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Resultant and the  Lojasiewicz exponent

by J. Cha̧dzyński and T. Krasiński ( Lódź)

Abstract. An effective formula for the  Lojasiewicz exponent of a polynomial mapping
of C2 into C2 at an isolated zero in terms of the resultant of its components is given.

1. Introduction. Let H = (f, g) : U → C2, 0 ∈ U ⊂ C2, be a holo-
morphic mapping having an isolated zero at the origin. The  Lojasiewicz
exponent of H at 0 is the number

L0(H) = inf {ν ∈ R : ∃A > 0, ∃B > 0, ∀|z| < B, A|z|ν ≤ |H(z)|},

where |z| = max (|x|, |y|) for z = (x, y) ∈ C2. This exponent plays an im-
portant role in the theory of singularities and has been studied by several
authors. Information on this subject can be found in [CK1].

The aim of the present paper is to give an effective formula for L0(H).
The previous results have not given such possibilities. The formula obtained
in [CK1] and, in another way, in [CP] needs parametrizations of the branches
of the curve {fg = 0}, whereas the formula in [P] uses the characteristic
polynomials of both x and y relative to H. The formulae in [LT] are not
effective.

The main result of our paper is Theorem 3.1 which enables us to find
L0(H) effectively for a polynomial mapping H in terms of the resultant. The
restriction to polynomial mappings is inspired only by the wish of preparing
a computer programme for calculating the  Lojasiewicz exponent. A possible
extension of Theorem 3.1 to the whole class of holomorphic mappings is
given in Remark 3.4.

We follow our paper [CK2] in which an effective formula for the  Lo-
jasiewicz exponent at infinity was given.
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2. Notations and definitions. We use the same notations and defini-
tions as in [CK1], except for the symbol L0(H).

3. The main result. Let H = (f, g) : C2 → C2 be a polynomial
mapping satisfying the following conditions:

(i) H−1(0) is a finite fibre,
(ii) H(0, y) = 0 if and only if y = 0,
(iii) degy f = deg f(0, y) or degy g = deg g(0, y).

Let w = (x, y) ∈ C2 be an arbitrary point and let Q(w, x) = Resy(f(x, y)
− u, g(x, y)− v) be the resultant of f(x, y)− u and g(x, y)− v with respect
to y. Put

(1) Q(w, x) = QN (w)xN + . . .+Q0(w).

Since H−1(0) is finite, not all Qi vanish for w = 0. Since Q0(0) = 0, there
exists µ, 1 ≤ µ ≤ N , such that Q0(0) = . . . = Qµ−1(0) = 0 and Qµ(0) 6= 0.

Let H = (f, g) satisfy (i)–(iii).

(3.1) Theorem. If

(iv) ord f = ord f(0, y) and ord g = ord g(0, y),

then

L0(H) =
[
µ−1

min
i=0

ordQi
µ− i

]−1

and µ is the multiplicity of H at 0.

(3.2) R e m a r k. Assumptions (ii)–(iv) have simple geometric interpreta-
tions. Condition (ii) means that H has only one zero on the y-axis, at the
origin. Condition (iii) means that the point at infinity lying on the y-axis
does not belong to at least one of the curves {f = 0} or {g = 0}. Finally,
(iv) means that the y-axis is tangent at the origin neither to {f = 0} nor to
{g = 0}. The assumptions do not restrict our considerations because, under
the general assumptions that H has a finite number of zeros and H(0) = 0,
one can get them by using a linear automorphism of the domain of H. L0(H)
is invariant with respect to such mappings.

(3.3) R e m a r k. The following example shows that assumption (iv) can-
not be weakened. Let H(z) = (f(x, y), g(x, y)) = ((y3 − x)2, y2x). One can
easily find, by using the main theorem of [CK1], that L0(H) = 6, whereas
Q(w, x) = x10−2ux8+u2x6−2v3x5−2uv3x3+v6 and

[
minµ−1

i=0
ordQi

µ−i
]−1 = 2.

(3.4) R e m a r k. The formula in Theorem 3.1 can easily be generalized
(the proof runs actually without any changes) to mappings whose compo-
nents are pseudopolynomials. Namely, let H = (f, g) : V × C→ C2 where
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f(x, y), g(x, y) are polynomials in y with coefficients (functions of x) holo-
morphic in a neighbourhood V of the origin in C . Instead of (i), (ii) we
assume that H−1(0) = {0}, and instead of (iii) that at least one of f and g
is monic with respect to y. For w ∈ C2, we define Q(w, x) as in Theorem 3.1.
Now, let

Q(w, x) =
∞∑
j=0

Qj(w)xj , (w, x) ∈ C2 × V.

As before (see [C], Lemma 1), there exists µ ≥ 1 such that Q0(0) = . . . =
Qµ−1(0) = 0, Qµ(0) 6= 0, thus the theorem analogous to Theorem 3.1 holds.

This theorem can also be used for an arbitrary holomorphic mapping
with an isolated zero. For if H̃ = (f̃ , g̃) : Ũ → C2, 0 ∈ Ũ ⊂ C2, is a
holomorphic mapping having an isolated zero at the origin, then, using a
linear automorphism of C2, we may assume that f̃ and g̃ are regular in y. Let
f, g be distinguished pseudopolynomials associated with f̃ , g̃, respectively,
by the Weierstrass preparation theorem. Then L0(H) = L0(H̃), where H=
(f, g) and satisfies the assumptions at the beginning of the remark.

4. Auxiliary lemma. Let Q(w, x) = QN (w)xN + . . . + Q0(w) be a
polynomial with coefficients holomorphic in a neighbourhood of the origin
in Cn and let Q0(0) = . . . = Qµ−1(0) = 0, Qµ(0) 6= 0, 0 < µ ≤ N . Put

(2) δ(Q) =
[
µ−1

min
i=0

ordQi
µ− i

]−1

.

(4.1) Lemma. δ(Q) is the least real number ν for which there exist
positive numbers A,B such that

{(w, x) : |w| < B, Q(w, x) = 0} ⊂ {(w, x) : |w| < B, A|x|ν ≤ |w|}.

P r o o f. By the Weierstrass preparation theorem, there exist % > 0 and
a distinguished pseudopolynomial P (w, x) of the form

P (w, x) = xµ + aµ−1(w)xµ−1 + . . .+ a0(w), ai(0) = 0,

such that, for |w| < %, |x| < %, we have

(3) Q(w, x) = P (w, x)R(w, x), R(w, x) 6= 0.

From Lemma 8.1 of [CK2] we have

(4) δ(Q) =
[
µ−1

min
i=0

ord ai
µ− i

]−1

.

Now, we show that there exist A,B > 0 such that

(5) {(w, x) : |w| < B, Q(w, x) = 0} ⊂ {(w, x) : |w| < B, A|x|δ(Q) ≤ |w|}.
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Indeed, by Proposition 2.2 of [P] and by (4), there exist A1, B1 > 0 such
that

{(w, x) : |w| < B1, P (w, x) = 0} ⊂ {(w, x) : |w| < B1, A1|x|δ(Q) ≤ |w|}.
Hence and from (3) we get, for % < B1,

(6) {(w, x) : |w| < %, |x| < %, Q(w, x) = 0}
⊂ {(w, x) : |w| < %, |x| < %, A1|x|δ(Q) ≤ |w|}.

This gives (5) for A = min(A1, %
−δ(Q)+1) and B = %.

It remains to show that if there exist A,B > 0 and ν ∈ R such that

(7) {(w, x) : |w| < B, Q(w, x) = 0} ⊂ {(w, x) : |w| < B, A|x|ν ≤ |w|},
then ν ≥ δ(Q). In fact, from (7) we get, for % < B,

(8) {(w, x) : |w| < %, |x| < %, Q(w, x) = 0}
⊂ {(w, x) : |w| < %, |x| < %, A|x|ν ≤ |w|}.

Take a sufficiently small ε > 0 such that all the roots of the equations
P (w, x) = 0 for |w| < ε lie in the disc {x : |x| < %}. Then, from (8) we get

{(w, x) : |w| < ε, P (w, x) = 0} ⊂ {(w, x) : |w| < ε, A|x|ν ≤ |w|}.
Now, Lemma 2.4 of [P] and (4) yield ν ≥ δ(P ).

5. The set N(H,x). In the sequel, let H be a polynomial mapping
satisfying conditions (i)–(iii). We define

N(H,x) = {ν ∈ R : ∃A > 0, ∃B > 0, ∀|x| < B, A|x|ν ≤ |H(z)|},
where z = (x, y).

Let Q be defined as in (1) and δ(Q) as in (2).

(5.1) Proposition. δ(Q) is the least real number belonging to N(H,x).

P r o o f. From the property of the resultant we have Q(H(z), x) ≡ 0.
Then, by Lemma 4.1, we have δ(Q) ∈ N(H,x).

Take now ν ∈ N(H,x). Then there exist A,B > 0 such that A|x|ν ≤
|H(z)| for |x| < B. Take w, x such that |x| < B and Q(w, x) = 0. By the
property of the resultant, there exists z = (x, y) such that w = H(z). Hence
A|x|ν ≤ |w|. Then from Lemma 4.1 we get δ(Q) ≤ ν.

6. Proof of Theorem 3.1. We begin with a proposition following di-
rectly from the main theorem in [CK1].

(6.1) Proposition. If H = (f, g) : U→C2, 0∈U ⊂ C2, is a holomor-
phic mapping having an isolated zero at the origin, then

(a) there exist positive numbers A,B such that

A|z|L0(H) ≤ |H(z)| for |z| < B,
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(b) if ord f = ord f(0, y) and ord g = ord g(0, y), then there exists a
branch Γ of the curve {fg = 0} in a neighbourhood of the origin such that

|x| ∼ |z|, |z|L0(H) ∼ |H(z)| for |z| → 0 and z ∈ Γ.
Let now H be a polynomial mapping satisfying (i)–(iii). First, we show

(6.2) Lemma. Under the above assumptions, L0(H) ∈ N(H,x).

P r o o f. Since H has an isolated zero at the origin, by Proposition 6.1(a)
there exist A1, B1 > 0 such that

(8) A1|z|L0(H) ≤ |H(z)| for |z| < B1.

Now, we claim that there exist A2, η > 0 such that

(9) |H(z)| ≥ A2 for |x| < η and |y| ≥ B1.

Indeed, otherwise there would exist a sequence {(xn, yn)} such that xn → 0,
|yn| > B1 and H(xn, yn)→ 0. Then, taking a subsequence if necessary, we
may assume that yn →∞ or yn → y0, |y0| ≥ B1. In the first case, we obtain
a contradiction with (iii), whereas in the second case, we have H(0, y0) = 0,
which contradicts (ii).

From (8) and (9), taking B = min(B1, η, 1) and A = min(A1, A2) and
noting that |x| ≤ |z|, we obtain

A|x|L0(H) ≤ |H(z)| for |x| < B,

which concludes the proof.

P r o o f o f T h e o r e m 3.1. From Theorem 5.3 in Ch. IV of [W] it
follows that µ = µ(f, g).

Let δ(Q) be defined as in (2). From Lemma 6.2 and Proposition 5.1 we
get δ(Q) ≤ L0(H).

Proposition 5.1 implies that there exist A,B > 0 such that

(10) A|x|δ(Q) ≤ |H(z)| for |x| < B.

Considering (10) on the branch from Proposition 6.1(b), we easily conclude
that L0(H) ≤ δ(Q). This ends the proof.
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