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The graph of a totally geodesic foliation

by Robert A. Wolak (Kraków)

Abstract. We study the properties of the graph of a totally geodesic foliation. We
limit our considerations to basic properties of the graph, and from them we derive several
interesting corollaries on the structure of leaves.

In this short note we study the properties of the graph of a totally
geodesic foliation. Its importance comes from the fact that the graph of a
foliation is the starting point of the construction of the C∗-algebra associated
with this foliation. The value of C∗-algebras in the study of foliations cannot
be overestimated, but this goes beyond the scope of this note. We limit our
considerations to basic properties of the graph, and from them we derive
several interesting corollaries on the structure of leaves.

The definition and the basic properties of the graph of a foliation can be
found in [8]. Let us recall the definition.

The graph GR(F) of the foliation F is the space of equivalence classes
of triples (y, α, x) where x and y are points of the same leaf L of F and α is
a path in L linking x to y. Two triples (y, α, x) and (y′, α′, x′) are equivalent
iff x = x′, y = y′ and the holonomy of the curve α−1 ∗ α′ is trivial. A
neighbourhood of 〈y, α, x〉 consists of elements represented by the triples
of the form (y′, α′, x′) where x′ belongs to some neighbourhood of x in a
transverse manifold passing through x, y′ belongs to some neighbourhood of
y in a transverse manifold passing through y, and α′ is the holonomy lift of
α to x′ (see [8]). In the same paper it is proved that the graph of a foliation
is a manifold of dimension n + p but in general non-Hausdorff. Moreover,
if the elements of the holonomy pseudogroup are determined by their jets
then the graph is a Hausdorff topological space.

The mappings

p1 : 〈y, α, x〉 7→ x,
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the source projection, and

p2 : 〈y, α, x〉 7→ y,

the target projection, define two submersions p1 : GR(F) → M and p2 :
GR(F) → M . In local coordinates they can be written as follows. Let
〈y, α, x〉 be a point of GR(F) and (U,ϕ), (V, ψ) and (U ×α V, ϕ ×α ψ) be
adapted charts at x, y and 〈y, α, x〉, respectively, where

U ×α V = {〈y′, α′, x′〉 ∈ GR(F) : x′ ∈ U, ϕ(x′) = (x1, x2) ∈ Rp × Rq,
y′ ∈ V, ψ(y′) = (y1, y2) ∈ Rp × Rq, hα(x2) = y2

and α′ is the holonomy lift of α to x′}
and

ϕ×α ψ(〈y, α, x〉) = (x1, x2, x3) ∈ Rp × Rq × Rp.
Then

ϕ ◦ p1 ◦ (ϕ×α ψ)−1 : Rp × Rq × Rp → Rp × Rq, (x1, x2, x3) 7→ (x1, x2),

and

ψ ◦p1 ◦ (ϕ×αψ)−1 : Rp×Rq×Rp → Rq×Rp, (x1, x2, x3) 7→ (x3, hα(x2)).

On GR(F) there are three foliations:

(i) F1 defined by the fibres of p1;
(ii) F2 defined by the fibres of p2;

(iii) F1 ⊕F2 = p−1
1 F = p−1

2 F .

The fibres of the submersions p1 and p2 are the holonomy coverings of leaves
of F . Let Q be a subbundle of TM complementary to TF and Q̃ be the
subbundle of T GR(F) defined as follows:

Q̃ = {X ∈ T GR(F) : dp1(X) ∈ Q, dp2(X) ∈ Q}.
The tangent bundle of GR(F) admits the following decomposition:

T GR(F) = TF1 ⊕ TF2 ⊕ Q̃.

A curve γ in GR(F) is tangent to Q̃ iff the curves p1γ and p2γ are tangent
to Q. Moreover, the fibre bundle Q̃ is isomorphic to p∗1Q and p∗2Q, and
Q̃ = p−1

1 Q ∩ p−1
2 Q.

Using the method developed in [11, 12] and the fact that totally geodesic
foliations have the property of lifting paths (see [5, 2]), we can easily prove
the following:

Theorem 1. Let F be a transversely analytical totally geodesic foliation
of a complete Riemannian manifold M . Then the projections p1 : GR(F)→
M and p2 : GR(F) → M are locally trivial fibre bundles. Their fibres are
the holonomy coverings of leaves.
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In [9] Winkelnkemper proved that in such a situation leaves have at most
two ends, i.e.

Corollary 1. Let F be a transversely analytical totally geodesic folia-
tion of a complete simply connected Riemannian manifold M . Then leaves
of F have one or two ends.

Now we turn our attention to geometrical properties of the graph. The
subbundle TF1 ⊕ Q̃ of T GR(F) = TF1 ⊕ TF2 ⊕ Q̃ is isomorphic to p∗2TM ,
and TF2 ⊕ Q̃ to p∗1TM . These isomorphisms provide us with two natural
ways of defining a Riemannian metric on GR(F). Let us describe one of
them.

On TF2⊕ Q̃ ∼= p∗1TM we set g = p∗1g, where g is the Riemannian metric
on M . We make TF1 orthogonal to TF2⊕Q̃. The bundle TF1 is isomorphic
to p∗2TF . Thus on this subbundle we take g = p∗2g|TF . This completes the
definition of a Riemannian metric on GR(F).

Our aim is to demonstrate that:

If F is totally geodesic for the Riemannian metric g of M , then F1 is
totally geodesic for the Riemannian metric g of GR(F).

Therefore we will have to prove that

(1) (LXg)(Y, Z) = 0

for any vector field X orthogonal to F1 and vectors Y , Z tangent to F1.
As our foliation is defined by a global submersion and the vector field X
is a section of TF2 ⊕ Q̃ ∼= p∗1TM , X can be assumed to be a projectible
vector field, i.e. there exists a vector field X on M such that X = dp1(X)
(as X is a section of p∗1TM this condition determines the vector field X).
The vectors Y and Z can be extended to vector fields of the form p∗2Y and
p∗2Z, respectively, where Y and Z are vector fields tangent to F .

First assume that X is tangent to F . Then

dp1([X,Y ]) = 0 = dp2([X,Y ]).

Thus
LXg(Y,Z) = ∂Xg(Y,Z).

But as dp2(X) = 0, along any integral curve γ(t) of X we have

gγ(t)(Y, Z) = gp2γ(t)(Y , Z) = gp2γ(0)(Y , Z).

Therefore (LXg)(Y,Z) = 0 for any vector field X tangent to TF2.
Now consider the case of a vector field X tangent to Q̃. By restricting

our attention to vector fields X defined by vector fields X of a special form
we can assume that the vector field X is p2-projectible as well. The problem
is local, thus we can consider the foliation F defined by a global submersion
f : M → N with connected fibres. Let v ∈ QX . Then the vector df(v) can
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be extended to a global vector field X̂ on N , which in turn can be lifted to
a global section X of Q such that X(x) = v. Integral curves of the vector
field X have the following property:

Let α : [0, l]→M be a leaf curve and γ : [0, ε]→M be the integral curve
of X with γ(0) = α(0). Let σ : [0, l] × [0, ε] → M be the square defined by
(α, γ). Then the curve σ|{l}× [0, ε] is the integral curve of X through α(l).

This property can be easily derived from the construction of the square
in [1].

Now let X be a TF2⊕ Q̃-horizontal lift of X to GR(F). Then the vector
field X is a section of Q̃. We have to show the following:

If m and m′ are points of an open set of the form U ×α V and p2(m) =
p2(m′), then dp2(X(m)) = dp2(X(m′)).

If dp2(X(m)) = dp2(X(m′)), then m = 〈y, α, x〉 and m′ = 〈y, α′, x′〉.
Thus the points x and x′ belong to the same plaque and the curve α′ is the
concatenation of a curve β linking x′ to x in the plaque and α.

The lifting X of X can also be described by the liftings of integral curves
of X. Let γ : (−ε, ε)→M be an integral curve of X and m = 〈y, α, x〉 be a
point of GR(F) over γ(0) = x. Then the integral curve of X passing through
the point m is as follows:

Let σ : [0, l]×(−ε, ε)→M be the square defined by (α, γ). Let σt denote
σ|[0, l]× {t}; for any t ∈ (−ε, ε), σt is tangent to F . Then

γ(t) = (σ(0, t), σt, σ(l, t))

is the integral curve of X with γ(0) = m. Let γ′ : (−ε, ε) → M be the
integral curve of X with x′ = γ′(0). Denote by σ′ the square defined by
(α′, γ′). We have noticed that α′ = α ∗ β for some β : [0, b] → M and
γ′ = κ|{b} × (−ε, ε) where κ is the square defined by (β−1, γ). Therefore,
from the uniqueness of these squares it results that

σ′b+l = σl

is the integral curve of X through y. The curve

(−ε, ε) 3 t 7→ (σ′(0, t), σ′t, σ
′(l + b, t))

is the integral curve of X through m′ and the curve

(−ε, ε) 3 t 7→ σ(0, t), σt, σ(l, t))

is the integral curve of X through m. Therefore as σ′b+l = σl,

dp2(X(m)) = dp2(X(m′)).

Thus we have just demonstrated that for our special choice of the vector
field X the vector field X is p1- and p2-projectible. Having proved this fact
we can easily complete our calculations.



The graph of a totally geodesic foliation 245

Let X, Y , Z be vector fields as previously chosen. Then

LXg(Y,Z) = ∂Xg(Y,Z)− g(Y, [X,Z])− g([X,Y ], Z).

As dp1([X,Y ]) = dp1([X,Z]) = 0, [X,Y ] and [X,Z] are tangent to F1. Thus

LXg(Y,Z) = ∂X̂g(Y , Z)− g(Y , [X,Z])− g([X,Y ], Z),

where X, Y , Z are vector fields on M such that dp2(X) = X, dp2(Y ) = Y
and dp2(Z) = Z. Therefore

LXg(Y,Z) = LX̂g(Y , Z) = 0

as the foliation F has been assumed to be totally geodesic. By linearity
the above equality is true for any vector fields Y , Z tangent to F and X
orthogonal to this foliation. Hence we have proved the following theorem.

Theorem 2. Let F be a transversely analytical totally geodesic foliation
of a complete Riemannian manifold M . Then there exists a Riemannian
metric on GR(F) in which the foliation by fibres of the natural projection
onto M is totally geodesic.

Taking into account Theorem 1 we have the following equivalent version
of Theorem 2.

Theorem 3. Let F be a transversely analytical totally geodesic foliation
of a complete Riemannian manifold M . There exists a Riemannian metric
on GR(F) for which the structure group of the locally trivial fibre bundle
p1 : GR(F)→M can be reduced to a group of isometries.

As a corollary, we recover the well-known fact that leaves of a totally
geodesic foliation have isometric universal coverings (see [1]).

One of the most important corollaries of this theorem concerns tangential
holonomy, a notion introduced in [2]. Among other things, it is proved there
that there exist homomorphisms

π1(L, x)→ Hg(L, x)→ H(L, x),

where π1(L, x) is the fundamental group of a leaf L, Hg(L, x) is the tangen-
tial holonomy group of L at x and H(L, x) is the holonomy group of L at
x. Both homomorphisms are surjective. In [4] G. Cairns demonstrated that
for Riemannian foliations the tangential holonomy group of a leaf is equal
to the “standard” holonomy group of this leaf. Theorem 2 ensures that the
same is true for transversely analytical totally geodesic foliations.

Theorem 4. Let F be a transversely analytical totally geodesic folia-
tion. Then for any leaf L of F its tangential holonomy group is equal to its
holonomy group.

P r o o f. We have to show that the homomorphism Hg(L, x)→H(L, x) is
injective. Let α be a loop in the leaf L at x defining the identity in the “germ”
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holonomy group. Let γ be any orthogonal curve through x. As the holonomy
along α is trivial the loop α lifts to a loop at any point m ∈ GR(F) over
x. Denote by γ̃ the Q̃-lift of γ at m. The foliation F1 is without holonomy,
thus the tangential holonomy group of any leaf is trivial (see [2]), i.e. if σ
is the square defined by (α̃, γ̃) at m, then σ0 = σl. The square at x defined
by (α, γ) is equal to p1σ. Thus the curve α defines the trivial element in the
tangential holonomy group at x.

From Theorem 4 we can draw a series of corollaries:

Corollary 2. If there exists a compact leaf with finite holonomy group
then all leaves are compact and have finite holonomy , i.e. the space of leaves
is a Hausdorff Satake manifold (orbifold).

Corollary 3. If there exists a leaf with finite volume and finite holon-
omy , then all leaves have finite volume and finite holonomy group.

Compare [2] for the above two corollaries.

Corollary 4. Let L be a leaf with finite holonomy group. Then gr(F) =
gr(L).

See [7] or [5] for the basic properties of the growth of a leaf and the
growth type of a foliation.

Corollary 3 can be restated in the following form.

Theorem 5. Let F be a transversely analytical totally geodesic foliation.
Then the growth type of the foliation is realized by the growth type of any
leaf with finite holonomy group.

F i n a l r e m a r k. The “transversely analytical” assumption can be re-
placed by any condition ensuring that the holonomy transformations are
determined by their jets (cf. e.g. [10], [12]).
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Added in proof. In [0] the authors proved that the graph of a foliation without
vanishing cycles is Hausdorff. It is not difficult to check a totally geodesic foliation has
no vanishing cycles, thus its graph is always a Hausdorff manifold, and our assumption of
“transverse analyticity” is superfluous.
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