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Nonlinear eigenvalue problems
for fourth order ordinary differential equations

by Jolanta Przybycin (Kraków)

Abstract. This paper was inspired by the works of Chiappinelli ([3]) and Schmitt and
Smith ([7]). We study the problem Lu = λau+f(·, u, u′, u′′, u′′′) with separated boundary
conditions on [0, π], where L is a composition of two operators of Sturm–Liouville type.
We assume that the nonlinear perturbation f satisfies the inequality |f(x, u, u′, u′′, u′′′)| ≤
M |u|. Because of the presence of f the considered equation does not in general have a
linearization about 0. For this reason the global bifurcation theorem of Rabinowitz ([5],
[6]) is not applicable here. We use the properties of Leray–Schauder degree to establish
the existence of nontrivial solutions and describe their location. The results obtained are
similar to those proved by Chiappinelli for Sturm–Liouville operators.

Let L be a differential operator of the form L = L1◦L0 , where Li denotes
the Sturm–Liouville operator defined by Liu = −(piu′)′ + qiu, i = 0, 1. As
usual we assume pi ∈ C3−2i[0, π], qi ∈ C2−2i[0, π] and pi > 0, qi ≥ 0 on
[0, π]. We denote by (B.C.) either the boundary conditions

u(0) = u(π) = L0u(0) = L0u(π) = 0

or the boundary conditions

u(0) = u(π) = u′(0) = u′(π) = 0.

Let a be a strictly positive continuous function on [0, π]. We assume
that the operator L is symmetric and positive definite (which is satisfied
in particular when L0 = L1). Then the linear problem Lv = µav in (0, π)
together with the boundary conditions (B.C.) has an increasing sequence of
eigenvalues 0 < µ1 < µ2 < . . . with limk→∞ µk = ∞. Each µk is simple
(Bochenek [2]).

Now consider the equation

(1) Lu = λau+ f(·, u, u′, u′′, u′′′) in (0, π)
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together with the boundary conditions (B.C.). Assume that the nonlinear
function f is continuous on [0, π]× R4 and satisfies

(2) ∃M>0∀(x,ξ,η,γ,ζ)∈[0,π]×R4 |f(x, ξ, η, γ, ζ)| ≤M |ξ|.
By a solution of (1) we understand a pair (λ, u) ∈ R × (C4[0, π] ∩ (B.C.))
satisfying (1).

Let E = C3[0, π] ∩ (B.C.). It is a Banach space equipped with its usual
norm, ‖u‖3 := ‖u‖0 +‖u′‖0 +‖u′′‖0 +‖u′′′‖0, where ‖u‖0 = supx∈[0,π] |u(x)|.

Notice that it is sufficient to search for solutions of (1) in R× E.
Namely, by using the Green function g of L together with the boundary

conditions (B.C.), equation (1) can be converted into an equivalent integral
equation in R× E:

(3) u(·) =
π∫

0

g(·, y)[λa(y)u(y) + fu(y)] dy = λLu+ F (u),

where

Lu =
π∫

0

g(·, y)a(y)u(y) dy, F (u) =
π∫

0

g(·, y)fu(y) dy,

fu(y) = f(y, u(y), u′(y), u′′(y), u′′′(y)).

Clearly F : E → E is continuous, and L : E → E is compact and linear.
Let B = {u ∈ E : ‖u‖3 ≤ δ}. To verify that F is compact we prove that

F (B) is relatively compact. For u ∈ B we obtain the estimate

‖F (u)‖3 =
3∑
i=0

sup
x∈[0,π]

∣∣∣∣ π∫
0

∂ig

∂xi
(x, y)fu(y) dy

∣∣∣∣ ≤ cπM‖u‖3 ≤ cπMδ,

where c depends on bounds for g and ∂ig/∂xi. Hence F (B) is bounded in
E. Moreover, w = F (u) satisfies

Lw = f(·, u, u′, u′′, u′′′).
Hence, solving the above equation for w(4) we obtain uniform bounds for
the fourth derivatives of F (u) in B. Applying the Arzelà–Ascoli theorem we
deduce at once the compactness of F .

Notice that the eigenvalues µk of L are equal to the characteristic values
of L (i.e. there exist vk ∈ E, vk 6= 0, such that vk = µkLvk) . We denote by
r(L) the set of characteristic values of L.

Now we give a description of the spectrum for (1).

Theorem 1. If (λ, u) is a nontrivial solution of (1), then

λ ∈
∞⋃
k=1

[µk −M/a0, µk +M/a0],

where a0 = minx∈[0,π] a(x).
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P r o o f. The pair (λ, u) satisfies (3). Multiplying both sides of (3) by a1/2

we obtain

(4) û = λHû+ a1/2F (u),

where

û = a1/2u, Hû =
π∫

0

a(·)1/2g(·, y)a(y)1/2û(y) dy.

It is clear that H is a selfadjoint operator on L2[0, π] and the set of charac-
teristic values of H, r(H), equals r(L). For λ 6= µk, I − λH is invertible, so
that (4) is equivalent to

û = (I − λH)−1(a1/2F (u)).

We have

a1/2F (u) =
π∫

0

a(·)1/2g(·, y)a(y)1/2 fu(y)
a(y)1/2

dy = H(a−1/2fu)

and

‖a−1/2fu‖2L2 ≤
π∫

0

M2

a(y)
u(y)2 dy =

π∫
0

M2

a(y)2
û(y)2 dy ≤ M2

a2
0

‖û‖2L2 .

Hence

‖û‖L2 ≤ ‖(I − λH)−1H‖ · ‖a−1/2fu‖L2 ≤ ‖(I − λH)−1H‖M
a0
‖û‖L2 .

Since ‖(I−λH)−1H‖−1 = dist(λ, r(H)) (Kato [4], p. 273) we conclude that
dist(λ, r(L)) ≤M/a0 and the proof is complete.

From now on we assume additionally that

(5) µk − µk−1 →∞ as k →∞.
This condition seems to be not particularly restrictive. Look at some exam-
ples.

Example 1. If L0,L1 commute then the eigenvalues of the problem
Lu = µu subject to u(0) = u(π) = L0u(0) = L0u(π) = 0 are of the form
µk = µ1

kµ
0
k, where µik denotes the eigenvalue of Li. It is simple to show that

(5) is satisfied since µik − µik−1 →∞ as k →∞, i = 0, 1.

Example 2. Consider the equation u(4) = µu with the boundary con-
ditions u(0) = u(π) = u′(0) = u′(π) = 0. It is easy to compute that the
eigenvalues µk satisfy the condition 4

√
µk − 4

√
µk−1 → 1 as k → ∞ and

consequently we have (5).

The assumption (5) implies that, given any c > 0, the intervals [µk −
c, µk + c] are disjoint for k large enough.

We can now formulate the main result.
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Theorem 2. Let k0 = min{k ∈ N : µk − µk−1 > 2M/a0 for k > k}.
Then for every k > k0 and δ > 0 there exists a solution (λ, u) of (1) with
‖u‖3 = δ and λ ∈ [µk −M/a0, µk +M/a0].

P r o o f. Let B = {u ∈ E : ‖u‖3 ≤ δ}. Now fix k > k0 and choose ε > 0
such that

λ := µk − (M/a0 + ε) > µk−1 + (M/a0 + ε),

λ := µk + (M/a0 + ε) > µk+1 − (M/a0 + ε).
It is easy to see that

(6) dist(λ, r(L)) = dist(λ, r(L)) = M/a0 + ε.

We argue by contradiction, so assume that u 6= λLu+ F (u) for all u ∈ ∂B
and λ ∈ [λ, λ]. Since λL + F is compact on B, the Leray–Schauder degree
of Φ(λ) = I − λL− F with respect to B and the point 0 is well defined for
all λ ∈ [λ, λ]. By the homotopy invariance of the degree we get

d(Φ(λ), B, 0) = const for λ ∈ [λ, λ].

In particular, we have

(7) d(Φ(λ), B, 0) = d(Φ(λ), B, 0).

Consider now the first term in (7). Notice that u 6= λLu + tF (u) for
u ∈ ∂B and t ∈ [0, 1]. If not, proceeding as in the proof of Theorem 1, we
obtain dist(λ, r(L)) ≤M/a0, which contradicts (6). So, using the homotopy
invariance again we obtain

d(Φ(λ), B, 0) = d(I − λL,B, 0) = i(λ) = (−1)β ,

where β is the sum of the multiplicities of the characteristic values of λL in
(0,1). The same argument can be used for λ, so that

d(Φ(λ), B, 0) = i(λ) = (−1)β̄ .

The β sum differs from the β sum by a term equal to the multiplicity of the
characteristic value µk/λ of λL. Since this is just the multiplicity of µk and
µk is simple, i(λ) = −i(λ) 6= 0 contrary to (7). The theorem is proved.

Following Berestycki ([1]), by a bifurcation interval we understand an
interval which contains at least one bifurcation point.

Let us mention an important consequence of Theorem 2.

R e m a r k 3. For every k > k0, [µk −M/a0, µk +M/a0]×{0} is a bifur-
cation interval for (1).

Example 3. Consider

(∗) u(4) = λu+ |u|
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in (0, π) with the boundary conditions u(0) = u(π) = u′′(0) = u′′(π) = 0.
The equation (∗) has the family of solutions (λγ , uγ) = (k4−sgn γ, γ sin kx) ∈⋃∞
k=1[k4− 1, k4 + 1]×E. It is clear that all bifurcation points for (∗) are of

the form (k4 − 1, 0) or (k4 + 1, 0).

Example 4. Consider

(∗∗) u(4) = λu+ u sin(u′′2 + u′′′2)−1/2

in (0, π) with u(0) = u(π) = u′′(0) = u′′(π) = 0. Let k = 1. We have the
family of solutions (λγ , uγ) = (1 − sin(1/|γ|), γ sinx) ∈ [0, 2] × E. All the
points of the interval [0, 2]× {0} are bifurcation points for (∗∗).

References

[1] H. Berestyck i, On some Sturm–Liouville problems, J. Differential Equations 26
(1977), 375–390.

[2] J. Bochenek, Nodes of eigenfunctions of certain class of ordinary differential equa-
tions of the fourth order , Ann. Polon. Math. 29 (1975), 349–356.

[3] R. Chiappine l l i, On eigenvalues and bifurcation for nonlinear Sturm–Liouville
operators, Boll. Un. Mat. Ital. (6) 4-A (1985), 77–83.

[4] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
[5] J. Przybyc in, Some applications of bifurcation theory to ordinary differential equa-

tions of the fourth order , Ann. Polon. Math. 53 (1991), 153–160.
[6] P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain

J. Math. 3 (1973), 161–202.
[7] K. Schmitt and H. L. Smith, On eigenvalue problems for nondifferentiable map-

pings, J. Differential Equations 33 (1979), 294–319.

INSTITUTE OF MATHEMATICS

ACADEMY OF MINING AND METALLURGY

AL. MICKIEWICZA 30

30-059 KRAKÓW, POLAND
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