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Factorization of uniformly holomorphic functions

by Luiza A. MORAES (Rio de Janeiro), OTiLIA W. PAQUES (Campinas)
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Abstract. Let E be a complex Hausdorff locally convex space such that the strong
dual E’ of E is sequentially complete, let F' be a closed linear subspace of E and let U
be a uniformly open subset of E. We denote by II : E — E/F the canonical quotient
mapping. In §1 we study the factorization of uniformly holomorphic functions through
m. In §2 we study F-quotients of uniform type and introduce the concept of envelope of
uF-holomorphy of a connected uniformly open subset U of E. The main result states
that the pull-back &}, (U) of the envelope of uniform holomorphy of IT(U) constructed by
Paques and Zaine [9] is the envelope of uF-holomorphy of U.

Introduction. We deal with the concept of uniform holomorphy (cf.
[6]-[8]) of a holomorphic function f : U — C in the case when U is a
nonvoid uniformly open subset of a complex Hausdorff locally convex space
E. Let F be a closed linear subspace of E, let IT : E — E/F be the canonical
quotient mapping and let Iy be the set of all continuous seminorms « on
E such that U is open in (E,«). Let H,(U) be the set of all uniformly
holomorphic functions from U into C and let H,r(U) be the set of all go I1
as g ranges over H,(I1(U)). It is easy to show that Hy,r C Hy(U). In §1
we prove that if U is a balanced uniformly open subset of F and F' is a
closed linear subspace of (E,«) for each « € Iy, then g o IT is uniformly
holomorphic if and only if g is uniformly holomorphic.

The concepts of Riemann domain of uniform type and F-quotient of a
Riemann domain were introduced in [9] and [4] respectively. Given a uni-
formly open subset U of F it is easy to verify that IT(U) is a uniformly open
subset of E/F (cf. Ex. 3, §2). We have been unable to decide if an F-quotient
of a Riemann domain of uniform type is always of uniform type. However,
we give in §2 some non-trivial examples of F-quotients of a Riemann do-
main of uniform type which are of uniform type. In particular, we consider
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(eu(II(U)), qir), the envelope of u-holomorphy of I1(U) constructed in [9]
and its pull-back (e5(U), ¢*). We prove that there exists an open mapping
¢ from €} (U) onto e, (II(U)) such that (e,(II(U)), qm, ) is an F-quotient
of uniform type of ¢} (U) satisfying the following: given g € H,(II(U)) there
exists a uniform extension f € Hy(e%(U)) of f = g o IT which is defined by
gotp where g € Hy(e4(I1(U))) is a uniform extension of g. We also find that
(ex(U), ¢*) is maximal in the sense of Definition 11.

We remark that the concept of envelope of F-holomorphy given in [4] of
a connected open subset U of a Banach space E works also when E is an
arbitrary locally convex space. In particular, this paper extends the results of
[4] to locally convex spaces with H,(U) = H(U) and H,(II(U)) = H(w(U)).
This is the case if F is a dual of a separable Fréchet space endowed with the
compact-open topology (cf. [5] and [8]).

Acknowledgements. The authors want to thank J. Ansemil and S.
Ponte for many interesting discussions. Thanks are due also to the support-
ing agencies and to UFRJ and UNICAMP for many facilities.

Notation and terminology. Throughout this paper F is a complex
Hausdorff locally convex space whose strong dual E’ is sequentially com-
plete, F'is a closed linear subspace of E and IT : E — E/F is the canonical
quotient mapping. We refer to [2] for the terminology in infinite-dimensional
complex analysis.

Let cs(E) be the set of all continuous seminorms on E. For each a €
cs(F), we denote by (E, «) the space E endowed with the topology generated
by «a, by E, the normed space associated with (E,«), by i, : E — E, the
canonical quotient mapping and by B,(x,r) the open ball with center x
and radius r in (F, ). Given an open subset U of E we write i, (U) = U,
and, as usual, H(U) is the vector space of all holomorphic functions from U
into C.

An open subset U of E is said to be uniformly open if there exists
a € cs(E) such that U is open in (E,«). Let Iy denote the set of all such
a € cs(E). We remark that Iy is a directed subset of cs(E) that generates
the topology of E.

If U is a uniformly open subset of /, a holomorphic function f : U — Cis
said to be uniformly holomorphic on U if there exist « € Iy and f, € H(U,)
such that f = f,0i,. We denote by H,,(U) the vector space of all uniformly
holomorphic functions from U into C.

The following well known result will be useful:

PrOPOSITION A. If V is an open subset of a locally convex space M,
Mg is the associated Hausdorff space of M, Q : M — Mg is the canonical



Factorization of uniformly holomorphic functions 3

mapping and Vs = Q(V), then f € H(V) if and only if there exists fs €
H(Vs) such that f = fsoQ.

The pair (X, ¢) is a Riemann domain over E if X is a nonvoid Hausdorff
topological space and ¢ : X — FE is a local homeomorphism. Instead of
(X, ¢) we often write X. Given A C X, we write A ~ ¢(A) to indicate that
A is homeomorphic to ¢(A) under ¢/A. A chart in X is a connected open
subset V' of X such that ¢/V : V — ¢(V) is a homeomorphism. An atlas
on X is a collection (V;);cs of charts which cover X. We recall that if U is
an open subset of E and iy : U — E is the inclusion mapping, then (U, iy )
is a Riemann domain over E.

A Riemann domain (X, ) over E is said to be a Riemann domain of
uniform type (or, simply, a domain of uniform type) if there exists o € cs(FE)
such that for each z € X, there is a neighborhood V(z) of = such that
V(z) ~ o(V(z)) and ¢(V(x)) is open in (E,«). Let Ix denote the set of
all such a € cs(E). For every a € Ix let (X,«) be the set X endowed
with the topology generated by the neighborhoods V' that satisfy the above
definition. We denote by X, the Hausdorff space associated with (X, «),
ie, X, = (X,a)/R where R is the equivalence relation on X defined by:
xRy if and only if a(p(z) — ¢(y)) =0 for all z,y € X. For each o € Ix, let
I, : X — X, be the canonical quotient mapping; it is clear that if we define
Yo : Xa — Eo by @pq 01, :=14 0 @, then ¢, is a local homeomorphism and
(Xa, pa) is a Riemann domain over E,,.

If (X, ¢) is a Riemann domain over E and (Y, ¢) is a Riemann domain
over a Hausdorff locally convex space G, a continuous mapping f : X —
Y is said to be holomorphic if there is an atlas (V;);e; on X such that
oo fo(p/Vi)~t:¢(V;) — G is holomorphic for each i € I. We shall denote
by H(X,Y) the class of all mappings f : X — Y which are holomorphic.
When Y = C we write H(X) instead of H(X;C).

If (X,p) is a domain of uniform type, and G is a Hausdorff locally
convex space, a holomorphic mapping f : X — G is said to be uniformly
holomorphic if for each 8 € cs(G) there exist o € Ix and a holomorphic
mapping f, € H(X,,Gp) such that igo f = fo 0 I,.

For other notations and basic results on uniform holomorphy we refer to
[6] and [9].

1. Factorization of uniformly holomorphic mappings. Let U be a
uniformly open subset of E. For each a € cs(E) define a(7) := inf{a(x+y) :
ye F} forz=1II(x)e E/F. It is well known that @ € cs(E/F) and the set
{a: a € Iy} generates the topology of E/F.

PRrROPOSITION 1. Let U be a uniformly open subset of E. Then:
(a) II(U) is uniformly open and & € Iy for every o € Iyy.
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(b) If g is a uniformly holomorphic function on II(U), then f = go II
is uniformly holomorphic on U.

Proof of (b). Let ¢ € H,(JI(U)). Since {a : o € Iy} generates
the topology of E/F, there exist a € Iy and g5 € H(II(U)g) such that
g = ga 0ig where i5 : E/F — (E/F)g4 is the canonical quotient mapping
and I[I(U)g = ic(II(U)). If i : E — (E,«) is the identity mapping, I1, :
(E,a) — (E/F,@) is the quotient mapping and k5 : (E/F,@) — (E/F)a
is the canonical quotient mapping, it is clear that k5 o Il, 04 = i5 o II.
Consequently, f = goll = ggoigoll = ggo0ksoll,oiand so there exists
fl =gaoksoll, € H(i(U)) such that f = f/ oi. By Proposition A, there
exists fo, € H(U,) so that f,, = f, ok, where k, : (E,a) — E, is the
canonical quotient mapping. So, f = fl oi = fy,0ks 01 = f, 01, and we
have f € H,(U).

The next result gives us a reciprocal for Proposition 1(b) when F' is a
closed linear subspace of (E, «) for each « € I.

PROPOSITION 2. Let U be a balanced uniformly open subset of E and let
F be a closed linear subspace of (E,«) for each o € Iy. If f is uniformly
holomorphic on U and f = goll for some g € H(II(U)), then g is uniformly
holomorphic on II(U).

Proof. We define k,, i, Il,, ks and 75 as in the proof of Proposition 1.
By hypothesis there exist « € Iy and f, € H(U,) such that f = f, 0i,. If
fL € H(i(U)) is defined by f/ = f, o kq it follows that f = f, 0iq =
fa 0 ko oi = f, oi. By Theorem 2.3 of [1], f = g o IT if and only if
df (z)/F =0 for all z € U. Consequently, 0 = df (z)(y) = df’,(i(z))(i(y)) for
all y € F, ie., dfl(i(x))/F = 0 or f factors through IT,(i(U)). So there
exists ¢’ € H(I1,(i(U))) such that f! =g¢' o Il,. If k: E/F — (E/F,Q) is
the identity mapping, then g = ¢’ o k on I1(U). Indeed, for every z € U,

gUI(z)) = f(z) = (fa 0 i)(x) = (¢ o o 0 i)(x) = (¢' 0 k)(1I(2)).
Since kg o I, 01 =150 I, I1,(i(U)) C (E/F,a) and ¢ € H(I1,(i(U)), by
Proposition A, there exists g5 € H(iag(II(U))) such that ¢ = g% o kg on

I,(i(U)) = k(II(U)) and it follows that for every II(x) € II(U),

g(I(x)) = (¢' o k)(II(x)) = (g5 © ka © k) (1 (x)) = g5 0 ia(II(x)).
So, there exist @ € Iy and g5 € H(II(U)g) such that g = g oig on
II(U), ie., g € H,(II(U)).

2. Uniformly holomorphic continuation. Let (X, ¢) be a Riemann
domain over E. We say that (X, pp, 1) is an F-quotient of X if (Xp,¢r)
is a Riemann domain over E/F and 1 is a continuous open mapping from
X onto Xp such that op o1 = IT o p. The concept of F-quotient of a
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Riemann domain was introduced and studied in [4], where several examples
are presented. Here we give some examples of Riemann domains of uniform
type X over E which admit an F-quotient (Xr, ¢r, 1)) such that (Xp, ¢r)
is also of uniform type. In this case we will say that (Xg,@p,1) is an
F-quotient of uniform type of X.

EXAMPLE 3. Let U be a uniformly open subset of F, and iy : U — F
and ij7 : II(U) — E/F the inclusion mappings. Then I7(U) is a uniformly
open subset of E/F (cf. Proposition 1(a)) and it is clear that (II(U), i, II)
is an F-quotient of (U, iy) which is of uniform type.

ExXAMPLE 4. Let (X, ) be a Riemann domain of uniform type over
E, let R be the equivalence relation defined on X by xRy if and only
if p(z) — ¢(y) € F for z,y € X and denote by X/R the quotient set
by this equivalence, endowed with the quotient topology associated with
the mapping ¢ from X onto X/R defined by ¢(z) := T (where T de-
notes the equivalence class of x). We can define pp : X/R — E/F by
op(Z) == H(p(z)) for T € X/R and it is easy to see that (X/R,¢r) is a
Riemann domain over E/F. By hypothesis, there is o € cs(E) such that,
for each z € X, there exist a neighborhood V(z) of z and an r > 0 sat-
isfying V(z) ~ ¢(V(z)) = Ba(e(x),r). Since @p o1y = II o ¢, we have
oo 0(V(2) = I o p(V(2) = H(Ba(p(x),7)) = Balir o ¥(x),r). Since
¥ (V (z)) is a neighborhood of ¢(x) and ¢ is injective on ¢(V(x)), it is clear
that (X/R, ¢r) is of uniform type and so (X/R, pp,1) is an F-quotient of
uniform type of X.

Let (X,¢) and (Y, 0) be two Riemann domains over E. A continuous
mapping j : X — Y is said to be a morphism if poj = ¢. The concept of en-
velope of uniform holomorphy of a Riemann domain of uniform type was in-
troduced and studied in [9]. We recall that if U is a connected uniformly open
subset of E and (g,(U), q) is constructed as in [9], the morphism j' : U —
eq(U) defined by j'(u) := @, where u(f) := f(u) for fe H,(U), is the enve-
lope of uniform holomorphy of U. Analogously (e, (II(U)), qr7) is constructed
and the morphism jr : I1(U) — eo(II(U)) defined by jzz(IT(u)) := II(u),

where Im)(g) = g(II(u)) for g € Hy(II(U)), is the envelope of uniform
holomorphy of II(U). Following the idea used in the proof of Propositions 6
and 7 and Corollary 8 of [4], we get a new construction of (e, (II(U)), qrr) and
an open mapping ¢ : 4(U) — ,(II(U)) such that ¢(e,(U)) is a connected
topological subspace of £,(II(U)). We denote also by ¢y the restriction of
qm to ¢(€u(U))

EXAMPLE 5. By using the definition of the topology of €,(I1(U)), it is

easy to verify that ((e,(U)), ¢ir) is a Riemann domain of uniform type over
E/F. So, (¢(eu(U)),qm, ) is an F-quotient of (g,(U), q) of uniform type.
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The pull-back of (ey(II(U)),qm) is, by definition, the Riemann domain
(ex(U),¢*) over E where e:(U) := {(H,a) € e,({I(U)) x E : qu(H) =

II(a)} endowed with the topology induced on £} (U) by the product topology
on e,(II(U)) x E and ¢*(H,a) :=a for (H,a) € €5(U) (cf. [3] and [10]).

EXAMPLE 6. Let ¢ : €£(U) — e,(II(U)) be defined by ¢(H,a) := H for
(H,a)€el(U). We claim that the Riemann domain (&},(U), ¢*) is of uniform
type and (e, (II(w)), qm,v) is an F-quotient of uniform type of (5 (U), ¢*).

Let (H,a) € e;(U). By hypothesis there exist @ € cs(E/F), r > 0
and a basic neighborhood N5(H,r) = {Hj : b € B5(0,r)} of H such that
N&(H,r) ~ Ba(qm(H),r). We recall that Hy(g) := Z(l/n!)H(c/l\;—:g) for all
g € H(IT(U)) and qri(H;) = g (H) + (ct. [9]). Tet

V= (Na(H,r) x By(a,r)) Nei(U).

It is clear that V' is a neighborhood of (H,a).

We claim ¢*/V is a homeomorphism between V' and B, (¢*(H,a),r).
The continuity of ¢*/V is clear. Let (Hy,,c) # (Hp,,d) in V. If c = d, Hp,
must be different from Hj, and consequently by # by and II(c) = q(Hp,) =
qr(H) + b1 # qu(H) + ba = qir(Hy,) = II(d), and we have a contradiction.
So, we must have ¢ # d and it is clear that ¢*(Hj ,c) # ¢*(Hp,,d). To prove
that ¢*/V is onto B,(a,r) it is enough to show that for each ¢ € B, (a,r)
there exists b € Bg(0,7) satisfying q7(Hy) = II(c). Take b = II(c — a) and
it is done. This completes the proof that (}(U), ¢*) is a Riemann domain
of uniform type.

Now, we show that (e,(II(U)), qr, %) is an F-quotient of (5 (U), ¢*) of
uniform type. It is clear from the definitions that 1 is a continuous mapping
from € (U) onto e,(II(U)) such that IT o p* = g7 o 1. So, all we have to
prove is that ¢ is open. It is enough to show that given any (H,a) € ¢ (U),
for every basic neighborhood N5 (H,r) of H, we have

Y([Na(H,r) X By(a,r)]Ner(U)) = Na(H,r).

Let K € Ns(H, ), i.e., K = Hy for some b € B;(0,7). Since IT1(B,(0,7)) =
Bg(0,7), there exists by € B,(0,r) such that IT(b;) = b. It is clear that
(Hy,a+b1) € Na(H,r)x By(a,r) and since qr7 (Hy) = II(a) +b = II(a+by)
implies (Hp,a + b1) € €5(U) we get

Na(H,r) CY([Na(H,r) X Byla,r)] Nes(U)).
The other inclusion is trivial.

Let (XF,¢r,®) be an F-quotient of uniform type of X and take any
a € Ix,. We denote by Xpg the space (Xr)s and by ¢rs the local homeo-
morphism ¢ps @ Xpsg — (E/F)s. If I : Xp — Xps is the canonical
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quotient mapping, let Tg := I5(Z) for all T € Xp, ie., Ty = {7 € Xp :
a(er(T) — or(@)) = 0}. We recall that pra(Ts) = ¢r(T) +a 1(0) for all
T € Xp and (Xps, ¢ra) is a Riemann domain over (E/F)g4.

LEMMA 7. Let U be a uniformly open subset of E. Suppose that (X, ) is
a Riemann domain of uniform type over E and (Xp, pr, 1)) is an F-quotient
of uniform type of X. Then:

(a) With every a € Iy and 3 € Ix, we can associate v € Iy N Ix such
that v > @, 7 > 3, and so 7 € Ix,.

(b) Given 7, ﬁ~6 Ix, sothat B <7, zfg: gﬂ_ olg for some gz € H(Xpg)
then there exists g5 € H(Xp5) satisfying g = g o I5.

Proof. (a) Let a € Iy and 3 € Ix,. Since X is of uniform type we
can choose 6 € Ix # 0. As {\: X\ € Iy} generates the topology of E/F
there exists oy € Iy such that 8 < @y. But since Iy generates the topology
of E there exists v € Iy such that 6,«, ¢ < . It is clear that ¥ > @, 3,
vyelynNix andﬁEIXF.

(b) If we define i55 : (E/F)5 — (E/F)g by isg0iy 1= ig, it is easy to
verify that i 5 is a well defined continuous linear mapping from (E/F)5 onto
(E/F)5. Consequently, it is a holomorphic mapping. Analogously we define
L5 Xpy — Xpg by 155(T5) == 75 for Ty € Xpsy. Asq(pr(2)—pr(y)) =0
implies B(¢r(T) — ¢r(¥)) = 0, it is easy to see that I5 is well defined. It
is also clear that I55 is continuous and for every chart V' of Xp5 we have
ix5 = 0p5 0 Iz 0 (pry/V) ™. Consequently, I.5 € H(Xpy, Xpj). Now if
g = ggo Iz with g5 € H(Xpg) it is enough to define g5 : Xpy — C by
6’7 = gg ©) I,—YB

If (Y, o) is a Riemann domain of uniform type over E//F, then a morphism
j: II(U) — Y is said to be a uniform extension of II(U) if for each g €
H,(II(U)) there is a unique g € H,(Y') such that goj = ¢. In this case g is
said to be a uniform extension of g to Y.

DEFINITION 8. Let (X, ) be a Riemann domain of uniform type over
E. A morphism v : U — X is said to be a uF-eztension of U (uniform
F-extension of U) if there exist an F-quotient of uniform type (Xpg, op, 1)
of X and a morphism ~; : II(U) — X such that:

(a) Yoy =rygoll.

(b) v is a uniform extension of IT(U).

Remark 9. In the above case, given g € H,(II(U)) there exists a
uniform extension f € H,(X) of f = golI which is defined by f: go1) where
g € Hy(XF) is a uniform extension of g. Indeed, since g € H,(II(U)), there
exist o € Iy and g5 € H(II(U)g) such that g = g5 o i5 (where ig, II(U)s
and g5 are defined as in the proof of Proposition 1(b)). If g € H,(Xp) is the
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uniform extension of g to Xp (whose existence is proved in [9]), then there
exist 8 € Ix, and gz € H(Xppz) such that g = gz o I5. By Lemma 7 there
exists v € Iy N Ix so that ¥ > @ and 7 > (3 and there exists g5 € H(Xp5)
satisfying g = g5 o I5. Let f:: go. It is clear that fis continuous.

We claim that there exists a holomorphic mapping 15 : X, — Xp5 such
that 15 o I, = I5 o9 (recall that I, : X — X, is the canomcal quotient
mapplng) If this is true, there exists fv := g5 0 15 such that fv € HX,)
and f,yo v =gs 0501, = gon o) =gop = f and consequently
fe H,(X). So, it is clear that f = got is a uniform extension of f = goII.

Now we are going to prove the claim. Let t5(I,(x)) := I5(¢(x)) for
x € X. It is clear from the definition that ¢5(X,) € Xp5. Given z,y € X
such that I, (x) = I,(y), we have y(p(z) —¢(y)) = 0. Let £ = p(x) —(y) €
v~ 10). From IT o ¢ = pr o and F(I1(£)) = 0 we get

VerW(x) = er(y)] =T (p(x) = oy)] =7UI(E)) =0

and so I5(¢(z)) = I5(¥(y)), ie., ¥5(ly(x)) = ¥5(1,(y)). To prove the con-
tinuity of 15 we take z, = I,(x) € X, and an arbitrary open neighborhood
V5 of ¢5(zy). We recall that ¥ € Ix,. So there exist r; > 0 and an
open neighborhood Vi of 95(x,) such that Vi* ~ B5(opy o ¥5(2y),71)
and V' C V5 it is clear that for all s < r; there exists an open neighbor-
hood V= of 15 (x) such that V¥ C V' and V5 ~ Bs(pry o ¥y(z4),5).
Since ¢ (x) € Xp there exist ro > 0 and an open neighborhood Us* of
Y(x) such that U:* ~ By(op(¢(z)),r2); for all s < ry there is an open
neighborhood US of ¢(x) so that Us C Us* and Us ~ Bs(pr(¥(z)),s).
Let r = min{ry,r2}. Then U7 is the open neighborhood of 1(x) such that
UL ~ By (pr (4(2)), ). Now,

i[By(pr(¥(x)),7)] = By(i5 0 pr(¥(2)),7) = By(pry(I5 0 (z)),r)
= B5(¢ry(¥5(z4)),7)
implies I5(U%) = V7. On the other hand, given B, (¢(z),r) it is clear that
(B, (p(x),7)) = By(II(¢(x)),r) = B5(pr(i(x)),r). Since v € Ix there
are 19 < 7 and an open neighborhood W of z in X such that (W) ~
B, (¢(z),10). As IT o o = pp o1 it follows that

V(W) = (prp/U5) " o Il 0 o(W) = (¢r /U5) ™ (B5(pr (U()), 70))
C (or/U5) " (By(pr (¥(2)),r)) = US.
So I,(W) is an open subset of X, containing I.,(z) such that ¢~ (1, (W)) =
I;((W)) € Vi C V5 and we have the continuity of 1.
Finally, 15 is holomorphic if there exists a holomorphic mapping I75

E., — (E/F)s satisfying II5 = ¢p5 0 195 o (¢,/V)~! for every chart V of
X,. Define IT5(iy(x)) := i5(I(x)) € (E/F)5 for x € X. It is clear that
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II5 is a well defined mapping from E, onto (E/F)s. The linearity of II5
follows from the linearity of i, i5 and II. Now, for all i,(x) € E., we have
VL5 (iy (2))] = li5 (1 (2))] = 7 (z)) < v(x) = 7(iy(2)) and consequently
II5 is continuous. (We remark that we denote by ~ the norm in £, associated
with 7 since inf{y(z +y) : y€77*(0)} = 7(z); analogously for 7.) Since II5
is a continuous linear mapping, it is holomorphic. It is easy to verify that
II5 o ¢, = @pp~y 015 and this completes the proof.

ExXAMPLE 10. The morphism j' : U — £,(U) defined by j'(u) := @
is a uF-extension of U. Indeed, in Example 5 we define (¢(ey(U)), qmr,v)
and prove that it is an F-quotient of uniform type of (¢,(U), q) such that
Y(eu(U)) C ey (II(U)). Since jrp : II(U) — e,(I1(U)) is a uniform extension
of II(U) such that j;7(II(U)) C ¢(eu(U)), it is easy to show that jr7 is a uF-
extension of I7(U). From the definitions it is also clear that ¢ oj’ = jyoIl.

DEFINITION 11. Let (X, ¢) be a Riemann domain of uniform type over
E. A morphism v : U — X is said to be an envelope of uF-holomorphy of
U if:

(a) v is a uF-extension of U.

(b) If p : U — Z is a uF-extension of U, then there is a morphism
v:Z — X such that vopu=r+.

It is clear that if v : U — X and v/ : U — X' are two envelopes of
uF-holomorphy of U then the Riemann domains X and X’ are isomorphic.
In other words, the envelope of uF-holomorphy of U, if it exists, is unique
up to isomorphism.

THEOREM 12. Let U be a connected uniformly open subset of E and
let (e:(U),¢*) be the pull-back of (ew(II(U)),qm). Then the mapping v :

U — € (U) defined by v(u) := (U/(E),u) for w € U is an envelope of uF-
holomorphy of U.

Proof. It is clear that ¢* oy = iy where iy : U — FE is the inclusion.
So, v is a morphism if it is continuous. Given u € U, take a neighborhood of

(Im), u) in € (U) of the form (V x W) Nef(U) where V is a neighborhood
of II(u) in ,(II(U)) and W is a neighborhood of u in E. Without loss of
generality, we can suppose W C U. Since j : II(U) — e,(II(U)) is an
extension of IT(U) there is an open set Vi C II(U) such that II(u) € V;
and j7 (V1) C V. Let Vo := WNIT-1(V}). Tt is clear that for every a € V5
we have y(a) € (V x W) nei(U) and this gives the continuity of v in w.
From Example 6, (¢}(U), ¢*) is a Riemann domain of uniform type over E
and (e, (I1(U)), qm, ) is an F-quotient of uniform type of (%(U), ¢*). Since
Jir : II(U) — ey (I1(U)) is a uniform extension of II(U) (cf. [9]) and clearly
Yoy =jgoll, it follows that (e5(U), ¢*) is a uF-extension of U.
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Now, if (Z, p) is a Riemann domain of uniform type over E and pu : U — Z
is a uF-extension of U there are an F-quotient of uniform type (Zg, o, ¥r)
of Z and py : I(U) — Zp such that g oy = py o II and pyy is a uniform
extension of II(U). From the maximality of e,(I1(U)) (cf. [9]) there is a
morphism pup : Zp —e,(I1(U)) such that pup o ug = jg. We define v : Z—
e1(U) by v(2) = ((uror)(2), o(2). Since (qiropurotr)(2) = Moo(2), we
have v(z) € €5 (U) for every z € Z. It is easy to verify that v is a morphism
and vopu=r.

Remark 13. We have the following generalization: Let G be a complete
Hausdorff locally convex space and f € H, (U, G) such that f = go Il where
g € Hy,(II(U),G). From Theorem 2.5 of [9], there exists a uniform extension
G:ea(II(U)) — Gof g. If f := ooy, where ¥ : €%(U) — e, (II(U)) is defined
as in Example 6, then a small change in the argument used in Remark 9
shows that f is a uniform extension of f.

Finally, we establish the relation between ¢ (U) and £,(U).

Remark 14. There exists a morphism ¢ : €,(U) — &}(U) satisfying
0 0 j" =~ (where 7 is defined in Theorem 12 and j’ in Example 10).

Proof. From Example 10 we know that ;' is a uF-extension of U. Since,
by Theorem 12, v : U — &5(U) is an envelope of uF-holomorphy of U, the
existence of such ¢ follows from the maximality of €}(U).
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