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is the boundary of the closed sphere H, whence EL is not a retract of .
On the other hand EL is a retract of L. In fact, let us denote by

P(}, 0, %) a variable point on the set L; then P satisfies the conditions

(6.20) L: (17— = (1), 0 < ¢ < &5(1), 1 >T}.
Consider the following transformation @ = (t*, ¢*, Z*) = V(P):
ty) | .
(6.21) 7=l YY), o' =g, t*=t,.
& (1)

This transformation is continuous on the set L, and
1. if PeL, then V(P)EL,
2. if PeRL, then V(P) = P.

Hence ELis aretract of L. It follows from the theorem of T. Wazewski
cited above that there exists a point P, (I, ¢y, Z®), P,e(E— L), such that
the solution passing through P; remains in o, i.e. the corresponding
. trajectory remains in the cone O. :

There exists at least a one-parameter family of solutions contained
in o (see T. Waszewski [4]), since the quantity p, has been arbitrarily
chosen in the interval 0 < ¢ < &,(t,). This completes the proof of the
theorem.
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On the functional equation ¢(2)+¢[f(2)] = F(a)

by M. Kuczma (Krakéw)

§ 1. The object of the present paper is the functional equation

) o @)+ olf(2)] = F(z), ]
where @ () denotes the required function, and f(#) and F(z) denote known
functions.

Equation (1) is a direct generalization of the equation
p(@)+o@®) =2
discussed by H. Steinhaus [6], or of the equation

p@)+oe) =2 (a>1)

solved by G. H. Hardy [3], p. 77. I shall prove that under some natural
agsumptions equation (1) possesses infinitely many solutions which are
continuous for every x that is not a root of the equation

(2) fz) = =.

However, if we require the solution to be continuous for = x,, satisfying
(2), then it turns out that there can exist at most one such solution. In
the second part of this paper I shall prove that under further assumptions
such a solution exists and is given by an explicit formula.

Of course, further generalizations of equation (1) are possible. R
Raclis [5] discusses equation (1) for complex x and finds meromorphic
solutions. N. Gercevanoft [1] solves the equation

A(@)p[f(@)]+ (@) = F(@),
and M. Ghermanescu [2] solves the equation

Ao+ A, [f1+ Ay [F(N1+ .-+ Ano[f (... 1) )] = Fla).

Nevertheless both these authors assume other hypotheses with
regard to the function f(z). Lastly T. Kitamura [4] has shown that the
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equation
F((P[f(m7 ] e(@), 2, Z‘) =0

has, under suitable conditions, a solution containing an arbitrary function,
but he does not discuss the regularity of the solutions.

§ 2. Every interval I such that f(I) = I will be called a modulus-
-interval for the function f(w).

Lemma I. Suppose that the function f(x) is continuous and stricily
ineréasing in an interval {a,b>. In order that the interval {a, b)> be a mod-
ulus-interval for the function f(w) it is necessary and sufficient that a and
b be roots of equation (2).

Proof. Necessity. Since f({a; b)) = {a, b>, we have
maxf(x) =b, minf(e)=a.
xela,by zela,b)
The function f(z) is increasing, and consequently
maxf(z) = f(b), minf(@) = f(a),
ze(a,b) xela,b)
whence f(b) =b and f(a) = a.
Sufficiency. Suppose that & and b are roots of equation (2). Since
the function f(2) is continuous and increasing, f({a,bd) = {f(a), f(b)>
== (&, b), which completes the proof.

For each integer % we shall denote by f¥(#) the k-th iteration of the
function f(«), i. e. we shall put

(@) = f(f*(=)),

M @) = 1Y (@))
LevmA TI. Let f(x) fulfil the hypotheses of lemma I and let a <b

be two consecutive roots of equation (2). Let us suppose further that f(z) > o

for all @ in the interval (a, b). Then, for each we(a, b), the sequences {f*(2)}
and {{™(w)} are monotone and

(@) = o, k=0, +1, £2,...).

®) limf*(z) = b,
(4) limf~(z) = a.

Proof. The monotonity of the sequences {f*(@)} and {f~"(x)} follows
from the inequality

fz) >z for ze(a, b).
Thus the limits (3) and (4) exist and, by lemma I, lie in the interval (a, b>.
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Denoting ¢ z limf*(x) and passing to the limit in the relation

N—»00

F{(@) = (@)

we obtain f(¢) = ¢, whence either ¢ = « or ¢ = b. Of course it must be
¢c=h
Relation (4) may be obtained analogically.

§ 3. In what follows we shall restrict ourselves to the treatment of
equation (1) in an interval (a, b), where a and b are two consecutive
roots of equation (2). To be precise, let us assume that f(z)—z >0 for
all z in (@, b).

THEOREM 1. If the function F(z) 4s continuous and the function f(z)
is continuous and stricily imcreasing in the interval (a,b), then equation
(1) has an infinite number of solutions that are conlinuous in the open in-
terval (@, b).

Proof. Let us choose an arbitrary point #,¢(a, b) and let us write
@, = f"(@,). Points z, divide the interval (, b) into an enumerable number
of intervals without common points:

n=-o0

(a,0) = U <wm"”n+1)'

N=—00
It can easily be verified that F({@n; Fur1)) = Bny1) Gnge)y for n =0,
41, 42, ...

Let g(z) be any continuous function defined in the interval <{u,, «,)
which fulfils the condition
(5 lim g(@) = F(zo) —g (@)

T —

We shall define a function g(») by induction as follows:

p(w) = g(x) for weld, #y),
(6) p(@) = Pl (@)]—elf(@)] for el Bpp); m >0,
¢ (@) = F(o)—gf(2)] for  wel@py Tpyr)y N<O0.

The function ¢(x) is defined by (6) in the whole interval (a, b). It is obvious
that it satisfies equation (1). The continuity of the function ¢(w) is guar-
anteed by the continuity of the function g(#) and condition (5).

Taking all possible functions g(x) which are continuous in the inter-
val {@,, #,) and fulfil condition (5), one can obtain all solutions of equa-
tion (1) that are continuous in (@, b). The set of those golutions has the
power c. .
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Remark. If we do not require the continuity of solutions, their
number will grow. Formulae (6) define then a solution of equation (1)
for each function g(x) defined in (@,, #;). The set of those solutions has
of course the power f.

THEOREM II. Under the hypotheses of theorem I equation (1) possesses
at most one solution that is continuous in the interval {a,b), and ot most
one that is continuous in the interval (a, b).

Proof. The difference of two solutions of equation (1) must fulfil
the equation

M p@)+olf(@)] =0.

For the proof of the theorem it is sufficient to show that the unique so-
lution of equation (7) that is continuous in <a, b) or (a, b> is the function
e(z) =0.

Let ¢ (2) be a solution of equation (7) and let us suppose that ¢(z) == 0.
Consequently, there exists a point 2, such that ¢(x,) = ¢ % 0. Let us write
o, = *(%,). On account of (7) we have

P+ @(@pyn) =0, @lw,) = —@(@,,,)

whence

p(@,) = (—1)"e.
Consequently the limits hm«p(wn) and hm q)(wn) and hence also hmq:( z)
and hmqo(m) do not exxst Then the functlon p(x) cannot be contmuous

in (a, b) or {a,b), which completes the proof.

TemoREM IIL If the functions f(x) and F(x) fulfil the assumplions
of theorem X, and if there ewist functions ¢ (x) and v (o) which satisfy equation
(1) and are continuous in the intervals (a, by and {a, b) respectively, then

8) (@) = 3F(0)+ 3’ (—1Y[F[f"(2)]—F (b)),
¥=0
® y(@) = 1}17’(1’)—2“;1 —1Y[F[f~ (@)]— F(a)].

v=1
Proof. At ﬁrst let us assume F(b) = 0. Let p(x) be the solution of
equation (1) that is continuous in (a, b). Putting in equation (1) # =1
we get ¢(b) = 0. Since ¢(z) is contmuous for # = b, we must have limg ()

= 0, and hence #b
(10) lim p[f*(x)] = 0.

From relation (1) we have
(11) ?(2) = F(w)~o[f()].

icm

©

On the functional equation @(x)-+¢[f(x)] = F(x) 285
Next
(12) elf(@)] = Fl{@)]—plf(=)].
From (11) and (12) we obtain
p(e) = F(2)— F[f(@)]+¢[f* (=)].
By induction one can obtain the relation
p(@) = D' (=1YFIF @)1+ (1) e[/ (@)],
. »=0
1. e. n

~1) [t @) = ) (
y=0
Passing to the limit as n — oo, we obtain, according to (10)

(@) = D (—1)F[f ()]

y=0
Now let F'(b) be arbitrary. ¢(x) being the solution of equation (1)
that is continuous in (a, b), the function

(13) y(@) = p(@) =3 (b)
is the solution of the equation
y{@)+y[f(#)] = F(z)— F(b)

that is continuous in (@, b). From what hag just been proved, the function
y(#) must be expressible by the formula

y(@) = > (—1Y[F[/(@)]—F ()]

y=0
whence, according to (13), we obtain formula (8). Formula (9) can be
obtained in a similar manner.

§ 4. Of course, a solution of equation (1) that is continuous for # = a
or # = b may be non-existent. It depends upon the function F(w). If
we assume some simple hypotheses regarding the function F(z), we shall
show that such a solution necessarily exists.

TurorEM IV. If the functions f(z) and F (%) fulfil the assumpiions
of theorem I, and if moreover the function F(x) s monotone in an interval
(b7, b> or {a,a--n), where n is a positive number, then a solution of
equation (1) that is comtinuous in (a,b > or {a,b) necessarily ewists.

Proof. Let us suppose that the function #(z) is inereasing in an
interval (b—#, by. We shall show that the series
(14) D (—LY[FIf (2)]—F ()]

v=0
uniformly converges in the interval <, d> for every a < h <b.

p@)—( —1yF[f(#)]
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Put h, = f*(h). Since limh, = b, there exists an integer N, such that

N—>00
for n > Ny, h,e(b—n, b). Further, for any given number ¢ > ( one can
choosé an index N > W, such that for n > N

F(b)—F(h,) < ¢.

Let us now take an arbitrary we{h, b) and let us write z, = f*(x)
For every n we have w, > h,, whence for » > N, x,¢(b—n, b) and
Fa,) = F(hy).
The series

]

D ([P @)1= )]

p=N+41
obviously converges. Moreover the following inequalities hold (for n > N):

lj(—m ~F®)]| < F(O)—Flo

whence the uniform convergence of series (14) follows immediately. Con-
sequently the function @(x) defined by formula (8) is continuous in
(a, b>. It is obvious that it satisfies equation (1).

In the remaining cases the proof may be made out in a similar manner.

THEOREM V. If the funclions f(x) and F(x) fulfil the assumptions
of theorem I, and if moreover for the function F(x) in the interval {a,b)
we have either the inequality |F(x)—F (b)| < G(x) or the inequality |F () —
—F(a)| < G(x), where G(x) is any bounded function such that

) S () —F(h,) <e,

(15) G[f®)][G @) <d <1l for ae(b—n,b)
or
(16) G@)Gf(@]<d<1l for ae(a,aty),

then a solution of equation (1) that is continuous in (a, b> or <{a,b) ewists.

Proof. Supposing that formula (15) is fulfilled, we shall show
that series (14) converges uniformly in an interval <, b> for every & < kb
< b.

Let us write h, = f®(h). There exists an integer N such that for
n >N, hye(b—n,b). Let us put

sup G(2) for n<W,
by
4, =
sup G (x) for n >N.
(P 41)

N . x>
The sequence {4,} is decreasing, and moreover the series 34, converges.

n=0
In fact, for every wedhyiyy byyy)s 172 (@)e(hy, by +1), Whence, according

* ©
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to (15), we have for n >N
G (z) < 9G[f"

Hence, for n > N

@)1 <9 sup G(z) =d4,.
<Pt y1)

An+l = 8up G(m) < ﬁAn?

(o 1,h4-2)
whence the convergence of the series >4, follows immediately.
n=0
Now let us take an arbitrary zech, b> and let us write @, = f*().
We have
[ (#,) — F(b)] < G(@).

As @, = h,, there exists an integer & >0
Hence G(x,) < 4,,; < 4,. Consequently
IF(mn)_F(b)I < 'An for me<h7 b>7
whence the uniform convergence of series (14) follows immediately.
Consequently the function ¢(#) defined by formula (8) is continuous in

(a, b>. It is obvious that it satisfies equation (1).
If we assume relation (16), the proof is analogous.
§ 5. All the above theorems will remain valid if one or both ends
of the modulus-interval are infinite. If, for example, b = oo, then by F'(b)
we shall understand lim F (z); the function ¢(x) will be called continuous
Ly 0O :

such that @,e { by py hyppya)-

at infinity, if there exists a finite limit limg(x). Nevertheless, if lim F(x)
Z00 z-b
= co (b finite or infinite), then the solutions for which limg(z) exists
b

(equal to infinity of course) will not be unique.
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