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Oscillation of a forced higher order equation

by WitoLDd A. J. KosMALA (Boone, N.C.)

Abstract. We state and prove two oscillation results which deal with bounded so-
lutions of a forced higher order differential equation. One proof involves the use of a
nonlinear functional.

Introduction. The main objective of this paper is to present two oscil-
lation results for bounded solutions of the differential equation
(%) 2 4 p(t)a " 4 q(0)a" P + H(t,x) = Q(t)
where n > 3 is an integer and H : RT™ x R — R is continuous, decreasing in
its second variable and such that uH (t,u) < 0 for all u # 0. Here R denotes
the real line and R™ the interval [0,00). The differential equation (x) has
not been much studied under the assumptions on H as described above. The
only oscillation result known to the author is given in [5]. In that paper Q(t)
is identically zero and conditions on H are stronger. There is no oscillation
result known for (x) with H as described above in the case of n even. As in
[5], in this paper we also use a nonlinear functional to prove the result. This
approach came in useful to Erbe [1], Heidel [2], Kartsatos [3], Kartsatos and
Kosmala [4], and others in proving their theorems. In [6] the author also
uses nonlinear functionals to prove a variety of asymptotic properties of the
differential equation (x). The reader might also wish to explore [7] where H
is different but some other assumptions as well as methods are similar.

In what follows, we say that z(t), t € [t,,00) C RT, is a solution of ()
if it is n times continuously differentiable and satisfies (%) on [t;,00). The
number t, > 0 depends on the particular solution z(¢) under consideration.
We say that the function is oscillatory if it has an unbounded set of zeros.
Moreover, we say that a property P holds eventually or for all large t if there
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exists T > 0 such that P holds for all ¢ > T". We denote by C™(I) the space
of all n times continuously differentiable functions f : I — R. We write C'(I)
instead of C%(I). Throughout this paper we assume that p € C[tg, c0) and
qc C[to, OO) with

(1) 2q(t) < p'(t)
for t > ty. Moreover, we assume that S is a solution of
ST 4 p(t) STV 4+ (1) = Q(¢t)

which tends to zero.

Lemma 1 in [5] can be extended to the forced equation without too much
difficulty. For the sake of completeness we state it formally and provide the
proof.

LEMMA. If z is an eventually positive solution of (x), then either [x(t) —
S(t)]=2 <0 or [x(t) — S)] "2 > 0 for all large t.

Proof. Suppose z(t) > 0 and 2¢(t) < p/(t) for all t > to > 0. Let
u=x — S with ¢t > ty. Then the equation (*) becomes

(2) (@) +p(uTV () + g(Ou TP () + Ht,u(t) + S(¢) = 0.

Now, we suppose to the contrary that u(®=2)(t;) = u("=2(ty) = 0 with
("2 (t) > 0 for tyg < t; < t < ty. This implies that u(®~Y(¢) # 0 on
(t1,t2). Now, multiply (2) by u(*~2)(t) and integrate from ¢, to 5 to obtain

f w2 () H (t,ult) + S(t)) dt

= t}z (N (1)* dt — ] <q(t) - p/ét)>(u("2)(t))2dt > 0.

ty

Since the left hand side cannot be positive, we obtain a contradiction. Hence,
the proof is complete.

This Lemma can be rephrased for an eventually negative solution as well.

THEOREM 1. Consider the differential equation (x) with the following
additional assumptions:

(i) n > 3 is an odd integer,
(i) p(t) <0, q(t) > 0 and

(3) tlq(t) — p'(t)] < 2p(t)

eventually, and
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(iii) for any positive real constant k,
oo
— [ #2H(t, +k) dt = +oc.

Then every bounded solution of (%) is oscillatory or tending to zero.

Remarks. (a) If Q(¢) = 0, then every bounded solution of (%) must
oscillate.

(b) The function p cannot be a negative constant because if it is, by
assumption (ii) and (1), ¢(¢) = 0. But this contradicts condition (3).

(c) Suppose p(t) < 0 and ¢(t) > 0 eventually. Then assumption (1) does
not imply assumption (3). Indeed, p(t) = —1/t and q(t) = 1/(5t?) satisfy
(1) but not (3). Moreover, condition (3) does not imply condition (1). For
example, p(t) = —1/t° and ¢(t) = 2.8/t5 satisfy (3) but not (1). It can be
proven, however, that if p(t) satisfies

#\*
o< () wie)
with ¢ > ¢* for any fixed t* > 0 for which p(¢t*) < 0 then, together with
assumption (3), the condition (1) must hold.

(d) A familiar differential equation
2" —8x =0

fits all the assumptions of Theorem 1. It is easy to verify that since three lin-
ecarly independent solutions are et, e~ sin v/3t, e ~* cos v/3t, all the solutions
of this equation are either unbounded or bounded and oscillatory.

(e) Every homogeneous differential equation has a trivial bounded oscil-
latory solution. In particular, the differential equation

1 1 1 1
mn " / _

has a bounded oscillatory solution z(¢) = 0 and an unbounded solution

z(t) = e’ for t > 0. Since the coefficient functions satisfy all the conditions in

Theorem 1, every solution of this equation is unbounded and/or oscillatory.
(f) We observe that the differential equation

" — %430" + t%wl — %arctan(tx) = —tlg(ﬁt4 +2t+1)
involves functions which satisfy all the required conditions in Theorem 1,
and hence, every solution of this equation is either unbounded, oscillatory
or tending to zero. In fact, S(t) = 1/t in the above equation.
(g) The differential equation (%) has some applications in stock market

fluctuations, generalized mechanics, and astrophysics.
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Proof of Theorem 1. We proceed by contradiction. Without loss
of generality, we will assume that x is a bounded, positive solution of (k)
which does not tend to zero, and we will also assume that all the conditions
on the functions p and ¢ are satisfied for ¢t > tg > 0. Welet u = x — S
with ¢t > ¢g. Then equation (%) can be written as equation (2). Also, by the
above Lemma, we have either u("=2)(t) < 0 or u(»=?(¢) > 0. In order to
prove the theorem, we need to consider both cases and find a contradiction
in each.

Case 1. We assume that ("2 (t) <0 fort >t; > ty. Moreover, we

suppose that there exists to > t; such that u(”_l)(tg) = 0. Then we get
u™ (ty) = —q(t2)u™2 (t3) — H(ta, u(ts) + S(tz)) > 0.

Thus, v (t) is increasing at any ta, to >tq, for which it is zero. Therefore,

u("~1)(t) cannot have any zeros larger than t,. Moreover, u(® = (t) cannot be

eventually negative, because together with the fact that «(*=2 () <0 we get

lim; o0 u(t) = —oo. Thus, lim;_, o [2(t) = S(t)] = —o0. Since lim;_,~ S(t) =

0, we have lim;_,~, x(t) = —oo, which contradicts the positivity of z.

We conclude that u("~1(t) > 0 eventually. However, this is also im-
possible because from (2) we get u(™(t) > 0 for all large t. Together with
u("~1)(t) > 0, this implies that «("~2)(t) > 0 eventually. This again gives a
contradiction. This takes us to the next case.

Case 2. We assume that u("=2)(t) > 0 for t > t3 > to. Since z(t) >
0 and lim; .o S(t) = 0, we have u(t) = z(t) — S(¢) > 0, which must
be bounded (otherwise  will be unbounded), which in turn implies that
u(m=3) (t) < 0 for all t > t4 > t3. Therefore, there exists € > 0 such that
u(ts) = x(ts) — S(ts) > € and —e < S(t) < ¢ for all t > t4. Keeping in
mind that n is odd, we have u/(t) > 0 for ¢t > t5 > t4. This enables us to
write

u(t)+ S(t) >u(t)—e>u(ts) —e=k >0 forall t > t5.
We define the functional G by
(4) Glult)) = 2u™9 (O™ (1) + 2p(0)u) (a2 (1) — [w=2) (1))
We will prove that G(u(t)) > 0 eventually by assuming to the contrary. So,

let tg > t5 be such that G(u(tg)) < 0. Note that if ¢4 like this does not exist,
we are done. So now, we write

G'(u(t))
= 203 () u™ (t) 4+ 202 (H)u D () + 2p(H) " ()u D (2)
+ 2p(8) [ ()] + 2/ (1) u"F ()u" 2 () — 20D (#)u" D (2)
= 20" ()[—p(t)u" V() — q(t)u 2 (t) — H(t, u(t) + S(t))]
+ 2p()ul™ P ()u D () + 2p(6) [u™ D] 4 2p (1)u" P (£)u" ) (1)
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= 2u" 3 (D ()P () — q(t)] + 2p(8) [u ) (1))
—2u" () H (t,u(t) + S(t)) <0 for t > tg,

because 0 < 2¢(t) < p/(t) implies ¢q(t) < p'(t). Hence G(u(t)) < 0 for ¢t > tg.
Now we distinguish three cases.

(i) Suppose w1V (t) > 0 eventually. This together with u("~2) () > 0
contradicts the boundedness of u(t).

(ii) Suppose u(»~1)(t) < 0 for t > t; > t¢. Since G is nonincreasing, this
gives us

~[u" (@) < Glu(t)) < Glultr) <0, ¢ >tr.
So, in view of this and the fact that «("~2)(t) is nonincreasing and positive,
there exists a number m > 0 such that lim; . u("~?(t) = m > 0. This
implies that u("=3)(t) — oo as t — 0o, which is a contradiction.

(iii) Suppose that u("~1)(t) changes sign for arbitrarily large ¢. Recall
that u("=2) () > 0 for ¢t > tg. Thus liminf; . «(=2(¢t) > 0. If this limit is
greater than zero, then u("~2)(t) > r for some r > 0. This contradicts the
fact that u(®~3)(t) is negative. Hence

Iitrgg)ﬁ w2 (t) = 0.
Since u(™~1 () oscillates, u("~2)(t) has local extrema. Thus, there exists a se-
quence of local minima a,, such that lim,, _, @, = 0o, lim, .. u("~?(a,) =
0 and u(™~ Y (a,) = 0. Consequently, if a,, > tg > tg, we obtain

~[u"" (am)]? < Glu(an)) < Glu(ts)) <0,
contrary to lim,,_, s u(”_Q)(an) =0.

Hence, since G(u(t)) < 0 prevents u(™ =Y (t) from existing, we conclude
that G(u(t)) > 0 for t > tg > t5. Also, since u("~3)(¢) < 0, we can drop the
the last term in (4) and obtain
(5) um V() 4+ p()u"D () <0 for t > t.

Next, we multiply equation (2) by #* and integrate (the first two terms
by parts) from tg to t, t > tg, to obtain

6)  2uI () = (t)2u" D (tg) — 2 j’ su™ 1V (s) ds

tg

+p(O)Pu (1) = p(t) (t)*u =2 (k)

+ [ [s%a(s) = (5°p(s)) Jul" "2 (s) ds

tg

= — f s2H(s,u(s) 4+ S(s)) ds.

tg
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Since condition (3) implies that t2q(t) — (tp(t))’ < 0, in view of (5) we can
rewrite (6) as
t t ¢
M -2 f su™ Y (s)ds > — f s2H(s,u(s) + S(s))ds > — f s2H (s, k) ds,
tg ty to
with M constant. From the hypotheses, since the right hand side tends to
00, so must the left hand side. Therefore

(7) ftu(”*l)(t) dt = —c.

Now, we rewrite (6) again, but this time we drop the fourth and sixth

terms to obtain
t

t
D) — 2 f su™ Y (s)ds+ N > — f s*H (s, k) ds.

to tg

Since the right hand side tends to oo, we can write

lim [tQu(”_l)(t) -2 ft sumV(s) ds} = 0.

t—o0
tg

Next, we define
t

z(t) = f su™ "V (s) ds.
tg
Then 2/(t) = tu™ Y (t) and lim;_, o [t2'(t) — 22(t)] = 00. By Lemma 1 of [8],
we know that z(t) must tend to either co or —oo. Since we can write

t—o00 t—o0

t
lim z(t) = tlim f su™V(s)ds = lim [tu""2 (t) — w3 (1)],
tg

where the last term is positive, we must have lim;_,, 2(t) = co. This con-
tradicts (7). Therefore, we have a contradiction in this case as well. Hence,
the proof of the theorem is complete.

THEOREM 2. Consider the differential equation (x) with the following
additional conditions:
(i) n > 3 is an odd integer,
(ii) p(t) <0 and q(t) > 0 eventually, and
(iii) for any positive real constant k,

— [ H(t, +k)dt = +oc.

Then every bounded solution of (%) must oscillate or tend to zero.
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Note that, as in Theorem 1, here also if Q(¢) = 0, then every bounded
solution of (%) must oscillate.

Proof of Theorem 2. We also argue by contradiction. Without loss
of generality, we will assume that x is a bounded, positive solution of (x)
which does not tend to zero, and we will assume that all the conditions on
functions p and q are satisfied for ¢t > to > 0. Let u(t) = x(t) — S(t), t > to.
Then the Lemma above guarantees that u(®=2)(t) < 0 or u("=2)(t) > 0
eventually. In order to prove the theorem, we need to consider both cases
and find a contradiction.

Case 1. We assume that u(®=2)(¢t) < 0 for all large t. To obtain a
contradiction we follow case 1 in the proof of Theorem 1 above.

Case 2. We assume that u("—2) (t) > 0 for t > t; > to. As in the proof
of case 2 in Theorem 1, we know that u(t) > 0, u/(t) > 0, u(»=3)(t) < 0
and u(t) + S(t) > k for k > 0 constant, whenever ¢ > ¢ > t1. So, now we
integrate equation (2) from ¢y to t, t > to9, to get

u =D () + p(t)u" ) (¢)

= u" D (La) + plta)u"? (ts)
t

+ [ (s) = a(s)lu" D (s)ds — [ H(s,u(s)+ S(s)) ds

=M+ f(t)— [ H(s,u(s) + S(s)) ds,

where M is a constant and f(¢) is the first integral above. Since f(t) > 0
(note 0 < 2¢(t) < p/(t) implies ¢(t) < p/(t)), we can rewrite the above as

ul™ () + p(u" "2 (t) > M+ f(t) = [ H(s, k)ds.

to

Since p(t) < 0, u(»=2(t) > 0 and the right hand side tends to oo, we
conclude that (=1 (t) must also tend to co. Therefore, lim;_, o, u(t) = 0o
implies lim;_,~ x(t) = oo, which means that = is unbounded. Contradiction.
Hence, the result follows.

References

[1] L. Erbe, Oscillation, nonoscillation and asymptotic behaviour for third order non-
linear differential equations, Ann. Mat. Pura Appl. 110 (1976), 373-391.

[2] J. W. Heidel, Qualitative behaviour of solutions of a third order nonlinear differen-
tial equation, Pacific J. Math. 27 (1968), 507-526.



144 W. A. J. Kosmala

[3] A.G.Kartsatos, The oscillation of a forced equation implies the oscillation of the
unforced equation—small forcings, J. Math. Anal. Appl. 76 (1980), 98-106.

[4] A. G. Kartsatos and W. A. Kosmala, The behaviour of an nth-order equation
with two middle terms, ibid. 88 (1982), 642-664.

[5] W. A. Kosmala, Properties of solutions of the higher order differential equations,
Differential Equations Appl. 2 (1989), 29-34.

[6] —, Behavior of bounded positive solutions of higher order differential equations, Hi-
roshima Math. J., to appear.

[7] W.A. Kosmalaand W. C. Bauldry, On positive solutions of equations with two
middle terms, Ann. Polon. Math. 50 (1990), 241-250.

[8] V. A. Staikos and Y. G. Sficas, Forced oscillations for differential equations of
arbitrary order, J. Differential Equations 17 (1975), 1-11.

DEPARTMENT OF MATHEMATICAL SCIENCES
APPALACHIAN STATE UNIVERSITY

BOONE, NORTH CAROLINA 28608

U.S.A.

Recu par la Rédaction le 20.4.1993
Révisé le 3.11.1993



