264

A. Lasota

Travaux cités

[1] J. G.-Mikusiński, Sur un problème d'interpolation pour les intégrales des équations différentielles linéaires, Ann. Soc. Polon. Math. 19 (1947), p. 178.

[2] W. Mlak, On the epidermic effect for ordinary differential inequalities of the

first order, Ann. Polon. Math. 3 (1956), p. 37-40.

[3] — The epidermic effect for partial differential inequalities of the first order, Ann. Polon. Math. 3 (1956), p. 157-164.

[4] J. Szarski, Sur la limitation et l'unicité des solutions d'un système non-linéaire d'équations paraboliques aux dérivées partielles du second ordre, Ann. Polon. Math. 2 (1955), p. 237-249.

[5] T. Ważewski, Certaines propositions de caractère "épidermique" relatives aux inégalités différentielles, Ann. Soc. Polon. Math. 24, fasc. 2 (1953), p. 9-16.

[6] — Systèmes des équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs applications, Ann. Soc. Polon. Math. 23 (1950), p. 112-166.

Reçu par la Rédaction le 19, 12, 1957

ANNALES POLONICI MATHEMATICI VI (1959)

On some constants related to the generalized potentials

by A. Szybiak (Kraków)

Let \mathcal{E}^m denote the m-dimensional $(m \ge 2)$ Euclidean space and x, y, \ldots be the points in this space with the coordinates respectively $x^1, \ldots, x^m, y^1, \ldots, y^m$. We denote by $x \pm y$ the point in this space with the coordinates $x^1 \pm y^1, \ldots, x^m \pm y^m$. |x| denotes the Cartesian distance of x from the origin; then $|x| = (\sum_{i=1}^m (x^i)^2)^{1/2}$.

We consider in \mathcal{E}^m a function K(x) which is continuous outside 0 and satisfies the following assumptions:

1.
$$0 < \lim K(x) = K(0) \leqslant +\infty$$
.

2.
$$K(x) = K(-x)$$
.

3. $\int_{|x|<1} K(x) dx < \infty$ (dx being the volume element in \mathcal{E}^m).

4. (Maximum principle of O. Frostman.) For every measure $\mu\geqslant 0$ of the carrier $F\subset\mathcal{E}^m$ we have

$$\sup_{x \in \mathcal{E}^m} \int K(x-y) \, d\mu(y) = \sup_{x \in F} \int K(x-y) \, d\mu(y).$$

The function K will be named the kernel and the functions of the shape

$$\int K(x-y)\,d\mu(y)$$

the generalized potentials.

These potentials have the following fundamental property:

Equilibrium theorem. If E is a compact in \mathcal{E}^m such that

$$\inf_{\mu} \iint K(x-y) d\mu(y) d\mu(x) \stackrel{\mathrm{df}}{=} \gamma_E < \infty \qquad \left(\mu \geqslant 0 \,,\, \mu(E) = 1 \,,\, \mu(\mathcal{E}^m - E) = 0 \right)$$

then there exists a measure μ^* realizing this infimum and such that for $x \in E$ we have

(1)
$$\int K(x-y) d\mu^*(y) \leqslant \gamma_E;$$

On some constants related to the generalized potentials

267

the strong inequality in (1) holds at most on a subset e of E such that $\mu^*(e) = 0$ and $\gamma_e = \infty$:

The object of this paper is to prove the equality of the quantity γ_E and some other constants obtained by the generalized method of Fekete.

We fix E and the kernel K and we assume that $\gamma_E < \infty$. n being a positive integer, we choose on E n+1 points $\eta_0^{(n)}, \ldots, \eta_n^{(n)}$ for which

$$\sum_{i\neq j} K(\eta_i^{(n)} - \eta_j^{(n)}) = \inf_{\{x_i\}} \sum_{i\neq j} K(x_i - x_j) \quad (i, j = 0, \dots, n),$$

the above lower bound being taken over all systems of n+1 points $\{x_0, \ldots, x_n\} \subset E$. The points $\eta_i^{(n)}$ are named the extreme points of E and the system $\{\eta_0^{(n)}, \ldots, \eta_n^{(n)}\}$ is termed the n-th extreme system of E.

Further we choose on E n points $\zeta_0^{(n)}, \ldots, \zeta_n^{(n)}$ such that

$$\min_{x \in E} \sum_{i=1}^{n} K(x - \zeta_i^{(n)}) = \sup_{\{x_i\}} \left\{ \min_{x \in E} \sum_{i=1}^{n} K(x - x_i) \right\},$$

the upper bound being taken over all systems of n points $\{x_1, \ldots, x_n\} \subset F$ and F being an arbitrary fixed compact containing E.

In the case of m=2, $F=\mathcal{E}^m$, $K(x)=\log|x|^{-1}$ the function $\exp\{-\sum_{i=1}^n K(x-\zeta_i^{(n)})\}$ is the n-th Čebyšev polynomial of the set E.

We shall use the notation

$$\begin{split} (n+1)^{-2} \sum_{i \neq j} K(\eta_i^{(n)} - \eta_j^{(n)}) &= \gamma_n \quad (i,j = 0,...,n), \\ (n+1)^{-1} \max_{0 \leqslant j \leqslant n} \sum_{i \neq j} K(\eta_i^{(n)} - \eta_j^{(n)}) &= \delta_n, \quad n^{-1} \min_{x \in E} \sum_{i=1}^n K(x - \zeta_i^{(n)}) &= \tau_n \\ (i = 0,...,n). \end{split}$$

G. Pólya and G. Szegö have considered the kernel $K(x) = |x|^{-1}$ for m=3. Transferring their proofs to our more general case we can show that the following lemmas hold:

LEMMA 1. The sequence

$$\frac{2}{(n+1)n}\sum_{0\leqslant i< j\leqslant n}K(\eta_i^{(n)}-\eta_j^{(n)})=\frac{n+1}{n}\gamma_n$$

is not decreasing. Then γ_n converges and its limit — denoted by γ — is finite or $\infty.$

LEMMA 2. The following inequality holds:

.
$$\gamma_n \leqslant \delta_n \leqslant \frac{n}{n+1} \tau_n \quad (n=1,2,\ldots).$$

We shall prove

Theorem 1. If $\gamma_E < \infty$ then $\gamma = \lim_{n \to \infty} \gamma_n$ equals γ_E .

Proof. Putting

$$K_0(x) = egin{cases} K(x) & ext{if} & x
eq 0, \ 0 & ext{if} & x = 0, \end{cases}$$

we evidently have

$$\iint K(x-y) \, d\mu(y) \, d\mu(x) = \iint K_0(x-y) \, d\mu(y) \, d\mu(x)$$

and

$$(n+1)^{-2} \sum_{\substack{i \neq j \\ i,j=0,...,n}} K(\eta_i^{(n)} - \eta_j^{(n)}) = \int\!\!\int K_0(x-y) \, d\mu_n(y) \, d\mu_n(x),$$

 μ_n being a measure which is equal to $(n+1)^{-1}$ at each point of the *n*-th extreme system of the set E, and to 0 on the sets disjoint from $\{\eta_0^{(n)}, \ldots, \eta_n^{(n)}\}$.

We shall show that for each $n=1,2,\ldots$ we have $\gamma_n \leqslant \gamma_E$. $\{x_0,\ldots,x_n\}$ being an arbitrary system of points of the set E, we have

$$(2) (n+1)^2 \gamma_n \leqslant \sum_{\substack{i \neq j \\ i, j=0, \dots, n}} K(x_i - x_j).$$

Applying to both sides of (2) the operator

$$\int \dots \int d\mu^*(x_0) \dots d\mu^*(x_n)$$

and considering that $\mu^*(E) = \mu^*(\mathcal{E}^n) = 1$, we obtain the inequality

$$\begin{split} &(n+1)^2 \gamma_n \leqslant \sum_{i \neq j} \int \ldots \int K(x_i - x_j) \, d\mu^*(x_1) \ldots d\mu^*(x_n) \\ &= \sum_{i \neq j} \int \int K(x_i - x_j) \, d\mu^*(x_i) \, d\mu^*(x_j) = (n+1)^2 \gamma_E \qquad (i, j = 0, \ldots, n) \end{split}$$

which gives directly $\gamma \leqslant \gamma_E$.

In order to show the equality we suppose that $\gamma_E - \gamma = 2\sigma > 0$. We choose from the sequence of measures μ_n a subsequence μ_{a_n} $(a_{n+1} > a_n)$ which converges to some measure μ_0 . In order to operate with a continuous and everywhere bounded kernel, we put for $M \epsilon(0, \infty)$

$$K_M(x) = \min \{K(x), M\}.$$

Taking M large enough we have

$$\iint K_{M}(x-y) \, d\mu_{0}(y) \, d\mu_{0}(x) \geqslant \iint K(x-y) \, d\mu_{0}(y) \, d\mu_{0}(x) - \sigma.$$

A. Szybiak

268

Then we have

$$\begin{split} \gamma_E - 2\sigma &= \lim_{n \to \infty} \gamma_{a_n} = \lim_{n \to \infty} \int \int K_0(x-y) \, d\mu_{a_n} d\mu_{a_n} \\ \geqslant &\lim_{n \to \infty} \left[\int \int K_M(x-y) \, d\mu_{a_n} \, d\mu_{a_n} - \frac{M}{n+1} \right] \\ &= \int \int K_M(x-y) \, d\mu_0 d\mu_0 \geqslant \int \int K(x-y) \, d\mu_0 d\mu_0 - \sigma \geqslant \gamma_E - \sigma, \end{split}$$

which is an absurd. Then we must have $\gamma = \gamma_E$.

Turning to the sequence τ_n we shall prove

THEOREM 2. The limit of τ_n exists and is equal to γ_E .

Proof. First we shall prove the inequality $\varlimsup_{n\to\infty}\tau_n\leqslant\gamma_E$. By the definition of τ_n we have for $x_{\epsilon}E$

$$\sum_{i=1}^n K(x-\zeta_i^{(n)}) \geqslant n\tau_n.$$

We integrate both sides and applying the equilibrium theorem we obtain

$$n\tau_n\leqslant \sum_{i=1}^n\int K(x-\zeta_i^{(n)})\,d\mu^*(x)\leqslant n\gamma_E.$$

Hence $\limsup_{n\to\infty} \tau_n \leqslant \gamma_E$. By lemma 2 and theorem 1 we have $\limsup_{n\to\infty} \tau_n \geqslant \gamma = \gamma_E$. Hence follows the theorem.

References

 N. Ninomyia, Sur le théorème du balayage et le théorème d'équilibre, J. Inst. Polyt. Osaka Univ. 6 (1955), p. 83-91.

[2] G. Pólya und G. Szegö, Über den transfiniten Durchmesser (Kapazitäts-konstante) ebener und räumlichen Punktmengen, J. für Math. 165 (1931), p. 4-49.

[3] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeitschrift 17 (1923), p. 228-249.

Reçu par la Rédaction le 5, 2, 1958

ANNALES POLONICI MATHEMATICI VI (1959)

Generalized characteristic directions for a system of differential equations

by Z. Kowalski (Kraków)*

1. This paper will be concerned with the asymptotic behavior of integrals for the system of differential equations

$$(1.1) X = F(t, X),$$

where $X = [x_1, \ldots, x_n]$, $F(t, X) = [f_1(t, X), \ldots, f_n(t, X)]$, X = dX/dt, $F(t, 0) \equiv 0$, and the right-hand member is continuous (for all t) in a neighbourhood of the point X = 0.

The characteristic directions play the fundamental role for (1.1) if F is a linear or a perturbed linear dynamical system. If the right-hand member does not contain t explicitly and possesses the Stolz differential at the point X = 0, then there is the possibility of employing the characteristic directions (see [2]).

In this paper we give a natural generalization of characteristic directions which holds even for non-differentiable F(t, X). The idea of that generalization for the system $x_1 = f_1(x_1, x_2)$, $x_2 = f_2(x_1, x_2)$ is contained in [1]. We give necessary (theorem 2) and sufficient (theorems 3, 4) conditions for the existence of trajectories tangent to a given generalized characteristic direction at the point X = 0. The continuity of tangents to trajectories is also discussed (theorem 2).

2. The letters X, Y, F, \ldots will be systematically reserved to represent vectors or vector-functions, $X = (x_1, \ldots, x_n), Y = (y_1, \ldots, y_n),$ $F = (f_1, \ldots, f_n), |X| = (x_1^2 + \ldots + x_1^2)^{1/2},$ while x, y, f, \ldots will be used to represent scalars. Denote by S the (n-1)-dimensional sphere |Y| = 1 with a centre at the origin and a unit radius.

^{*} I should like to acknowledge my gratitude to Prof. T. Ważewski for his many valuable remarks. I should also like to thank Z. Mikołajska and A. Pliś for reading the paper and making helpful comments.