satisfying the following conditions:

- (i) $H^{-1}(0)$ is a finite fibre,
- (ii) H(0, y) = 0 if and only if y = 0,
- (iii) $\deg_u f = \deg f(0, y)$ or $\deg_u g = \deg g(0, y)$.

Let $w = (x, y) \in \mathbb{C}^2$ be an arbitrary point and let $Q(w, x) = \operatorname{Res}_y(f(x, y) - u, g(x, y) - v)$ be the resultant of f(x, y) - u and g(x, y) - v with respect to y. Put

(1)
$$Q(w,x) = Q_N(w)x^N + \ldots + Q_0(w)$$

Since $H^{-1}(0)$ is finite, not all Q_i vanish for w = 0. Since $Q_0(0) = 0$, there exists μ , $1 \le \mu \le N$, such that $Q_0(0) = \ldots = Q_{\mu-1}(0) = 0$ and $Q_{\mu}(0) \ne 0$. Let H = (f, g) satisfy (i)–(iii).

(3.1) Theorem. If

(iv) ord $f = \operatorname{ord} f(0, y)$ and $\operatorname{ord} g = \operatorname{ord} g(0, y)$,

then

$$\mathcal{L}_0(H) = \left[\min_{i=0}^{\mu-1} \frac{\operatorname{ord} Q_i}{\mu-i}\right]^{-1}$$

and μ is the multiplicity of H at 0.

(3.2) Remark. Assumptions (ii)–(iv) have simple geometric interpretations. Condition (ii) means that H has only one zero on the y-axis, at the origin. Condition (iii) means that the point at infinity lying on the y-axis does not belong to at least one of the curves $\{f = 0\}$ or $\{g = 0\}$. Finally, (iv) means that the y-axis is tangent at the origin neither to $\{f = 0\}$ nor to $\{g = 0\}$. The assumptions do not restrict our considerations because, under the general assumptions that H has a finite number of zeros and H(0) = 0, one can get them by using a linear automorphism of the domain of H. $\mathcal{L}_0(H)$ is invariant with respect to such mappings.

(3.3) R e m a r k. The following example shows that assumption (iv) cannot be weakened. Let $H(z) = (f(x, y), g(x, y)) = ((y^3 - x)^2, y^2 x)$. One can easily find, by using the main theorem of [CK₁], that $\mathcal{L}_0(H) = 6$, whereas $Q(w, x) = x^{10} - 2ux^8 + u^2x^6 - 2v^3x^5 - 2uv^3x^3 + v^6$ and $\left[\min_{i=0}^{\mu-1} \frac{\operatorname{ord} Q_i}{\mu-i}\right]^{-1} = 2$.

(3.4) R e m a r k. The formula in Theorem 3.1 can easily be generalized (the proof runs actually without any changes) to mappings whose components are pseudopolynomials. Namely, let $H = (f,g) : V \times \mathbb{C} \to \mathbb{C}^2$ where

f(x, y), g(x, y) are polynomials in y with coefficients (functions of x) holomorphic in a neighbourhood V of the origin in \mathbb{C} . Instead of (i), (ii) we assume that $H^{-1}(0) = \{0\}$, and instead of (iii) that at least one of f and g is monic with respect to y. For $w \in \mathbb{C}^2$, we define Q(w, x) as in Theorem 3.1. Now, let

$$Q(w,x) = \sum_{j=0}^{\infty} Q_j(w) x^j, \quad (w,x) \in \mathbb{C}^2 \times V.$$

As before (see [C], Lemma 1), there exists $\mu \ge 1$ such that $Q_0(0) = \ldots = Q_{\mu-1}(0) = 0$, $Q_{\mu}(0) \ne 0$, thus the theorem analogous to Theorem 3.1 holds.

This theorem can also be used for an arbitrary holomorphic mapping with an isolated zero. For if $\widetilde{H} = (\widetilde{f}, \widetilde{g}) : \widetilde{U} \to \mathbb{C}^2, \ 0 \in \widetilde{U} \subset \mathbb{C}^2$, is a holomorphic mapping having an isolated zero at the origin, then, using a linear automorphism of \mathbb{C}^2 , we may assume that \widetilde{f} and \widetilde{g} are regular in y. Let f, g be distinguished pseudopolynomials associated with $\widetilde{f}, \widetilde{g}$, respectively, by the Weierstrass preparation theorem. Then $\mathcal{L}_0(H) = \mathcal{L}_0(H)$, where H =(f, g) and satisfies the assumptions at the beginning of the remark.

4. Auxiliary lemma. Let $Q(w, x) = Q_N(w)x^N + \ldots + Q_0(w)$ be a polynomial with coefficients holomorphic in a neighbourhood of the origin in \mathbb{C}^n and let $Q_0(0) = \ldots = Q_{\mu-1}(0) = 0$, $Q_{\mu}(0) \neq 0$, $0 < \mu \leq N$. Put

(2)
$$\delta(Q) = \left[\min_{i=0}^{\mu-1} \frac{\operatorname{ord} Q_i}{\mu-i}\right]^{-1}.$$

(4.1) LEMMA. $\delta(Q)$ is the least real number ν for which there exist positive numbers A, B such that

$$\{(w,x): |w| < B, \ Q(w,x) = 0\} \subset \{(w,x): |w| < B, \ A|x|^{\nu} \le |w|\}.$$

Proof. By the Weierstrass preparation theorem, there exist $\rho > 0$ and a distinguished pseudopolynomial P(w, x) of the form

$$P(w,x) = x^{\mu} + a_{\mu-1}(w)x^{\mu-1} + \ldots + a_0(w), \quad a_i(0) = 0,$$

such that, for $|w| < \rho$, $|x| < \rho$, we have

(3)
$$Q(w,x) = P(w,x)R(w,x), \quad R(w,x) \neq 0.$$

From Lemma 8.1 of $[CK_2]$ we have

(4)
$$\delta(Q) = \left[\min_{i=0}^{\mu-1} \frac{\operatorname{ord} a_i}{\mu-i}\right]^{-1}.$$

Now, we show that there exist A, B > 0 such that

(5)
$$\{(w,x): |w| < B, Q(w,x) = 0\} \subset \{(w,x): |w| < B, A|x|^{\delta(Q)} \le |w|\}.$$

Indeed, by Proposition 2.2 of [P] and by (4), there exist $A_1, B_1 > 0$ such that

 $\{(w,x): |w| < B_1, \ P(w,x) = 0\} \subset \{(w,x): |w| < B_1, \ A_1|x|^{\delta(Q)} \le |w|\}.$ Hence and from (3) we get, for $\rho < B_1$,

(6) { $(w,x): |w| < \varrho, |x| < \varrho, Q(w,x) = 0$ } $\subset \{(w,x): |w| < \varrho, |x| < \varrho, A_1 |x|^{\delta(Q)} \le |w|\}.$

This gives (5) for $A = \min(A_1, \varrho^{-\delta(Q)+1})$ and $B = \varrho$. It remains to show that if there exist A, B > 0 and $\nu \in \mathbb{R}$ such that

 $(7) \quad \{(w,x): |w| < B, \ Q(w,x) = 0\} \subset \{(w,x): |w| < B, \ A|x|^{\nu} \le |w|\},$

then $\nu \geq \delta(Q)$. In fact, from (7) we get, for $\rho < B$,

(8)
$$\{(w, x) : |w| < \varrho, |x| < \varrho, Q(w, x) = 0\}$$

 $\subset \{(w,x): |w|<\varrho, \ |x|<\varrho, \ A|x|^\nu\leq |w|\}.$

Take a sufficiently small $\varepsilon > 0$ such that all the roots of the equations P(w, x) = 0 for $|w| < \varepsilon$ lie in the disc $\{x : |x| < \varrho\}$. Then, from (8) we get

$$\{(w,x): |w| < \varepsilon, \ P(w,x) = 0\} \subset \{(w,x): |w| < \varepsilon, \ A|x|^{\nu} \le |w|\}.$$

Now, Lemma 2.4 of [P] and (4) yield $\nu \geq \delta(P)$.

5. The set N(H, x). In the sequel, let H be a polynomial mapping satisfying conditions (i)–(iii). We define

 $N(H, x) = \{ \nu \in \mathbb{R} : \exists A > 0, \ \exists B > 0, \ \forall |x| < B, \ A|x|^{\nu} \le |H(z)| \},$ where z = (x, y).

Let Q be defined as in (1) and $\delta(Q)$ as in (2).

(5.1) PROPOSITION. $\delta(Q)$ is the least real number belonging to N(H, x).

Proof. From the property of the resultant we have $Q(H(z), x) \equiv 0$. Then, by Lemma 4.1, we have $\delta(Q) \in N(H, x)$.

Take now $\nu \in N(H, x)$. Then there exist A, B > 0 such that $A|x|^{\nu} \leq |H(z)|$ for |x| < B. Take w, x such that |x| < B and Q(w, x) = 0. By the property of the resultant, there exists z = (x, y) such that w = H(z). Hence $A|x|^{\nu} \leq |w|$. Then from Lemma 4.1 we get $\delta(Q) \leq \nu$.

6. Proof of Theorem 3.1. We begin with a proposition following directly from the main theorem in $[CK_1]$.

(6.1) PROPOSITION. If $H = (f,g) : U \to \mathbb{C}^2$, $0 \in U \subset \mathbb{C}^2$, is a holomorphic mapping having an isolated zero at the origin, then

(a) there exist positive numbers A, B such that

$$A|z|^{\mathcal{L}_0(H)} \le |H(z)| \quad \text{for } |z| < B,$$

(b) if ord f = ord f(0, y) and ord g = ord g(0, y), then there exists a branch Γ of the curve $\{fg = 0\}$ in a neighbourhood of the origin such that

$$|x| \sim |z|, \quad |z|^{\mathcal{L}_0(H)} \sim |H(z)| \quad \text{for } |z| \to 0 \text{ and } z \in \Gamma.$$

Let now H be a polynomial mapping satisfying (i)–(iii). First, we show

(6.2) LEMMA. Under the above assumptions, $\mathcal{L}_0(H) \in N(H, x)$.

Proof. Since H has an isolated zero at the origin, by Proposition 6.1(a) there exist $A_1, B_1 > 0$ such that

(8)
$$A_1|z|^{\mathcal{L}_0(H)} \le |H(z)|$$
 for $|z| < B_1$.

Now, we claim that there exist $A_2, \eta > 0$ such that

(9)
$$|H(z)| \ge A_2 \quad \text{for } |x| < \eta \text{ and } |y| \ge B_1.$$

Indeed, otherwise there would exist a sequence $\{(x_n, y_n)\}$ such that $x_n \to 0$, $|y_n| > B_1$ and $H(x_n, y_n) \to 0$. Then, taking a subsequence if necessary, we may assume that $y_n \to \infty$ or $y_n \to y_0$, $|y_0| \ge B_1$. In the first case, we obtain a contradiction with (iii), whereas in the second case, we have $H(0, y_0) = 0$, which contradicts (ii).

From (8) and (9), taking $B = \min(B_1, \eta, 1)$ and $A = \min(A_1, A_2)$ and noting that $|x| \leq |z|$, we obtain

$$|A|x|^{\mathcal{L}_0(H)} \le |H(z)| \quad \text{for } |x| < B,$$

which concludes the proof.

Proof of Theorem 3.1. From Theorem 5.3 in Ch. IV of [W] it follows that $\mu = \mu(f, g)$.

Let $\delta(Q)$ be defined as in (2). From Lemma 6.2 and Proposition 5.1 we get $\delta(Q) \leq \mathcal{L}_0(H)$.

Proposition 5.1 implies that there exist A, B > 0 such that

(10)
$$A|x|^{\delta(Q)} \le |H(z)| \quad \text{for } |x| < B.$$

Considering (10) on the branch from Proposition 6.1(b), we easily conclude that $\mathcal{L}_0(H) \leq \delta(Q)$. This ends the proof.

References

- [C] J. Chądzyński, On the order of an isolated zero of a holomorphic mapping, Bull. Polish Acad. Sci. Math. 31 (1983), 121–128.
- [CK1] J. Chądzyński and T. Krasiński, The Lojasiewicz exponent of an analytic mapping of two complex variables at an isolated zero, in: Singularities, S. Lojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 139–146.
- [CK₂] —, —, On the Lojasiewicz exponent at infinity for polynomial mappings of C² into C² and components of polynomial automorphisms of C², Ann. Polon. Math. 57 (1992), 291–302.

J. Chądzyński and T. Krasiński

- [CP] J. Chądzyński and A. Płoski, An inequality for the intersection multiplicity of analytic curves, Bull. Polish Acad. Sci. Math. 36 (1988), 113–117.
- [LT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et équisingularité, Centre de Mathématiques, École Polytechnique, 1974.
- [P] A. Płoski, Multiplicity and the Lojasiewicz exponent, in: Singularities, S. Lojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 353–364.
- [W] R. J. Walker, Algebraic Curves, Springer, New York, 1978.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ŁÓDŹ S. BANACHA 22 90-238 ŁÓDŹ, POLAND E-mail: KRASINSK@PLUNLO51.BITNET

Reçu par la Rédaction le 18.5.1994

100