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A 43 configuration of lines and conics in P5

by Tomasz Szemberg (Kraków and Erlangen)

Abstract. Studying the connection between the title configuration and Kummer sur-
faces we write explicit quadratic equations for the latter. The main results are presented
in Theorems 8 and 16.

Introduction. The aim of this work is to find canonical equations for
a 43 configuration of lines and conics in projective space P5 connected in a
natural manner with embeddings of certain Kummer surfaces in P5. These
surfaces are projections of the abelian surfaces which were described first by
Adler and van Moerbeke [A-M].

In the clasical case the (singular) Kummer surface is embedded in P3 by
means of the second tensor power of an ample line bundle of type (1,1). There
is the famous 166 configuration discovered by Kummer and exhibited in all
details in the beautiful book of Hudson [Hu]. One of the keys to the study of
the classical situation is its symmetry group, which is the Heisenberg group
H2,2, more precisely its quotient by the involution.

Here we use a linear subsystem of the fourth tensor power, invariant
under a group of order four. This group is the representation of an order 4
subgroup of the Heisenberg group H4,4 and also plays a very important role
here. The image surface has only 12 nodes and we call it an intermediate
Kummer surface. Our objective is to get equations defining such surfaces.
This might prompt a computer-assisted investigation of the latter. Finally,
we are also motivated by Mumford [M], since there is a close relation between
abelian and Kummer surfaces.

Hyperelliptic curves. We begin with the Jacobian variety of an alge-
braic curve Θ of genus 2. This curve is hyperelliptic and J(Θ) is an abelian
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surface. We recall some important facts from the theory of algebraic curves.

Proposition 1. Algebraic smooth curves of genus 2 are parametrized by
triplets of points in P1 up to permutation.

We only sketch the proof, which can be found in [Ha]. Since each genus
2 curve Θ is hyperelliptic it can be realized as the Riemann surface of the
square root of some polynomial. This polynomial has degree 6, which follows
directly from the Riemann–Hurwitz formula. In other words, there is a 2 : 1
covering Θ → P1 ramified over six points. They are all distinct if the curve
is smooth. Applying automorphisms of the Riemann sphere P1 to these six
points we can arrange them so that three of them are 0, 1, ∞. This normal
form is also called the Rosenhain form and was extensively studied by Igusa
in [I]. The other three points are fixed up to permutation.

Let now A = J(Θ) be the Jacobian surface of a smooth curve Θ of
genus 2. This curve can be identified on A via the Abel–Jacobi map as the
theta divisor and defines the principal polarization of A. For construction
and proof see [F] and [L-B]. There are exactly six halfperiods on Θ. Having
in mind the above proposition it seems natural to distinguish three of them,
say e0, e1, e2. We fix e0 as the neutral element for the group operation of
A on itself. Defining e3 := e1 + e2 we get the order 4 subgroup e0, . . . , e3 of
the order 16 group of halfperiods on A. We notice that e3 6∈ Θ.

Let Tx denote the translation on A by x. Set

Θ3 = Θ, Θ2 = Te1(Θ3), Θ1 = Te2(Θ3), Θ0 = Te3(Θ3).

Thus ei 6∈Θi for i = 0, . . . , 3. In what follows we write Θ if it is not important
which of the above translates we mean.

The line bundles OA(Θ0), . . . ,OA(Θ3) are not isomorphic. But already
their second tensor powers are. We study this situation more closely in the
next sections.

The group action on sections of a line bundle. We now recall the
basic ideas of Mumford [M] and apply them in our situation of surfaces. We
stick as far as possible to the notation of Mumford. We do not copy any
proofs. They can all be found in [M].

As usual, let A be an abelian variety and Â its dual. For any ample
invertible sheaf L on A we denote by Λ(L) the associated homomorphism

Λ(L) : A 3 x 7→ T ∗x (L)⊗ L−1 ∈ Â.

Let H(L) be the kernel of Λ(L). It is a subgroup of A consisting of all points
x such that T ∗x (L) ' L. We concentrate our study on the group G(L) which
is defined as follows:
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Definition 2. G(L) is the set of pairs (x, ϕ), where x ∈ A and ϕ is an
isomorphism

ϕ : L 7→ T ∗x (L).

The group structure is given by

(y, ψ) • (x, ϕ) = (x+ y, T ∗x (ψ) ◦ ϕ).

The connection between G(L) and H(L) is given by the exact sequence

0→ C∗ → G(L)→ H(L)→ 0.

G(L) is in fact a central extension of H(L). This extension defines the fol-
lowing skew-symmetric bilinear form on H(L). Let x, y ∈ H(L) and let
x̃, ỹ ∈ G(L) lie over x, y. Then set

eL(x, y) = [x̃, ỹ] = x̃ • ỹ • x̃−1 • ỹ−1.

Notice that for any x ∈ H(L) it is possible to choose x̃ ∈ G(L) of the same
order.

Now let L be a symmetric invertible sheaf, i.e. L ' ι∗L, where ι : A 3
x 7→ −x ∈ A is the usual involution on the abelian surface. Let α : L→ ι∗L
be the normalized isomorphism, i.e. α is the identity on the fibre Le0 of L
over e0. Furthermore, let A2 be the set of halfperiods on A. For any x ∈ A2

we define eL∗ (x) to be the integer k such that α is multiplication by k in the
fibre Lx. Since αx = ι∗αx and ι∗α ◦ α is the identity, it is clear that k can
only be ±1. Since α is normalized, eL∗ (0) = 1.

Unfortunately, there is no connection between the bilinear form eL and
the quadratic form eL∗ . However, we have the following

Proposition 3 (Mumford). Let L be a symmetric line bundle on the
abelian surface A. Then A2 ⊂ H(L2) and for every x, y ∈ A2,

(1) eL
2
(x, y) = eL∗ (x+ y) · eL∗ (x) · eL∗ (y).

For our calculations the following fact is of importance:

Proposition 4 (Mumford). Let D be a symmetric divisor on A and
L = OA(D). Then for any x ∈ A2,

(2) eL∗ (x) = (−1)m(x)−m(e0),

where m(y) denotes the multiplicity of D in y.

The group G(L) operates on H0(L) in the following way.

Definition 5. For x̃ = (x, ϕ) ∈ G(L) and s ∈ H0(L) set Ux̃(s) =
T ∗−x(ϕ(s)).
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This defines indeed a group action as the following calculation shows.
For ỹ = (y, ψ) ∈ G(L) we have

Uỹ(Ux̃(s)) = T ∗−y(ψ(T ∗−x(ϕ(s)))) = (T ∗−y ◦ T ∗−x)(T ∗x (ψ(T ∗−x(ϕ(s)))))

= T ∗−(x+y)(T
∗
x (ψ)(ϕ(s))) = U(x+y,T∗x (ψ)◦ϕ)(s) = Uỹ•x̃(s).

In what follows we make no difference between Ux̃ and x̃.

The linear system H0(I.OA(4Θ))ev. For a symmetric line bundle L
on an abelian surface A we denote by H0(L)ev the eigenspace of 1 of the
mapping H0(L) 3 s 7→ ιLsι ∈ H0(L), where ιL is the lifting of ι to an
involution on the total space of L. The elements of H0(L)ev are called the
even sections in the line bundle L.

We have seen that the translations Te1 and Te2 lift to involutions ẽ1, ẽ2 of
the line bundle OA(2Θ) and canonically to involutions σ and τ of OA(4Θ).
Let G denote the group generated by σ and τ , and let I be the ideal sheaf
of the 0-dimensional variety consisting of e0, . . . , e3.

In the next proposition we describe explicitly a basis of the 6-dimensional
vector space H0(I.OA(4Θ))ev. Let t3 be a generator of H0(OA(Θ3)) and
t0, t1, t2 its translates vanishing on Θ0, Θ1, Θ2 respectively. Thus ti is a sec-
tion in the bundle OA(Θi) and we have the following

Proposition 6. The sections u1 = u23 = t23t
2
2, u2 = u01 = t21t

2
0, u3 =

u03 = t23t
2
0, u4 = u12 = t22t

2
1, u5 = u13 = t23t

2
1, u6 = u02 = t22t

2
0 form a basis

of H0(I.OA(4Θ))ev on which σ and τ operate as

σ =


1 0
0 1

0 1
1 0

0 1
1 0

 and τ =


0 −1
−1 0

0 −1
−1 0

1 0
0 1

 .

P r o o f. We begin by computing the operation of σ and τ on the sections
uij . It is enough to compute how ẽ1, ẽ2 operate on t20, . . . , t

2
3, since σ and τ

are their squares. Let L = OA(Θ); then ẽ1, ẽ2 are in fact elements of G(L2).
Using formulas (1) and (2) we compute their commutator

[ẽ1, ẽ2] = eL
2
(e1, e2) = eL∗ (e1 + e2) · eL∗ (e1) · eL∗ (e2)

= (−1)m(e3)−m(e0) · (−1)m(e1)−m(e0) · (−1)m(e2)−m(e0) = −1,

since m(e0) = m(e1) = m(e2) = 1 and m(e3) = 0. This means that ẽ1 • ẽ2 =
−ẽ2 • ẽ1. If we now specify ẽ1 = (e1, ϕ1), ẽ2 = (e2, ϕ2), where ϕi : L2 →
T ∗ei

L2 are fixed isomorphisms, then

ẽ1 • ẽ2 = (e1, ϕ1) • (e2, ϕ2) = (e3, T ∗e2(ϕ1) ◦ ϕ2)
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and ẽ2 • ẽ1 = (e3, T ∗e1(ϕ2) ◦ ϕ1), hence

T ∗e2(ϕ1) ◦ ϕ2 = −T ∗e1(ϕ2) ◦ ϕ1.

For the sections t0, . . . , t3 we have

t22 = ϕ−1
1 T ∗e1t

2
3 = T ∗e1ϕ1(t23),

t21 = ϕ−1
2 T ∗e2t

2
3 = T ∗e2ϕ2(t23),

t20 = ϕ−1
3 T ∗e3t

2
3 = T ∗e3ϕ3(t23),

where ϕ3 is chosen to be T ∗e2(ϕ1) ◦ ϕ2 (this means ẽ3 = ẽ1 • ẽ2).
As already mentioned we compute the action of ẽ1 and ẽ2. It seems quite

instructive to make some calculations explicit. For example, for ẽ2 we find

ẽ2(t23) = T ∗e2ϕ2(t23) = t21,

ẽ2(t22) = T ∗e2ϕ2(T ∗e1ϕ1(t23)) = T ∗e2T
∗
e1(T ∗e1ϕ2T

∗
e1)ϕ1(t23)

= T ∗e3T
∗
e1(ϕ2) ◦ ϕ1(t23) = −T ∗e3T

∗
e2(ϕ1)ϕ2(t23) = −T ∗e3ϕ3(t23) = −t20.

Since ẽ2 is an involution it is clear that ẽ2(t20) = −t22 and ẽ2(t21) = t23.
Computing in the same way the action of ẽ1 we get

t20 t21 t22 t23

ẽ1 t21 t20 t23 t22

ẽ2 −t22 t23 −t20 t21

Since σ(uij) = ẽ1(t2i )⊗ ẽ1(t2j ) and τ(uij) = ẽ2(t2i )⊗ ẽ2(t2j ) we have

u01 u02 u03 u12 u13 u23

σ u01 u13 u12 u03 u02 u23

τ −u23 u02 −u12 −u03 u13 −u01

This table gives the matrices in the assertion.
Now, notice that h0(OA(4Θ)) = 1

2 (4Θ)2 = 16. It is clear that I imposes
4 independent conditions on the sections in H0(OA(4Θ)). Hence we have
h0(I.OA(4Θ)) = 12. Since Θ is symmetric on A we obtain

H0(OA(4Θ)) = H0(OA(4Θ))ev ⊕H0(OA(4Θ))odd.

By [B-L, formula 4.7.5] we get

h0(OA(4Θ))ev = 10 and h0(OA(4Θ))odd = 6.

But H0(OA(4Θ))odd ⊂ H0(I.OA(4Θ)) since odd sections vanish at all half-
periods to order at least one. Thus what is left is H0(I.OA(4Θ))ev and its
dimension is 6.
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Of course the uij ’s are sections in H0(I.OA(4Θ))ev and we only have to
prove that they are linearly independent. Suppose that∑

λijuij ≡ 0.

This equation must be invariant under G. Applying σ to the left side we get

λ23u23 + λ01u01 + λ03u12 + λ12u03 + λ13u02 + λ02u13 ≡ 0.

Subtracting both equations we get

(λ03 − λ12)u03 + (λ12 − λ03)u12 + (λ13 − λ02)u13 + (λ02 − λ13)u02 ≡ 0.

Let us now restrict this equation to Θ0:

(λ12 − λ03)u12 + (λ13 − λ02)u13 = 0 on Θ0.

Rewriting the above equation with ti we have

t21((λ12 − λ03)t22 + (λ13 − λ02)t23) = 0 on Θ0.

Since the first factor has only two zeros on Θ0, the second one must be zero
on the whole divisor. Evaluating it at e2 and e3 we get

λ12 − λ03 = 0, λ13 − λ02 = 0.

Repeating the above procedure with τ and σ ◦ τ we get

λ23 + λ01 = 0, λ12 + λ03 = 0,
λ23 − λ01 = 0, λ13 + λ02 = 0.

Hence all λij = 0. This ends the proof.

Notice that the linear systems H0(I.OA(4Θ))ev and H0(I2.OA(4Θ))ev

are the same since each even section vanishes to even order at all halfperiods.
Let Bl : Ã→ A be the blow-up at e0, . . . , e3. Then the above linear system
can be pulled back to Ã, more precisely:

Proposition 7.

(Bl)∗(H0(I.OA(4Θ))ev) = H0(OÃ(4(Bl)∗Θ − 2(E0 + E1 + E2 + E3)))ev

and this is a base point free linear system on Ã. Here E0, . . . , E3 are excep-
tional divisors and “ev” on the right side is taken with respect to (Bl)∗(ι).

P r o o f. The equality in the proposition is self-evident. It is enough to
prove that the linear system has no base points. Obviously e0, . . . , e3 are the
only fixed points of H0(I.OA(4Θ))ev. Hence we have to show that there is
a section vanishing at ei to order ≤ 2 (actually = 2). Its pullback does not
vanish along Ei. Such sections are uij , where j 6= i, since ei 6∈ Θi.



Lines and conics in P5 151

The linear system described above defines a G-equivariant mapping φ :
Ã→ P5 which factors over K̃ = Ã/〈(Bl)∗(ι)〉:

Ã
↓ ↘
K̃ → P5

We call K̃ an intermediate Kummer surface since it lies “between” the
classical Kummer surface with 16 singularities and the smooth K3 surface.

The linear system |4Bl∗(Θ)−2(E0+E1+E2+E3)|ev defines an associated
line bundle M+ on K̃ in such a way that

H0(M+) = H0(OÃ(4Bl∗(Θ)− 2(E0 + E1 + E2 + E3)))ev.

The next theorem states that this bundle defines an embedding of K̃.

Proposition 8. The line bundle M+ defined above is very ample.

In the proof of this theorem the following result of Saint-Donat turns
out to be essential. It can be found in [S] and in [Ba]. In what follows we
use the notation of Bauer’s paper.

Proposition 9 (Saint-Donat). Let K be a K3 surface and let L be a
line bundle on K such that L2 ≥ 4, |L| 6= ∅ and such that |L| has no
fixed components. Then |L| has no base points. Furthermore, the morphism
K → P(H0(L)) is birational except in the following cases:

(i) There is an irreducible curve E such that pa(E) = 1 and L.E = 2.
(ii) There is an irreducible curve H such that pa(H) = 2 and L =

OK(2H).

If the morphism is birational , then it is an isomorphism away of the
contracted curves.

P r o o f o f P r o p o s i t i o n 8. Let Bls : As → A be the blow-up at all
16 halfperiods. By slight abuse of language we denote again the exceptional
divisors by E0, . . . , E15. Let Ls = Bl∗s(OA(I2.4Θ)ev) and M+

s be the cor-
responding line bundle on the smooth Kummer surface Ks = As/ιs. Let
D0, . . . , D15 denote the (−2)-curves on Ks, which we get as the push-downs
of E0, . . . , E15.

It is enough to prove that the morphism defined by M+
s : Ks → P5 is

birational and contracts the curves D4, . . . , D15. The second part is easy
since we have

M+
s .Di = 1

2 (4Bl∗s(Θ)− 2(E0 + E1 + E2 + E3)).2Ei =
{

2 if i = 0, . . . , 3,
0 if i ≥ 4.

The assumptions of Saint-Donat’s theorem are clearly satisfied, so we are
done if we prove that the following two cases cannot occur:
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C a s e 1. Let E be an irreducible elliptic curve with M+
s .E = 2. Let

F = π∗s (E). Since πs is a morphism of degree 2, we have 0 = E2 = 1
2F

2.
F is again an elliptic curve on As, by the adjunction formula. There is a
symmetric divisor G on A such that Bl∗sG = F +

∑15
i=0miEi. One easily

computes that G2 =
∑15
i=0m

2
i and

2 =M+
s .E = 1

2 (4Bl∗s(Θ)− 2(E0 + E1 + E2 + E3)).F

= 1
2 (4Bl∗s(Θ)− 2(E0 + E1 + E2 + E3)).

(
Bl∗sG−

15∑
i=0

miEi

)
= 1

2 (4Θ.G− 2(m0 + . . .+m3)).

Thus we get

Θ.G = 1 + 1
2 (m0 + . . .+m3).

Since g(Θ) = 2, we have Θ.G ≥ 2 and thus m0 + . . . + m3 ≥ 2. Using the
Hodge inequality (see [Ba]) we have

2
15∑
i=0

m2
i = Θ2 ·G2 ≤ (Θ.G)2 =

(
1 + 1

2 (m0 + . . .+m3)
)2
.

There are only two possibilities for mi’s to satisfy the above inequality:

(i) There exist i, j ∈ {0, 1, 2, 3} with i 6= j such that

mk =
{ 1 if k = i or k = j,

0 for all other k.
In this case we have G2 = 2, so G defines a principal polarization. This is
not possible because then G must pass through 6 halfperiods.

(ii) m0 = . . . = m3 = 1 and mk = 0 for k = 4, . . . , 15. Then G2 = 4
and G.Θ = 3. Thus G defines a (1,2)-polarization, hence h0(A, |G|) = 2.
Let e be a halfperiod on Θ different from e0, . . . , e3. In the pencil |G| we
can find an element G0 passing through e. That means that G0 contains
four halfperiods e0, e1, e2, e lying on Θ. Since G0.Θ = 3 it follows that these
divisors have common components because otherwise G0.Θ ≥ 4. What is
more, G0 must be irreducible, since if it had two components, say G1 and
G2, we would have G1.Θ ≥ 2, G2.Θ ≥ 2 and again a contradiction. So we
can assume that G0 is irreducible. Since Θ is reduced and irreducible we
must have G0 = Θ+R. Again Θ.R ≥ 2 and 4 = G2

0 = Θ2 + 2Θ.R+R2 ≥ 6,
a contradiction.

C a s e 2. Let H be a genus 2 curve such that M+
s = OKs

(2H) and
let G be the corresponding symmetric divisor on A. Let again F be the
proper transform of G on As. We have Bl∗sG = F +

∑15
i=0miEi. Computing

intersection numbers we get G2 = 8 and m0 = . . . = m3 = 1, mk = 0 for
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k = 4, . . . , 15. This is a contradiction: G is numerically, hence algebraically
equivalent to 2Θ and it must be totally symmetric.

Thus we have shown that M+ defines an isomorphism.

We proceed with describing the title 43 configuration. The following lem-
mas are simple consequences of the above proposition and of the geometry
of the abelian surface A.

Lemma 10. φ|Ei is a 1 : 1 mapping for i = 0, . . . , 3, and its image is a
smooth conic Ci lying in some plane Fi in P5.

P r o o f. It is enough to notice that πs : Ei → Di is 1 : 1 and to compute
the intersection number of Di with M+:

M+.Di = 1
2 (4Bl∗(Θ)− 2(E0 + E1 + E2 + E3)).2Ei = −2E2

i = 2.

Lemma 11. The restriction of φ to Θ̃i is for i = 0, . . . , 3 a 2 : 1 mapping
branched at 3 not blown-up halfperiods on Θ̃i, and its image is a line Li in
P5 (here Θ̃i denotes the strict transform of Θi under the blowing up).

P r o o f. We are done if we show that φ(Θ̃i) is a line, since then the
claim follows from the Riemann–Hurwitz formula. We compute again the
intersection number:

M+.(π∗Θ̃i) = 1
2 (4Bl∗(Θ)− 2(E0 + E1 + E2 + E3)).Θ̃i

= 2Θ.(Bl∗Θ̃i)− 3 = 4− 3 = 1.

The lines Li and the conics Ci are 43 configured. This means that each
line intersects three of the conics and each conic intersects three of the lines.
The next lemma describes which line intersects which conic and vice versa.

Lemma 12. The incidences in the 43 configuration are: Li ∩ Cj = ∅ if
and only if i = j for i, j = 0, . . . , 3.

Lemma 13. Any two planes Fi and Fj , i 6= j, meet in exactly one point
pij. In each of the configuration planes Fi the points pij , j 6= i, build a
nondegenerate (coordinate) triangle in which the conic Ci is inscribed.

P r o o f. Suppose that Fi ∩Fj is a line. This means that Fi and Fj span
some P3 ⊂ P5. The sections uij , uik, uil vanish at ei to order 2, hence
they do not vanish identically on Ci and thus also on Fi. By analogy the
sections uji, ujk, ujl do not vanish identically on Fj . Thus we have found
five independent (by Proposition 6) sections spanning P3. This is of course
a contradiction. This also shows that Fi∩Fj is not empty, since five sections
cannot span P5.

We now show that for fixed i the points pij , pik, pil are not collinear. To
this end it is enough to notice that since pij ∈ Fi ∩ Fj , it is the only point
where uij 6= 0 and all other sections vanish, and similarly for all other pmn.
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If the points mentioned above were collinear, the sections uij , uik, uil would
not be independent, but this is not possible.

Now we have to show that the line through pij and pik is tangent to the
conic Ci. We show instead that the 4-space F defined by uil = 0 is tangent
to the conic Ci. F contains of course the line in question. Let D be the
divisor defined by F on K̃. Then we have

2 = D.Ci = 1
2 (2Θ̃i + 2Θ̃l).2Ei = 2Θ̃l.Ei

and thus Θ̃l.Ei = 1. Since both divisors are effective there can only be one
intersection point on the Kummer surface.

Quadratic equations of the 43 configuration. In the coordinatesuij
we can easily compute the equations of the planes F0, . . . , F3. To this end
we look for sections in H0(I.OA(4Θ))ev vanishing to order ≥ 3 at a fixed
halfperiod ei. These are ujk = t2j t

2
k, ujl = t2j t

2
l , ukl = t2kt

2
l , where i, j, k, l

are all different. In this way one gets

Fi = {(u23 : u01 : u03 : u12 : u13 : u02) ∈ P5 | ujk = ujl = ukl = 0}.

We note that F1 = σ(F0), F2 = τ(F0), F3 = σ(τ(F0)).
Let pij = Fi ∩ Fj for 0 ≤ i < j ≤ 4 . We have

p01 = (0 : 1 : 0 : 0 : 0 : 0), p12 = (0 : 0 : 0 : 1 : 0 : 0),
p02 = (0 : 0 : 0 : 0 : 0 : 1), p13 = (0 : 0 : 0 : 0 : 1 : 0),
p03 = (0 : 0 : 1 : 0 : 0 : 0), p23 = (1 : 0 : 0 : 0 : 0 : 0).

Now, the conic Ci is tangent to the line through pij and pik at the point
qil = Ci ∩ Ll = Fi ∩ Ll; here again i, j, k, l are all different. The points of
tangency are not the vertices of the coordinate triangle in Fi, which follows
from Lemma 13.

Our next aim is to find equations of the conics C0, . . . , C3. It is in fact
enough to find one of the equations since the other three are its transforms
under the action of G.

For simplicity, let us study the situation in P2 = {(x1 : x2 : x3)}. We
choose two general points on the coordinate lines P1 = {x3 = 0} and P2 =
{x2 = 0}, say X1 = (β : α : 0) and X2 = (γ : 0 : α), where α, β, γ∈C∗. Then
there are precisely two conics intersecting the coordinate lines at the fixed
points X1 and X2 with multiplicity 2 and intersecting the third coordinate
line at some point X3 with the same multiplicity. One of these conics is the
double line through X1 and X2 and the second is a smooth conic touching
the third coordinate line at X3 = (0 : γ : β). The matrix of the quadratic
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form belonging to this smooth conic is α2 −αβ −αγ
−αβ β2 −βγ
−αγ −βγ γ2

 .
Applying the above considerations to C0 we get its equation in F0:

α2u2
01 + β2u2

03 + γ2u2
02 − 2αβu01u03 − 2αγu01u02 − 2βγu03u02 = 0.

We also have the coordinates of the tangency points qij , i 6= j. In particular,
we note that

q03 = (0 : γ : 0 : 0 : 0 : α),
q13 = σ(q02) = (0 : β : 0 : α : 0 : 0),
q23 = τ(q01) = (0 : 0 : 0 : −γ : 0 : β).

These points are all on the line L3 and they determine its equation. It is
an easy exercise to find nine other points of tangency and equations of the
other three configuration lines. It is easy because we have already identified
the symmetry group of the configuration.

Now we look for quadrics Q in P5 containing our configuration of conics
and lines. We note that the conics alone contain all information required,
more precisely:

Lemma 14. If Q is a quadric in P5 containing the conics C0, . . . , C3 then
it also contains the lines L0, . . . , L3.

P r o o f. Each line is tangent to three conics, so its intersection with Q
contains at least three points. Hence the whole line lies on the quadric by a
degree argument.

Let Q be given as a symmetric matrix [aij ], i, j=1, . . . , 6. Its intersection
with the plane Fi is, again by a degree argument, the conic Ci. Comparing
the equations of Ci and Q|Fi one gets conditions for the coefficients aij . We
omit these boring calculations here.

Proposition 15. All quadrics containing the subject configuration form
a 4-dimensional linear system spanned by

Q1 =


α2 0 −αβ −αβ αγ αγ
0 α2 −αβ −αβ −αγ −αγ
−αβ −αβ β2 0 βγ −βγ
−αβ −αβ 0 β2 −βγ βγ
αγ −αγ βγ −βγ γ2 0
αγ −αγ −βγ βγ 0 γ2

, Q2 =


1

1

,
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Q3 =

 1
1

 , Q4 =

 1
1

 .

P r o o f. One easily verifies that these quadrics contain our configuration.
The completeness of the list follows from the considerations above.

We now want to inspect more closely the intersections of the quadric
hypersurfaces just found. It is clear that the last three are very singular,
in fact they can each be decomposed into sums of two hyperplanes. The
intersection Q2 ∩Q3 ∩Q4 is a singular K3 surface S, which is the union of
eight planes: F0, . . . , F3 and F ′0, . . . , F

′
3. If Fi is defined by ujk=ujl=ukl =

0, then F ′i is defined by uij = uik = uil = 0, where i, j, k, l are all different.
IntersectingS withQ1 we get our configuration: the lines Li are, however,

counted with multiplicity 2. Thus they are double lines (singular conics) in
the planes F ′i . There is an amusing “external” symmetry in this situation.
Let us recall that looking for the equation of a conic tangent to all sides of
the coordinate triangle and passing through two fixed points X1 and X2 we
found in fact two conics. One of them was smooth and the other one, which
we left aside, was a double line. If we took this line instead of the smooth
conic we would now get smooth conics in the “dual” planes F ′0, . . . , F

′
3.

Their equations would be exactly the equations of C0, . . . , C3 after a change
of coordinates with the matrix Q2 +Q3 +Q4.

Equations of the intermediate Kummer surface. The 43 config-
uration studied in the previous section lies on the surface K̃ defined after
Proposition 7. We use the equations of this configuration to find equations
defining our Kummer surface. Let us notice that two of them are self-evident.
These are

S1 = Q2 −Q3 = u01u23 − u03u12 = 0,
S2 = Q2 −Q4 = u01u23 − u02u13 = 0.

If we hope to get the surface K̃ as a complete intersection, as in the case of
a smooth K3 surface in P5, we need another equation. It must be a linear
combination of Q1, . . . , Q4. Because of the form of S1 and S2 we can assume
that S3 = µQ1 + λQ2. Actually, we have already studied in the previous
section the case µ = 0, so we can assume S3 = Q1 + λQ2.

To find λ we need additional information about the surface. This data is
coded in its singular points. There are exactly 12 of them and they are in 1 : 1
correspondence with the halfperiods on the abelian surface A which we have
not blown up. Since there are precisely 3 of them on each divisor Θ0, . . . , Θ3,
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there are three singular points of the surface on each line L0, . . . , L3. They do
not coincide with the points qij . By symmetry it is clear that the singularities
on one of the lines, say L3, determine all the others. In fact, already the
choice of one singular point on L3 determines the other two and thus all
singularities of the surface. This is shown in the following

Proposition 16. Fix (−α : β : γ)∈(F ′3)∗. Let x = sq03 + tq23 be a point
on L3, where (s : t) ∈ P1 \ {(0 : 1), (1 : 0), (β : −α)}. Then for

λ = −2αβ2t3 + (3α2β + βγ2 + β3)st2 + (3αβ2 − αγ2 + α3)s2t+ 2α2βs3

βst2 + αs2t

the point x is singular and K̃ is the complete intersection of S1, S2 and S3.

P r o o f. For x to be singular in K̃ = S1 ∩ S2 ∩ S3 it suffices that

rk

 dS1/d(u01 . . . u23)
dS2/d(u01 . . . u23)
dS3/d(u01 . . . u23)

 < 3 at x.

Instead of simply inserting λ we show how to calculate it knowing x. It is
not only a more exciting and natural procedure but also, proceeding along
this line, we get some additional information. Calculating the matrix above
we findλsγ + 2αβγ + sα2γ 0 −2sαβγ − tβ2γ 0 −sαγ2 + tβγ2 0

sγ 0 tγ 0 0 0
sγ 0 0 0 −sα− tβ 0

 .

It is clear that its rank is < 3 if the determinant∣∣∣∣∣∣
λsγ + 2αβγ + sα2γ −2sαβγ − tβ2γ −sαγ2 + tβγ2

sγ tγ 0
sγ 0 −sα− tβ

∣∣∣∣∣∣
vanishes. Since the determinant is linear in λ, we can simply calculate λ and
thus verify the assertion of our proposition.

Let us write down the above condition on the determinant as a homoge-
neous equation in t and s:

γ2(2αβ2t3 + (λβ + 3α2β + βγ2 + β3)st2

+ (λα+ 3αβ2 − αγ2 + α3)s2t+ 2α2βs3) = 0.

If we now set t = αp and s = βq, the above equation becomes a bit simpler:

2α2p3 + (λ+ 3α2 + γ2 + β2)qp2 + (λ+ 3β2 − γ2 + α2)q2p+ 2β2q3 = 0.

It is not very surprising that we get an equation of degree 3. The three zeroes
correspond to singular points on L3 for fixed λ. This equation is also the
starting point to study the moduli space of intermediate Kummer surfaces.
But that is another story.
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