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The automorphism groups of Zariski open affine
subsets of the affine plane

by Zbigniew Jelonek (Kraków)

Abstract. We study some properties of the affine plane. First we describe the set of
fixed points of a polynomial automorphism of C2. Next we classify completely so-called
identity sets for polynomial automorphisms of C2. Finally, we show that a sufficiently
general Zariski open affine subset of the affine plane has a finite group of automorphisms.

1. Introduction. The automorphism group of an affine (or more gener-
ally non-complete) algebraic variety X is rather difficult to study and only
partial results on its structure are known. In [Iit1], [Sak] sufficient condi-
tions for the finiteness of Aut(X) are given (in terms of logarithmic Kodaira
dimension).

Another approach is given in [Jel2] and [Jel3], where we showed that
Aut(X) is finite provided the divisor at infinity of some projective com-
pactification of X is very ample and it does not have uniruled components.
Moreover, in [Jel2] we started the study of the automorphism groups of
affine Zariski open subvarieties of Cn.

This note is a continuation of this study, as well as a continuation of
our work on identity sets for polynomial automorphisms (see [Jel1], [Jel3],
[Jel5]).

We concentrate on the first non-trivial case, that of the affine plane C2.
Our first aim is to give a description of the fixed point set of a non-trivial
polynomial automorphism of C2.

We show (Theorem 3.3) that this set is either finite, or a finite union of
disjoint plane C-curves. Conversely, for any finite subset S of the plane, or for
any finite family S of disjoint plane C-curves we construct an automorphism
of the plane for which the set of fixed points is exactly S.
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In particular, we obtain an “if and only if” condition for an affine curve Γ
to be an identity set for polynomial automorphisms of C2. This generalizes
some results of [M-W], [Jel1], [Jel5].

The approach is based on the study of curves Γ ⊂ C2 with infinite group
StabΓ = {f ∈ Aut(C2) : f(Γ ) = Γ}. We classify such curves completely
(Theorem 3.8).

Finally, we show that for any finite family {Γ1, . . . , Γs} of non-rational
curves on the plane, the variety X := C2\

⋃s
i=1 Γi has a finite automorphism

group (Theorem 3.9).

2. Preliminaries. Let us recall some properties of fibres of a primitive
polynomial p in two complex variables (see [Suz1], [Suz2], [Z-L], [Zai]).

It is well known that all but finitely many fibres of p are pairwise homeo-
morphic. Such fibres are called generic. A generic fibre is smooth and irre-
ducible. All other fibres are called degenerate. A point s ∈ C for which the
fibre Γs := p−1(s) is generic is called a generic point , otherwise it is degen-
erate. The set of fibres of a primitive polynomial p will be called a family of
curves.

The following proposition was proved in [Suz2] and is crucial to our
study:

Proposition 2.1. Let p : C2 → C be a primitive polynomial and let
χp denote the Euler characteristic of a generic fibre. Let S be the set of all
degenerate points. For every s ∈ S we have χ(Γs) > χp. Moreover ,∑

s∈S
{χ(Γs)− χp} = 1− χp.

We get at once the following interesting

Corollary 2.2. If the generic fibre of a family p is a C-curve (i.e.,
it is isomorphic to C) then all fibres of p are generic (and isomorphic to
C). Conversely , if all fibres of a family p are generic then it is a family of
C-curves.

If a generic fibre is a C∗-curve then the family p has exactly one degen-
erate fibre Γs. Moreover , χ(Γs) = 1.

In the sequel the topological characterization of an irreducible algebraic
curve with Euler characteristic 1 will be useful. Let us begin with the fol-
lowing simple observation.

Lemma 2.3. Let X be an algebraic complex curve and let a ∈ X. Then

χ(X \ {a}) = χ(X)− 1.

P r o o f. Consider the triple {X \ {a}, V, V \ {a}}, where V is a small
neighbourhood of a. More precisely, we can assume that V is a bouquet of r
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discs, where r is the number of components in the germ Xa. In this situation
the point a is a retract of V , and V \ {a} can be retracted to the disjoint
sum

⋃r
i=1 S

1
i of r circles. Hence χ(V ) = 1 and χ(V \ {a}) = rχ(S1) = 0.

Using the Mayer–Vietoris sequence we have

χ(X \ {a}) + χ(V ) = χ(X) + χ(V \ {a}).
Thus χ(X \ {a}) + 1 = χ(X).

The simple but useful consequence of the above result is the following

Proposition 2.4. Let X be an irreducible affine curve of genus g. (This
means that a smooth model X1 of a compactification of X has genus g.)
Suppose that X has n branches at infinity (i.e., n is the number of points in
X1 \X0, where X0 is the normalization of X). Let Sing(X) = {a1, . . . , ar}
be the singular locus. Further , suppose that the germ Xai has ki irreducible
components. Then

χ(X) = 2(1− g)− n−
r∑
i=1

(ki − 1).

In particular , if χ(X) = 1 then X is homeomorphic to C.

P r o o f. Let π : X0→X be the normalization. Then π is an isomorphism
outside A := Sing(X), and π−1(A) has

∑r
i=1 ki points. Hence by the lemma

χ(X) = χ(X \A) + r = χ(X0 \ π−1(A)) + r = χ(X0)−
r∑
i=1

ki + r

= χ(X1)− n−
r∑
i=1

(ki − 1) = 2(1− g)− n−
r∑
i=1

(ki − 1).

Since X is affine we have n > 0 and the case χ(X) = 1 is possible only
if g = 0 and n = 1 and all ki = 1, i.e., if X is homeomorphic to C.

Plane curves homeomorphic to the complex line have a very nice descrip-
tion due to Zăıdenberg and Lin (see [Z-L]):

Proposition 2.5. Let X ⊂ C2 be an affine algebraic curve homeomor-
phic to the complex line. Then in suitable coordinates X can be written
as

X = {(x, y) ∈ C2 : xk = yl, (k, l) = 1}.
R e m a r k 2.6. The proposition above is a generalization of the famous

Abhyankar–Moh–Suzuki theorem (see [A-M], [Suz1]):

If Γ ⊂ C2 is a curve isomorphic to C then in some coordinates we have
Γ = {(x, y) ∈ C2 : x = 0}.

There is the following useful consequence of the above considerations.
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Proposition 2.7. Let p : C2 → C be a family of curves. If there is only
one degenerate fibre Γ in p and Γ is irreducible then in some coordinates

Γ = {(x, y) ∈ C2 : xk = yl, (k, l) = 1}.
P r o o f. Indeed, by Proposition 2.1 the curve Γ has Euler characteristic

equal to 1. Hence by Proposition 2.4 it is homeomorphic to C and finally
the proof is finished by Proposition 2.5.

3. Main result. First we want to describe the set of fixed points of a
polynomial automorphism of C2. To do this, the following lemmas will be
useful:

Lemma 3.1. Let X be an irreducible affine curve with infinite automor-
phism group. Then X is either isomorphic to C∗ or it is homeomorphic to C.
Moreover , in the last case X can have at most one (necessarily irreducible)
singularity.

P r o o f. Let X0 be a normalization of X and X1 be a smooth completion
of X0. Since Aut(X) is infinite, so is Aut(X0). The latter group is a
subgroup of Aut(X1) which stabilizes the divisor D := X1 \X0. Since D is
ample, Aut(X0) must be linear (for details see [Jel3], 3.7). Moreover, since
Aut(X0) is infinite, X1 is rational (see ibid., 3.12), i.e., X1 = P1(C). Further,
the singular points are permuted by polynomial automorphisms, hence the
common number of points at infinity of X0 and of points of X1 which lie over
the singular locus of X must be at most two (in X1). If there exist two such
points we get either X = X0 = C∗, or X 6= X0 = C, and in the latter case
X has one irreducible singular point (which means that X is homeomorphic
to C). If there is only one such point then X = X0 = C.

Lemma 3.2. Let Γ ⊂ C2 be a curve with an irreducible equation p(x, y)
= 0. Let f ∈ StabΓ be an element of infinite order. Then only two possibil-
ities can occur :

1) There exists s ∈ N such that fs stabilizes all fibres of p. Moreover , p
is a C- or C∗-family and Γ is either homeomorphic to C, or it is isomorphic
to C∗,

2) Γ is the unique degenerate fibre of the family p and it is homeomorphic
to C.

P r o o f. By the Hilbert Nullstellensatz we have p ◦ f = cp, for some
c ∈ C∗. There are two cases possible:

1) c has a finite order, i.e., cs = 1 for some s ≥ 1,
2) c has an infinite order.

1) We can assume c = 1 and then we have p− λ = (p− λ) ◦ f for every
λ∈C. This means that all fibres of p are stable under f . Since f is of infinite
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order, a generic fibre has an infinite automorphism group. Since the generic
fibre is smooth and irreducible it must be isomorphic either to C or to C∗
(see Lemma 3.1).

In the first case, by Corollary 2.2, p has no degenerate fibres, and in
particular Γ ∼= C.

In the second case, by the same corollary, p has exactly one degenerate
fibre. If it is the fibre p−1(0) = Γ then by Proposition 2.1 we obtain Γ =
{(x, y) ∈ C2 : xk = yl, (k, l) = 1} in some coordinate system. If this fibre is
not Γ then Γ is generic and isomorphic to C∗.

2) In this case the fibre Γλ := p−1(λ) is transformed under f onto the
fibre p = cλ. More generally, under fr this fibre goes onto the fibre p = crλ
for r ∈ Z. Since c is of infinite order, for λ 6= 0 the fibre Γλ is isomorphic
to an infinite set of other fibres. This means that Γλ is a generic fibre for
all λ 6= 0. Hence p has at most one degenerate fibre, Γ0. If Γ0 is degenerate,
by Proposition 2.7 we have Γ0 = {(x, y) ∈ C2 : xk = yl, (k, l) = 1} in some
coordinate system.

If p has no degenerate fibres at all, then Proposition 2.1 shows that p is
a family of C-curves, and in particular Γ ∼= C.

Using the lemma above we describe the set Fix f of fixed points of a
polynomial automorphism f of the affine plane. We have:

Theorem 3.3. Let f : C2 → C2 be a non-trivial polynomial automor-
phism. Then the set S = Fix f is either finite, or a finite union of disjoint
C-curves.

Conversely , if S is a finite subset of the plane, or a finite union of disjoint
plane C-curves, then there is f ∈ Aut(C2) such that S = Fix f .

P r o o f. Let Γ be a one-dimensional component of S. We show that in
this case Γ ∼= C.

Since any automorphism of the affine plane of a finite order is conjugate
to a linear one (see e.g. [Kam]), in which case there is nothing to prove, we
can assume that f is of infinite order. By Lemma 3.2 and Proposition 2.5
there are only two cases possible:

1) in some coordinates Γ = {(x, y) ∈ C2 : xk = yl, (k, l) = 1},
2) Γ is isomorphic to C∗.
Now we will show that the first case is possible only if k = 1 or l = 1,

and the second case is excluded. Indeed, the following lemma is true:

Lemma 3.4. Let f be a polynomial automorphism of the plane which
stabilizes the curve R = {(x, y) : xk = yl, (k, l) = 1}. Then each one-
dimensional component Γ of Fix f is isomorphic to C.

P r o o f. Let f = (f1, f2). Since R is f -stable we have fk1 −f l2 = c(xk−yl)
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for some non-zero constant c. Hence if a := deg f1 and b := deg f2 are both
greater than 1 we have deg fk1 = deg f l2. But it is well known (see [Kul])
that if f is a polynomial automorphism then deg f1 divides deg f2 or vice
versa, thus we can assume that b = λa for some non-zero integer λ. Hence
ka = lλa and k = lλ. If k 6= 1 and l 6= 1 this is a contradiction.

Thus either “a = 1 or b = 1”, or “k = 1 or l = 1”.
Assume that a = 1 or b = 1. This means that one of the polynomials

f1, f2, say f1, is linear. We have Γ ⊂ {f1 − x = 0}. Hence if f1 6= x then
Γ is a line. In the other case f is a triangular automorphism, f(x, y) =
(x, cy + p(x)), and then Fix f is known to be a finite union of C-curves.

If k = 1 or l = 1 then R is isomorphic to C and by the Abhyankar–
Moh–Suzuki theorem we can assume that R = {(x, y) : x = 0}. But in this
case f(x, y) = (cx, by + p(x)) and it is easy to see that a one-dimensional
component of Fix f is either a straight line or it has an equation (b− 1)y +
p(x) = 0 (if b 6= 1). In both cases Γ is isomorphic to C.

We proceed now with the proof of Theorem 3.3.
1) It follows immediately from the lemma that Γ ∼= C, i.e., k = 1 or

l = 1.
2) We will show that the case Γ ∼= C∗ is impossible.
Let p be an irreducible equation of Γ . Since Γ is not homeomorphic to

C, Lemma 3.2 implies that fs stabilizes all fibres of p for some s ∈ N. We
can assume that s = 1. This means that all fibres of p are stable under f
and the generic fibre is C or C∗. By Corollary 2.2 the first case is impossible,
hence the generic fibre must be C∗. Hence p has only one degenerate fibre. By
Proposition 2.7 it cannot be the fibre over 0. Let w be the unique degenerate
point and let R be some irreducible component of Γw. Since Γw has only a
finite number of irreducible components the curve R is stable under some
iteration F := fr of f . We have again two cases to consider:

(∗) R = Γw,
(∗∗) R is a proper component of Γw.

(∗) In this case R is homeomorphic to C and stable under F and by
Lemma 3.4 we get Γ ∼= C, which is a contradiction.

(∗∗) Let R = {q = 0} for some irreducible polynomial q. Since R 6=
{p = 0} we see that deg q < deg p, which shows that the families p and q
are different. By Lemma 3.2 only two possibilites can occur: either all fibres
of q are stable under some iteration of F , or R is homeomorphic to C. The
second possibility cannot occur, by Lemma 3.4.

Hence we can assume that F stabilizes all fibres of q. But F is an iteration
of f , hence it also stabilizes all fibres of p. Since a generic fibre of q intersects
a generic fibre of p in at most N = (deg q)(deg p) points, the order of F is
at most N ! = 1 · . . . ·N . This is a contradiction again.
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Hence case 2) is excluded and we have proved that if a curve Γ is a
component of Fix f for a polynomial automorphism f then Γ is isomorphic
to C. Further in this case we can assume by the Abhyankar–Moh–Suzuki
theorem (see Remark 2.6) that Γ = {(x, y) ∈ C2 : x = 0}. Since f is the
identity on Γ we have f = (cx, y + p(x)) with p(0) = 0. This means that
Fix f consists of one or more (disjoint) straight lines, in particular, it is of
pure dimension. Hence Fix f is either finite, or a union of disjoint C-curves.

Now we prove the converse: if S is a finite subset of the plane, or a
finite union of disjoint plane C-curves, then there is f ∈ Aut(C2) such that
S = {x ∈ C2 : f(x) = x}. Of course we can assume that S is non-empty.

First assume that S is finite. The following is proved in [Jel4]:

Lemma 3.5. Let n ≥ 2 and A = {a1, . . . , ar}, B = {b1, . . . , br} ⊂ Cn,
where ai 6= aj and bi 6= bj for i 6= j. Then there is a polynomial automor-
phism F of Cn such that F (ai) = bi, i = 1, . . . , r.

Let S = {a1, . . . , ar} and suppose F ∈ Aut(C2) has the property that
F (ai) = (i, 0), i= 1, . . . , r. Let B={(1, 0), (2, 0), . . . , (r, 0)}. If we construct
an automorphism G with B = FixG then f = F−1 ◦G ◦ F has Fix f = S.
It is easy to check that we can take for G the automorphism

G(x, y) =
(
x+ y +

r∏
i=1

(x− i), y +
r∏
i=1

(x− i)
)
.

Now let S be a finite union of disjoint plane curves, i.e., S =
⋃r
i=1 Γi,

where Γi ∼= C and Γi ∩ Γj = ∅. By the Abhyankar–Moh–Suzuki theorem
(see Remark 2.6) we can reduce the problem (as above) to the case when
Γ1 = {(x, y) : x = 0}. Then necessarily Γi = {(x, y) : x = ai} for some
non-zero distinct complex numbers ai, i = 2, . . . , r. Indeed, the polynomial
x restricted to Γi is a non-zero function on Γi, hence it is some constant
ai and if hi is an irreducible equation of Γi then hi divides x − ai, i.e.
hi = const(x− ai).

Thus Γi = {x = ai}, i = 1, . . . , r (here a1 = 0). Now it is easy to check
that the automorphism

G(x, y) =
(
x, y +

r∏
i=1

(x− ai)
)

has FixG = S.

Now we use the above theorem to determine the one-dimensional identity
sets in C2. Let us recall the definition:

Definition 3.6 (see [Jel1], [Jel2]). Let Γ be an affine curve in C2. We
say that Γ is an identity set for polynomial automorphisms of C2 if any two
polynomial automorphisms that coincide on Γ must be equal.
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The following corollary generalizes some results from [M–W], [Jel1],
[Jel2]:

Corollary 3.7. An affine curve Γ ⊂ C2 is an identity set for polynomial
automorphisms of C2 if and only if it is not isomorphic to a union of disjoint
C-curves.

P r o o f. The condition is necessary by the last part of Theorem 3.3.
It is also sufficient. Indeed, suppose Γ is not isomorphic to a union of

disjoint C-curves and let f, g ∈ Aut(C2) be two automorphisms that coincide
on Γ . Then Γ is a one-dimensional subset of FixF for the automorphism
F := f ◦ g−1, and by Theorem 3.3, F must be trivial. Hence f = g and we
have proved that Γ is an identity set.

Now we are in a position to describe irreducible affine curves with infinite
group StabΓ .

Theorem 3.8. Let Γ ⊂ C2 be an irreducible affine curve with StabΓ =
{f ∈ Aut(C2) : f(Γ ) = Γ} infinite. Then only two cases are possible:

1) Γ ∼= C∗,
2) Γ is homeomorphic to C, i.e., in some coordinates Γ = {(x, y) ∈ C2 :

xk = yl, (k, l) = 1}.
P r o o f. We can assume that Γ is not isomorphic to C. Hence Γ is

an identity set and consequently the restriction to Γ gives the inclusion
StabΓ ⊂ Aut(Γ ). Since StabΓ is infinite, so is Aut(Γ ). By Lemma 3.1 and
Proposition 2.5 the proof is finished.

We conclude this paper with the following theorem:

Theorem 3.9. Let {Γ1, . . . , Γs} be a finite family of non-rational curves
in C2. Then the automorphism group of the variety X := C2 \

⋃s
i=1 Γi is

finite.

P r o o f. Let f ∈ Aut(X). By Corollary 54 in [Jel2] we can extend f to
the whole of C2 and consequently Aut(X) = StabΓ , where Γ :=

⋃s
i=1 Γi.

Moreover, if H := StabΓ ∩ StabΓ1 then (Aut(X) : H) ≤ s and it is enough to
show that H is finite. But since Γ1 is non-rational, StabΓ1 is finite according
to Theorem 3.8.

R e m a r k 3.10. Wakabayashi (see [Iit2], pp. 15–16) gave conditions for
the complement of a finite family of straight lines in C2 to have a finite
automorphism group.
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