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Oscillation of a forced higher order equation

by Witold A. J. Kosmala (Boone, N.C.)

Abstract. We state and prove two oscillation results which deal with bounded so-
lutions of a forced higher order differential equation. One proof involves the use of a
nonlinear functional.

Introduction. The main objective of this paper is to present two oscil-
lation results for bounded solutions of the differential equation

(∗) x(n) + p(t)x(n−1) + q(t)x(n−2) + H(t, x) = Q(t)

where n ≥ 3 is an integer and H : R+ ×R→ R is continuous, decreasing in
its second variable and such that uH(t, u) < 0 for all u 6= 0. Here R denotes
the real line and R+ the interval [0,∞). The differential equation (∗) has
not been much studied under the assumptions on H as described above. The
only oscillation result known to the author is given in [5]. In that paper Q(t)
is identically zero and conditions on H are stronger. There is no oscillation
result known for (∗) with H as described above in the case of n even. As in
[5], in this paper we also use a nonlinear functional to prove the result. This
approach came in useful to Erbe [1], Heidel [2], Kartsatos [3], Kartsatos and
Kosmala [4], and others in proving their theorems. In [6] the author also
uses nonlinear functionals to prove a variety of asymptotic properties of the
differential equation (∗). The reader might also wish to explore [7] where H
is different but some other assumptions as well as methods are similar.

In what follows, we say that x(t), t ∈ [tx,∞) ⊂ R+, is a solution of (∗)
if it is n times continuously differentiable and satisfies (∗) on [tx,∞). The
number tx ≥ 0 depends on the particular solution x(t) under consideration.
We say that the function is oscillatory if it has an unbounded set of zeros.
Moreover, we say that a property P holds eventually or for all large t if there
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exists T ≥ 0 such that P holds for all t ≥ T . We denote by Cn(I) the space
of all n times continuously differentiable functions f : I → R. We write C(I)
instead of C0(I). Throughout this paper we assume that p ∈ C1[t0,∞) and
q ∈ C[t0,∞) with

(1) 2q(t) ≤ p′(t)

for t ≥ t0. Moreover, we assume that S is a solution of

S(n) + p(t)S(n−1) + q(t)S(n−2) = Q(t)

which tends to zero.
Lemma 1 in [5] can be extended to the forced equation without too much

difficulty. For the sake of completeness we state it formally and provide the
proof.

Lemma. If x is an eventually positive solution of (∗), then either [x(t)−
S(t)](n−2) ≤ 0 or [x(t)− S(t)](n−2) > 0 for all large t.

P r o o f. Suppose x(t) > 0 and 2q(t) ≤ p′(t) for all t ≥ t0 ≥ 0. Let
u = x− S with t ≥ t0. Then the equation (∗) becomes

(2) u(n)(t) + p(t)u(n−1)(t) + q(t)u(n−2)(t) + H(t, u(t) + S(t)) = 0.

Now, we suppose to the contrary that u(n−2)(t1) = u(n−2)(t2) = 0 with
u(n−2)(t) > 0 for t0 ≤ t1 < t < t2. This implies that u(n−1)(t) 6≡ 0 on
(t1, t2). Now, multiply (2) by u(n−2)(t) and integrate from t1 to t2 to obtain

t2∫
t1

u(n−2)(t)H(t, u(t) + S(t)) dt

=
t2∫

t1

(u(n−1)(t))2 dt−
t2∫

t1

(
q(t)− p′(t)

2

)
(u(n−2)(t))2 dt > 0.

Since the left hand side cannot be positive, we obtain a contradiction. Hence,
the proof is complete.

This Lemma can be rephrased for an eventually negative solution as well.

Theorem 1. Consider the differential equation (∗) with the following
additional assumptions:

(i) n ≥ 3 is an odd integer ,
(ii) p(t) ≤ 0, q(t) ≥ 0 and

(3) t[q(t)− p′(t)] ≤ 2p(t)

eventually , and
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(iii) for any positive real constant k ,

−
∞∫

t2H(t,±k) dt = ±∞.

Then every bounded solution of (∗) is oscillatory or tending to zero.

R e m a r k s. (a) If Q(t) ≡ 0, then every bounded solution of (∗) must
oscillate.

(b) The function p cannot be a negative constant because if it is, by
assumption (ii) and (1), q(t) ≡ 0. But this contradicts condition (3).

(c) Suppose p(t) ≤ 0 and q(t) ≥ 0 eventually. Then assumption (1) does
not imply assumption (3). Indeed, p(t) = −1/t and q(t) = 1/(5t2) satisfy
(1) but not (3). Moreover, condition (3) does not imply condition (1). For
example, p(t) = −1/t5 and q(t) = 2.8/t6 satisfy (3) but not (1). It can be
proven, however, that if p(t) satisfies

p(t) ≤
(

t∗

t

)4

p(t∗)

with t ≥ t∗ for any fixed t∗ > 0 for which p(t∗) < 0 then, together with
assumption (3), the condition (1) must hold.

(d) A familiar differential equation

x′′′ − 8x = 0

fits all the assumptions of Theorem 1. It is easy to verify that since three lin-
early independent solutions are e2t, e−t sin

√
3t, e−t cos

√
3t, all the solutions

of this equation are either unbounded or bounded and oscillatory.
(e) Every homogeneous differential equation has a trivial bounded oscil-

latory solution. In particular, the differential equation

x′′′ − 1
t4

x′′ +
1
t6

x′ −
(

1− 1
t4

+
1
t6

)
x = 0

has a bounded oscillatory solution x(t) = 0 and an unbounded solution
x(t) = et for t > 0. Since the coefficient functions satisfy all the conditions in
Theorem 1, every solution of this equation is unbounded and/or oscillatory.

(f) We observe that the differential equation

x′′′ − 1
t4

x′′ +
1
t6

x′ − 1
t

arctan(tx) = − 1
t8

(6t4 + 2t + 1)

involves functions which satisfy all the required conditions in Theorem 1,
and hence, every solution of this equation is either unbounded, oscillatory
or tending to zero. In fact, S(t) = 1/t in the above equation.

(g) The differential equation (∗) has some applications in stock market
fluctuations, generalized mechanics, and astrophysics.



140 W. A. J. Kosmala

P r o o f o f T h e o r e m 1. We proceed by contradiction. Without loss
of generality, we will assume that x is a bounded, positive solution of (∗)
which does not tend to zero, and we will also assume that all the conditions
on the functions p and q are satisfied for t ≥ t0 ≥ 0. We let u = x − S
with t ≥ t0. Then equation (∗) can be written as equation (2). Also, by the
above Lemma, we have either u(n−2)(t) ≤ 0 or u(n−2)(t) > 0. In order to
prove the theorem, we need to consider both cases and find a contradiction
in each.

C a s e 1. We assume that u(n−2)(t) ≤ 0 for t ≥ t1 ≥ t0. Moreover, we
suppose that there exists t2 ≥ t1 such that u(n−1)(t2) = 0. Then we get

u(n)(t2) = −q(t2)u(n−2)(t2)−H(t2, u(t2) + S(t2)) > 0.

Thus, u(n−1)(t) is increasing at any t2, t2≥ t1, for which it is zero. Therefore,
u(n−1)(t) cannot have any zeros larger than t2. Moreover, u(n−1)(t) cannot be
eventually negative, because together with the fact that u(n−2)(t)≤0 we get
limt→∞ u(t) = −∞. Thus, limt→∞[x(t)−S(t)] = −∞. Since limt→∞ S(t) =
0, we have limt→∞ x(t) = −∞, which contradicts the positivity of x.

We conclude that u(n−1)(t) > 0 eventually. However, this is also im-
possible because from (2) we get u(n)(t) > 0 for all large t. Together with
u(n−1)(t) > 0, this implies that u(n−2)(t) > 0 eventually. This again gives a
contradiction. This takes us to the next case.

C a s e 2. We assume that u(n−2)(t) > 0 for t ≥ t3 ≥ t0. Since x(t) >
0 and limt→∞ S(t) = 0, we have u(t) = x(t) − S(t) > 0, which must
be bounded (otherwise x will be unbounded), which in turn implies that
u(n−3)(t) < 0 for all t ≥ t4 ≥ t3. Therefore, there exists ε > 0 such that
u(t4) = x(t4) − S(t4) > ε and −ε < S(t) < ε for all t ≥ t4. Keeping in
mind that n is odd, we have u′(t) > 0 for t ≥ t5 ≥ t4. This enables us to
write

u(t) + S(t) > u(t)− ε > u(t5)− ε ≡ k > 0 for all t ≥ t5.

We define the functional G by

(4) G(u(t)) = 2u(n−3)(t)u(n−1)(t) + 2p(t)u(n−3)(t)u(n−2)(t)− [u(n−2)(t)]2.

We will prove that G(u(t)) > 0 eventually by assuming to the contrary. So,
let t6 ≥ t5 be such that G(u(t6)) ≤ 0. Note that if t6 like this does not exist,
we are done. So now, we write

G′(u(t))
= 2u(n−3)(t)u(n)(t) + 2u(n−2)(t)u(n−1)(t) + 2p(t)u(n−3)(t)u(n−1)(t)

+ 2p(t)[u(n−2)(t)]2 + 2p′(t)u(n−3)(t)u(n−2)(t)− 2u(n−2)(t)u(n−1)(t)
= 2u(n−3)(t)[−p(t)u(n−1)(t)− q(t)u(n−2)(t)−H(t, u(t) + S(t))]

+ 2p(t)u(n−3)(t)u(n−1)(t) + 2p(t)[u(n−2)]2 + 2p′(t)u(n−3)(t)u(n−2)(t)
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= 2u(n−3)(t)u(n−2)(t)[p′(t)− q(t)] + 2p(t)[u(n−2)(t)]2

− 2u(n−3)(t)H(t, u(t) + S(t)) < 0 for t ≥ t6,

because 0 ≤ 2q(t) ≤ p′(t) implies q(t) ≤ p′(t). Hence G(u(t)) < 0 for t > t6.
Now we distinguish three cases.

(i) Suppose u(n−1)(t) ≥ 0 eventually. This together with u(n−2)(t) > 0
contradicts the boundedness of u(t).

(ii) Suppose u(n−1)(t) ≤ 0 for t ≥ t7 > t6. Since G is nonincreasing, this
gives us

−[u(n−2)(t)]2 ≤ G(u(t)) ≤ G(u(t7)) < 0, t ≥ t7.

So, in view of this and the fact that u(n−2)(t) is nonincreasing and positive,
there exists a number m > 0 such that limt→∞ u(n−2)(t) = m > 0. This
implies that u(n−3)(t)→∞ as t→∞, which is a contradiction.

(iii) Suppose that u(n−1)(t) changes sign for arbitrarily large t. Recall
that u(n−2)(t) > 0 for t ≥ t6. Thus lim inft→∞ u(n−2)(t) ≥ 0. If this limit is
greater than zero, then u(n−2)(t) ≥ r for some r > 0. This contradicts the
fact that u(n−3)(t) is negative. Hence

lim inf
t→∞

u(n−2)(t) = 0.

Since u(n−1)(t) oscillates, u(n−2)(t) has local extrema. Thus, there exists a se-
quence of local minima an such that limn→∞ an =∞, limn→∞ u(n−2)(an) =
0 and u(n−1)(an) = 0. Consequently, if am ≥ t8 > t6, we obtain

−[u(n−2)(am)]2 ≤ G(u(am)) ≤ G(u(t8)) < 0,

contrary to limn→∞ u(n−2)(an) = 0.
Hence, since G(u(t)) ≤ 0 prevents u(n−1)(t) from existing, we conclude

that G(u(t)) > 0 for t ≥ t9 ≥ t5. Also, since u(n−3)(t) < 0, we can drop the
the last term in (4) and obtain

(5) u(n−1)(t) + p(t)u(n−2)(t) < 0 for t ≥ t9.

Next, we multiply equation (2) by t2 and integrate (the first two terms
by parts) from t9 to t, t ≥ t9, to obtain

(6) t2u(n−1)(t)− (t9)2u(n−1)(t9)− 2
t∫

t9

su(n−1)(s) ds

+ p(t)t2u(n−2)(t)− p(t9)(t9)2u(n−2)(t9)

+
t∫

t9

[s2q(s)− (s2p(s))′]u(n−2)(s) ds

= −
t∫

t9

s2H(s, u(s) + S(s)) ds.
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Since condition (3) implies that t2q(t)− (t2p(t))′ ≤ 0, in view of (5) we can
rewrite (6) as

M − 2
t∫

t9

su(n−1)(s) ds > −
t∫

t9

s2H(s, u(s) + S(s)) ds > −
t∫

t9

s2H(s, k) ds,

with M constant. From the hypotheses, since the right hand side tends to
∞, so must the left hand side. Therefore

(7)
∞∫

t9

tu(n−1)(t) dt = −∞.

Now, we rewrite (6) again, but this time we drop the fourth and sixth
terms to obtain

t2u(n−1)(t)− 2
t∫

t9

su(n−1)(s) ds + N > −
t∫

t9

s2H(s, k) ds.

Since the right hand side tends to ∞, we can write

lim
t→∞

[
t2u(n−1)(t)− 2

t∫
t9

su(n−1)(s) ds
]

=∞.

Next, we define

z(t) =
t∫

t9

su(n−1)(s) ds.

Then z′(t) = tu(n−1)(t) and limt→∞[tz′(t)− 2z(t)]=∞. By Lemma 1 of [8],
we know that z(t) must tend to either ∞ or −∞. Since we can write

lim
t→∞

z(t) = lim
t→∞

t∫
t9

su(n−1)(s) ds = lim
t→∞

[tu(n−2)(t)− u(n−3)(t)],

where the last term is positive, we must have limt→∞ z(t) = ∞. This con-
tradicts (7). Therefore, we have a contradiction in this case as well. Hence,
the proof of the theorem is complete.

Theorem 2. Consider the differential equation (∗) with the following
additional conditions:

(i) n ≥ 3 is an odd integer ,
(ii) p(t) ≤ 0 and q(t) ≥ 0 eventually , and
(iii) for any positive real constant k ,

−
∞∫

H(t,±k) dt = ±∞.

Then every bounded solution of (∗) must oscillate or tend to zero.
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Note that, as in Theorem 1, here also if Q(t) ≡ 0, then every bounded
solution of (∗) must oscillate.

P r o o f o f T h e o r e m 2. We also argue by contradiction. Without loss
of generality, we will assume that x is a bounded, positive solution of (∗)
which does not tend to zero, and we will assume that all the conditions on
functions p and q are satisfied for t ≥ t0 ≥ 0. Let u(t) = x(t)− S(t), t ≥ t0.
Then the Lemma above guarantees that u(n−2)(t) ≤ 0 or u(n−2)(t) > 0
eventually. In order to prove the theorem, we need to consider both cases
and find a contradiction.

C a s e 1. We assume that u(n−2)(t) ≤ 0 for all large t. To obtain a
contradiction we follow case 1 in the proof of Theorem 1 above.

C a s e 2. We assume that u(n−2)(t) > 0 for t ≥ t1 ≥ t0. As in the proof
of case 2 in Theorem 1, we know that u(t) > 0, u′(t) > 0, u(n−3)(t) < 0
and u(t) + S(t) ≥ k for k > 0 constant, whenever t ≥ t2 ≥ t1. So, now we
integrate equation (2) from t2 to t, t ≥ t2, to get

u(n−1)(t) + p(t)u(n−2)(t)
= u(n−1)(t2) + p(t2)u(n−2)(t2)

+
t∫

t2

[p′(s)− q(s)]u(n−2)(s) ds−
t∫

t2

H(s, u(s) + S(s)) ds

= M + f(t)−
t∫

t2

H(s, u(s) + S(s)) ds,

where M is a constant and f(t) is the first integral above. Since f(t) ≥ 0
(note 0 ≤ 2q(t) ≤ p′(t) implies q(t) ≤ p′(t)), we can rewrite the above as

u(n−1)(t) + p(t)u(n−2)(t) > M + f(t)−
t∫

t2

H(s, k) ds.

Since p(t) ≤ 0, u(n−2)(t) ≥ 0 and the right hand side tends to ∞, we
conclude that u(n−1)(t) must also tend to ∞. Therefore, limt→∞ u(t) = ∞
implies limt→∞ x(t) =∞, which means that x is unbounded. Contradiction.
Hence, the result follows.
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Révisé le 3.11.1993


