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la demi-droite ! est normale & 'intersection de X' avec le plan dans lequel
I est située, le probléme (2.5) devient le troisiéme probléme de Fourier.

§ 3. Nous allons maintenant formuler un critére d’unicité plus gé-
néral que celui qui est contenu dans le théoréme 2.2.

THEOREME 3.1. Supposons que les seconds membres du systéme d'é-
quations (0.1) satisfassent aux hypothéses 1° et 2° dw théoréme 2.1 et auw
inégalités

If'l:(tix7‘ul7 "‘7,u'm7pll R pn; "'77.7]07 "')~

“fi(ty X) U1y ey Vms Pry ooy Py ooy Vimy )‘ < G(ta manWj——’U,-[),

ot la fonction o(t,y) est continue et non négative pour 0 <t < I',y = 0(Y),
et admettons que pour chaque intervalle

(3.1) 0 <t <y,

ot 0 <, < T, Vintégrale unique y(t) de Véquation
dylds = ot ),

définie dans (3.1) et satisfaisant & la condition

>0

soit identiguement nulle. Maintenons enfin Uhypothése 7° du théoréme 2.1.

Ceci étamt admis, le probléme miwmie (2.5) relatif au systéme & équations
(0.1) admet dans Q au plus une solution continue dans la fermeture de 2,
possédant une dérivée suivant 1 en tout point de X, et toutes les dérivées
figurant dans (0.1) continues dans 0.

La démonstration de ce théoréme est tout % fait analogue & celle
du théoréme 3.1 de la note [1]. I suffit d’y introduire des modifications

analogues & celles dont nous avons parlé dans la démonstration du théo-
réme 2.1 de la présente note.
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Application of the Norlund summability to the theory of
localization for single and double trigonometric series @

by L. Jed§maNowIcz (Torun)

The theory of localization for single trigonomefric series developed
by Zygmund [1] and that for double trigonomefric series developed
by Gosselin [2] are restricted to the Cesiro summability. The purpose
of this paper is to extend their results by involving a special class of the
Nérlund means, containing the Cesiro means as a particular case.

I. On the Norlund summability
Let {B,} be a sequence with non-zero terms for » large enough. We
shall say that the series }'a,, or the sequence s, of its partial sums, is

v=0
summable by the Norlund method N(B,), or N(B,) summable to the sum
s, if the following sequence (determined for n large enough)

n n
2 Bn—va’v 2 AB —u’gv
__ v=0 »=0

1, = =
n Bﬂ, Bn ’
where AB, = B,, 4B, = B,—B,_; for v > 1, converges to s as % — oo.
In numerous applications we deal with B, positive and non-decreasing
for n large enough. For such & sequence the condition
lim By

N~>00 n

1

is sufficient and necessary for the convergence of the series to involve

its N(B,) summability to the same sum (the condition of regularity).

Let {4,} be a sequence satisfying the following conditions:
(1.1) 4, >0 for n = n,
(1.2) A, 244, for  n =,

(1.3) SA,, =0
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and let us write

S

n=0
We shall say that f(z) is the generating function of the sequence 4,, or that
the sequence A4, is generated by the function f(z). One may easily see that
the circle of convergence of this power series and therefore of the series

1(2) NPT
T = 2, A

is the umit circle |¢| = 1. Sinee for % > 1 the sequence 4%, ag we shall

n )
prove below, is positive and non-decreasing for' # large enough, we have

A®
lim =2l — 1,
-~ A(k)
g0 that the method N (A®) is regular for & > 1. 'We shall eall it the -th
Norlund means with respect to A,, and write Ny (4,). In what follows we
shall be dealing only with Norlund means of this type.
Thus, for example, the binomial coefficients

(r+1)(r+4-2)...(r+mn)
n!

satisfy the conditions (1.1)-(1.3) for —1 <7 < 0. This sequence is ge-
nerated by the function

o =

1(2) = L{(L—2)+!

and the method Ny (0}) = N(CT+*) is known as the Cesiro means of order
r--k. The sequence 1/n generated by the function

/(2) = log

1—=z

gives the harmonic means N, (1/n) and the method N, (1/n) may be called
the harmonic means of order k. More general methods are derived from
functions of the form

1 e
T—ay 8"

11—z’

&

1 e e
[ — a
(1—=)r? log? 1—2z log (log 1—

1
m log" 10ga (log

)log' (loglog o )

©
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and so on. The sequences 037, OTP2, OT:P%* etc. generated by such funetions
"satisfy the conditions (1.1)-(1.3) if —1<r <0, 0orr=—1, 0 <p <1,
orr = —1,p = 0,0 < ¢ < 1ete. For such sequences the methods Ny (07"),
N, (O0P), N, (C7:P2°) ete. are called. the logarithmic means of order (r+ k&, p),
(r+%,p,4q), (r+k,p,4,s) ete.

In order to study the behsviour of A% for & > 0 and # large enough
we start from the remark that

iy 8
G~ 5% 2 A

whence

n—y =y

AP = Z'Gk‘lA

r=0

For the same reason, from

o) 1 f(r)
@—af"  (1—2) (1—2)*

follows

n
AP = N gL AP,

n g 0

In particular
AD = A 4 A+ 44, AFD=AP L AP AP,

and inversely

AAED = 4B,

Using the well-known asymptotic formula for the binomial coeffi-

cients

Cr =

i)’ r#—1, —2,...

we shall prove

LemMa 1.1. For k > 0 there ewist such numbers A and B that for n
large enough
AP
0< A< m < B

Proof. For 0 < k <1 we have

49— Yok Yo,

=0 v=m9+1

> O(nF )+ OE (AP — AD) = Oh " AP+ 0(n* ),
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m/2] n
K ik k—
ap = Noa s Y oA Y ok,
y=0 y=ng+1 v=[n/2]+1

< 0(’”' )+O’fn/211 (A([Q/z]*A%H-A[nm G’[cn,‘z] = O(Wk*lA:nl)):
because Ol = O(n*™), (n—ng) 4, < AD—AJ.
Similarly for ¥ >1
aps Do 3 oo,

v=0 v=ng+1

= 0(n*)+ Oy (Al

o n
AP = Y OA+ Y054

v=0 r=ng+1

< O(WFY)+ OE-1 (A0 —

A(l)) Ol[cn/zl]AErl»/z]‘*"o( n*1),

APy = O AP+ 0(n* ).

These inequalities imply our lemma provided A = 0(Af),). But that
results from the first part of the proof of the next lemma.

COOROLLARY. For k=1, AP >0 and AAP = A% > 0 with n large
enough, so that for k =1 the sequence A is positive and non-decreasing
for sufficiently large n.

LemMa 1.2, For k >0 A® = 0(4®).

Proof. For ¥ =1 and » large enough we have

n

490 > 4,2 ind,,
b r=[n/2]+1
whence
Ag} n+1+'- +A2 nd
— 7 n
AD =1+ AD < 1+4}nAﬂ =3,

80 that the lemma is true for ¥ = 1. Now, for & > 0 the lemma follows
from lemma 1.1,

LeMMA 1.3. For k > 1 there exist such numbers A and B that for n
large enough

A AAQ" B

This lemma is also a simple corollary to lemma 1.1.

THEOREM 1.1. If p >¢q >0, then the N,(4,) summability of the se-
ries to the sum s implies its N,(A,) swmmability to the same sum.
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Application of the Norlund summability (I) 221

Proof. Letting

w
S'Ssk) = ZAgc:vl) R3]

»=0

we shall demonstrate that

n
s = Zgg a-150Q)

»=0

Let us denote by f(2) and g(z) the generating functions of the sequences
4, and s, respectively. The function

1(2)
(—1*_*:)739(2)

being the generating function of s, we obtain the desired formula from
1(2) 1

the relation
_ fle ] '
—(ifé)zz_-lg(z) = A [(1_2)4_1 g9(2)|-

Now we suppose that s, is the partial sum of the series N, (4,)
summable to s, which means that

5@
tf?:zw—as, a§ N —> oo,
k(3
For to prove that
n n
o OO DR AL
t(p) — Sn — ?=0 — r=0
n A® A AW

converges to s, we need only verify the Toeplitz conditions for the matrix

“ =it A@

ny = "—E(‘p)'—i
n
namely: ( Zam =1, (i) hmam =0 for y =0,1,2,..., (ii) Y, <K
v=0
for n =0, 1 . Condmon (i) is obviously satistied, condition (ii)

follows from lemma 1.1. Let 4@ >0 for » >n,. Then

n nl n
Dl = Dbl + D

=0 »=0 y=ny+1

=14 D (|~

50 thab condition (iii) is also satisfied. Thus the theorem is proved.

tpy) = 1+0(1),
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It will be noticed that in this theorem we consider also the N, (4,)
summability with 0 <% < 1, which in general is not regular. This case
corresponds to the Cesaro means (C, a) for —1 < a <0 and it seems
quite natural to impose such conditions on the sequence 4, in order that
some simple properties of the (C, o) summability for —1 < a < 0 hold
for N,(4,) summability with 0 <k < 1. Thus, for example, according
to the Hardy-Littlewood theorem from the convergence of the series
with terms o(1/n) follows its (O, a) summability for —1 < a < 0. It
is desirable that an analogous theorem should also hold for Nérlund means.

Lemma 1.4, If A, satisfies, besides (1.1)-(1.3),

A4, 1
I, 0(‘%‘)’

the condition

(1.4)

then also for 0 < k <1 we have
AA® (1)
4B \n)
Proof. Bince A$— A > (n—mng) 4,
S S SR
n— Ny AQ)—A% AP 1—A$}3/A$P 3 A“)

with n large enough, the lemma is true for ¥ = 1 even without the restriction
1.4, Now for 0 <% <1 we have

AfD = 20::14

=0
/2] n
= 5‘0::3A,+ D 04,4 Y ChTA, =14 II41,
-—o r=ng+1 »=[n/2]+1

where I = O(n*?) and, in virtue of lemma 1.1,

[n/2} 1
I <IOhAl D 4, =—0(nF40) = A;{‘)O(——).
v=nig+1 n

Applying to IIT Abel’s transformation we obtain
”

D OESAAA+CE Ay = TIT 4 1T1,,

v=[n/2]+1

o1 =

where, in virtue of lemma 1.1,

icm
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9 1
ITIT,] < max|44, | Ol = A O(0*"1)= 0 ( o j{,’:) = A,‘Z"O(;;)
and III, = Ag‘)O (1/n) for the same reason. Thus the lemma is established.
TeROREM 1.2. If A, satisfies conditions (1.1)-(1.4), then the conver-
gence of the series with terms o(1[n) implies its Ny(4,) summability for
0<k<1l

Proof. Without loss of generality we may suppose that the series

0o
>'a, with terms a, = o(1/n) converges to 0, so that its partial sums
n=0

n
s, = 0(1). We shall prove that > A%-Vs, = o(4(P).

»=0

Splitting up this
sum into two parts,

2] n

Z‘ APy 4+

=0 v=[n2] +1

A®Dg = T411,

we have, in virtue of lemma 1.4,

2] 1 =2
I <ma.X|A(’"‘l)|2 Is,] = O(41)- 2|s| = o(4®)
=0

and, applying Abel’s transformation to IT,

n

M= > AP0+ A8 0 18y = T+-I1,,
v=[n/2]-+1
whence [II,] < max|a,| A%+ = o(A% D n) = 0(4AP) and II, = o(4®).
r>n/2

The theorem is therefore proved.

Of course, if A%® —» +oo, then the theorem remains true without
the restriction a, = o(1/n). That means that the method N,(4,) may
be regular even for 0 < k < 1. In particular, if lim4, >0, then the

n—00
methods Nj(4,) are regular for any % > 0. Similarly, if lim4, =0

n—>00
but there exists such number &, 0 < &k, < 1, that lim A%¥o > 0, then for

N0

any k <k A® 0 and for any &k >k, A% — +oo, so that for any
%k >k, the methods N,(4,) are regular. One may expect that in this
case the exceptional method Ny, (4,) is equivalent to convergence. In
order to explain the situation we remember the well-known conditions
of equivalence of two regular Norlund methods.

Let f(#) and g(2) be the generating functions of the sequences A4,
and B, respectively, where 4, 7 0 and B, # 0, and let p, and g, be
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the sequences generated by the functions f(z)/g(=) and g(z)/f(2) respecti-
vely. Two regular methods, N (4,) and N(B,), are eqmvalent if and only
it 3'p,l < oo and }|g,| < oo (viz. Hardy [3],p. 67). In particular, letting
4,=1, n=0,1,2,..., we have f(2) =1/(1—=2), ¢, = AB,, whence
the corresponding conditions of equivalence of the regular method N(B,)
and the convergence N (1) are: }'|p,| <o and B, is of bounded variation.
This last condition is satistied if B, is monotone and convergent. Of
courge its limit should be non-zero.

TurEorEM 1.3. If there ewists a number ky, 0 <k, < 1, such that the
method Ny (4,) is equivalent to convergence, then for any k = ko the method
N (A4,) is equivalent to (0 k—T,).

Proof. Let f(2) Z’A #* and 1/f(2)

generating functions for the sequences A® and O’“ o are f, (2

f&) (1 —

anz“ The corresponding

) =1&)/0- 2"
2ol = Z'A(ko 1)

n=0

and g,(2) = 1/(1—2)*"0+1 whence f(2) /g, (2) =

and g,(2) [ful?) = 1/f(2)(1—2)i~F0 = Stpi—tom,

n=0

We need to prove that

the geries ZA("O Y and Z'p(l ) converge absolutely. Now that follows

n=0

from the eqmvalenee of N;, (4,) and N(1).

In order to deal with the Nérlund methods which are more general
than the Cesaro methods we suppose once for all that for any %k > 0 the
method Nj(4,) is not equivalent to convergence. Nevertheless even
for such methods there exists a number %, 0 <k, < 1, which separates
the regular methods from those not regular. The method NkD(An) may or
may not be regular. If, for example, 4, converges to a non-zero limit,
then %, = 0 and Nko( ») 18 regular. For 4, = 1/n we have k, = 1 and
obviously Ny (1/n) is regular. For A, = 1/logn, %k, =0 and Ny, (4,)
is not regular ‘We shall call %, the eritical order of the methods Ny (4,).

LemmaA 1.5. If the sequence A, satisfies conditions (1.1)-(1.4), then
for 0 <k <k, the sequence A® is of bounded variation.

Proof. Let k <k < k. We have AM™ = o(1) and, according to
lemma 1.4, A% = 0(A¥/n) = o(1/n). In virtue of the Hardy-
-Littlewood theorem, the sequence A%V is (0, «) summable to 0 for any

a > —1:
ZC"-‘A(’H)

v=0

whenece, for a = k—k;, AP = o(n**1), Since

AED = 0(4B) = o(nt

_A(k1+a) = 0(C2),

),
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the series Y'|A%Y|is convergent, so that the sequence A{? is of bounded
variation.
LemMA 1.6. If the sequence A, sotisfies conditions (1.1)-(1.4), then
for any 0 <k <1 A% = o(1/n) and AF™ is of bounded variation.
Proof. We have
n [n/2]
M8 < Y10 Ak = D 10 A4 1+ 3 ickiad,
»=0 v=0 v=[n/2]+1
/2] /2]
(Ol 3, 144,| + max|44, iZ 10572 = O(n*"*)+ 0(44ys)
v=0
50 that the convergence of the series Y |A%-%)] follows from the convergence
of the series Y'n*~% and }'|44,|, and AF~ = o(1/n) in virtue of (1.4),
THEOREM 1. 4 If k—[k] # ko, then the method N (4;,) may be replaced
by a method N, (4,,) of integer ‘order r with respect to a sequence A, satisfying
the following oondmons

(1.5) AA, = o(1[n),
(1.6) A, is of bounded variation,
(1.7) AW 5 4o,

Proof. If k—[k] < k,, then the sequence A%~
lemmas 1.4 and 1.5, satisfies conditions (1.5)-(1.7) and

Np(4,) = Ny (Af-1Dy.

If k—[k] > k,, then the sequence AZ~™-Y in virtue of lemma 1.6, sat-
isfies conditions (1.5)-(1.7) and

Ni(4,) = N[k].u(Agc—[k]_l))-

The last replacement holds also in the case of k— [k] = &, if A% — +oco.
But in general this case is doubtful, for the sequence A®) may be not of
bounded variation. )

In what follows we consider only the methods N,(4,) of integer
order, though all results are true for the methods of positive order with
the restriction mentioned in the above theorem.

in virtue of

II. On the formal product of two series
In this chapter we shall be dealing with the series of the form

+00
Sa

P=—0

Annales Polonici Mathematici VI. R o 15
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Such a series is said to be convergent if its symmetric partial sums

have a limit ag # — co.
We define the formal product of two series

400 +o00
' Da, and D',
Pw=—00 D=—~00

by the series

00
2 o
P=—0c0

with coefficients

+oo
2 aqbﬂ—q’
g=—00
if these sums exist. The existence of ¢, is ensured if, for example, the
coefficients of the former series are bounded and the second series con-
verges absolutely.

Lemma 2.1 (Rajechman). If a, = o(1) and 3'b, converges absolutely,
then the coefficienis c, of the formal product of the series Y a,, and Dby, are
also o(1).

Lemma 2.2. Let A, be a sequence sabisfying conditions (1.1)-(L.4).
If ap = o(4,) and b, = O(|p|™>) as |p| — oo then the coefficients ¢, of the
formal product of the series Y a, and >b, are also o(4p)-

Proof. We have for p >0

[p/2] +oo
bp = 2 by gt 2 Ggby—q
g=~c0 a=[D]+1
B +00
= Z O _gpbgt 2 ayby_g = cptof
9=r—[2/2] g=[D2]+1

+00
Since ) |bf = O(n~%) and, in virtue of (1.3), n*A, - oo,

a=n

+o

lop] <maxia,] 3 (5] = 0(p7 = o(4,).

a=p~Tpj2]
Writing a, = 4,¢, we have, by hypothesis, gy =0(1) and Y |b,| < o,

4
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40
whence, in virtue of lemma 2.1, 3’ |gb,_ o = o(1) and therefore
g=—co

+00 +0c0
legl < ) 1 Agegby gl S A D) leghp_dl = 0(App).
g=[2/2]+1 g=—c0

The lemma will be established for p — +oo if 4,, = 0(4,). Now the
last relation follows from *(1.4). In faet, according to (1.4)

fn—l_An — Aps 1= T
A, 4, n’
where 7, = 0(1) and 7, >0 for »n large enough, whence
2n n
A A 4,
o _ A, Bt s oot SR H(1+£)<9XP(Z£)=O(1)
Azn An+1 A'nJ,—Z -A‘zn p=nt1 v y=mi1 v

One may easily see that a similar argument holds for p — —oo. Thus
6y = 0(4) for |p| = +oo.

THEOREM 2.1. Let 4, be a sequmoe satisfying conditions (1.1)-(1.4).
If a, = 0(dp), b, = 0(p™%) and 2 b, = 0, then the formal product of the
seriés > a, and b, is N(4,) summa.ble to 0.

Proof. We have

n n oo 400 n
Sp = Z%z Z Z“qbp-a: 2% Zbao—q

pP=—n P=-—ng=—00 g=—00 P=-=Nn
+oo n—aq +oo +oo +oo
= Y X b= Yal M= 3 b
g=—c0 P=—n—g g=—c0 p=-n—g D=n—g+1
[=]
= D 4By g— Ry o) =1-11,
g=—00

where B, = 2 b,,. I and IT may be considered as the —n-th and the (n+1)-th

coefficients respectwely of the formal product of the series 3'a, and 3 R,.
Sinee b, O(p Y, R, = 0(p~®) for p - +oo. From }'b, = 0 follows

R_,=— _Z’_ by, whence R, = O(|p|~®) for p — —oco. The hypotheses of
P=—00
lemma 2.2 being satistied, I and IT are o(4,), and therefore s, = o(4,).

Now, for the proof that s, is N(4,) summable to 0, we consider the sum

/2] n
ZAA"_’S = M A4, 5+ A4, s, =P+4Q.

y=0 =0 »=[nj2]+1
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Since A4, = 0(4,/n) and s, = o(1), we have

[n)2] /2]
1P| < maxlAA,JZJsl—O( e Zu):omm,ﬂ),

>n[2

[n/2]

< max|s, AA| =o0(4
@] < mox 1§| | = 0(Apum),

the series Y'|44, being convergent. Thus P-+Q = 0(Ap) = 0(4,)
and the theorem is established.

THEOREM 2.2. If we suppose in theorem 2.1 that the series 3'b, converges
to the sum 1, then the difference

+o° +oo
2 Cp— A 2 ay,

P=—00 P=—00
is N(4,) summable to 0.
Proof. We consider the series }'a, and >'b,, where b) = b,— 4,

by = b, for p = 0. Since both series satisfy the hypotheses of theorem 2.1,
theu‘ formal product

+o0 400 +oo +o0 +oo
L. ’

2 bp = 2 2, by g = 2 0p— A4 2 ay

P=-—o0 P=—00 g=—00 P=—oc0 P=—00

is N(4,) summable to 0 and the theorem is proved.

TeroREM 2.3. Let d, be the coefficients of the formal product of the
series

+oo
2' ", -and 2 by,

P=—00 P=—00

where m is a non-negative mteger and 3 indicates that the term for p = 0

is omitted. If @, = o{d,,), b, = 0(|p] ™) and
+o0 +00
2 by = 2 = 2 p™b, =0,
P=—w P=-o0 P=—c0

then the series

is N(4,) summabdle to 0.
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Proof. We have

n

0, = X‘ g, = vq y'p”"a,pbq_p

d e
q——n q=—n pP=—00
+00 n—p
;o —m m
= D'p™"a, D (q+p)"
P=—00 =—n—p
+00 . n—p m
. —m m m—y
= Y ma, 3 03 (7 e
pP=—0 g=-n—p »=0
m 400 n—p
» [ "
= .\: ( 1-) _S: Pty Z 7'b,
v=0 T p=-—o00 q=-—n—p
mo n +00 m
_ \ [ " — _ 3 _ m ()
= X0 X et o, = (7).
p=9 ° g=—np=—co »=0

The expression
n +00
0‘7(:) = Z Z pﬁ'(bp(q_p)qu-p
g=—npP=—00

may be considered as the n-th symmetric partial sum of the formal product
of the series

+tﬂl +o0
2 p’a, and 2 P°by,.
pP=—c0 P=—0c0

Since p~a, = o(4,,) and p'b, = 0(|p|™*) for » =0,1,..., m, in virtue
of theorem 2.1 all ¢, and therefore ¢,, are N(4,) summable to 0.
The proof of theorem 2.2 is applicable to the following

THEOREM 2.4. If we suppose in theorem 2.3 that the series X'b, com-
verges to the sum A, then the difference

e Foo
2’ prd,—2 Z @y

P=—c0 P=—00

is N(4,) summable to 0.
Lemma 2.3. Let B, be a sequence satisfying the following conditions:

(2.1) B, >0 for n>mn,,
(2.2) B,,>B, for n>mng,

(2.3) B,, = 0(B,).
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If 6, = o(By,) and the series Y By b, converges absoluiely, then the coeffi-
cients o, of the formal product of the series ay, and 3b, are also o(By,)

Proof. We write
BI%’ €p) Bw‘b

ZW[ < oo, whence, in virtue of lemma 2.1,

+o00
D leglp—gl = 0(1).

g=—00

By hypothesis, ¢, = o(1),

For the proof that
+o0 ,
¢, = 2 @yby_g = 0(By) for |p|— +oo,
g=-00
we suppose firgt that p > n, and we split up this sum into six parts. The
first part containing the terms with ¢ < —n, is o(1), because

lagby gl = 164 Bigibp—gl < 184Bp 1 100p-ol = 1€gBp—glp—gl = |27l

The second part with |g| < n, is also o(1), for b,_,
Multiplying by B, ., the third part, which containg the terms with n,+1
< g < p—ny—1, and taking into account that n,+1 < p—gq, we obtain

=o0(1l) a8 p — oo.

p-ng—1 p—-ng—1
Bﬂn+1l 2 “qbp—q1 < 2 |eg By By 410y ]
g=ngp+1 a=ng+1
p-ng—1 oo
< Bp—no—lq Zrl {eaBp—gbp—d < By 2 legMp—ql = 0(By)
=10 q=—00

The fourth part with |¢—p| <n, is o(B,), for d = 0(Bg,p) = 0(By).
Multiplying by B, the fifth part with p+n,+1 < ¢ < 2p and taking

into account that n,+1 < ¢—p, we obtain

2p 2P

Bﬂn+11 2 Ggby_g l <
2=p+np+1 g=p+ng+1

[€gBgBypq by

-+o0
< sz 2 lsqnﬂ-—q| = O(B2m>'

g=-—00

Finally, in virtue of condition (2.3) there exists a number K such that for
n large enough B,, < KB,, whence the following estimation of the
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sixth part with ¢ > 2p:
l “+00 , +oo +00
| Z Gpbpg| < 2 1@g1pbgl = Z £gspBainb—dl
g=2p+1 a=p+1 7=p+1
+o00 +°1° +oa
< Y leginbod By S E Y leginbogBol SE 3 legunnogl = 0(1).
a=p+1 g=p+1 g=—co
Thus ¢, = 0(By,) = 0(B,) for p - +-oco. By a similar argument we prove

that ¢, = o(By,) for p — —oco.
We define for the series ', the sequence of k-th rests E® by the

formula
+o0 .
R = 3 0820,

q=p

if this sum exists. We have for bk =1
00
Rg) = 2 bq
q=p

and for & >1
+00
R = M RED.

a=p

In fact, using the well-known formula
n

DO =G
y=0
we obtain
+oo +00 4o +o0 400
DESEDDL IS
g=D g=p v=q q=0 r=p+q

MZ 20;;” “——ZbO"”— Rp.

From this relation follows
R = RP—R, = —AR)),.

LeMMA 2.4 (Zygmund [1]). Let m be a positive inieger. If b,
= O(lp|™™") and

N +oo ol +o00
Dy = D opby=.o= D "y =0,
P=—00

p=—00 P=—o0


GUEST


icm°®

L. Jedmanowicz

232
then '
400
2 Rgn) ' Z pm b,
P=—00 P=—o0
‘We give a new proof of this lemma. One may easily see that, by
ym—1 :

hypothesis, for » = 0,1,

n +o0
5‘ bqqu — O(M-ZM-{-u)’ Z bqu — O(,n—ﬂwu-v)_
a=n-+1

q=-n

Since
-1

q
A, U g u,q"
m—1 m /’nj' ’

p=—n
m-1 .

Z o5n = D B¢, B=0(m"),
»=( )

p=—n

we obtain

i‘ RO = Z ch;ﬁb = 2 b, Z 002 + Y’ b, 2 0L,
= P=—n g=p g=—n p=-n _n+1 P=—n

P=—mn
n n +o0 1 [
g=— v=0 g=-n g=n+1 Q=—n
whence the lemma follows.
THEOREM 2.5. Let A4, be a sequence satisfying conditions (1.1)-(1.4).
If a, = o(AY)), where k. is o positive integer, and
+oo
5 e < o,
P=—00
then the formal product of the series Y a, and 3b, is N, (A,) summable {o 0
Proof. To begin with, we notice that the last hypothegis of the

theorem involves the absolute convergence of the series

+o00
S oo,

P=—0

i=0,1,..., k.

In fact, from the formula
+ . k“i Fy
RY™ = (U AR = (-1 3 () -1,

v=0
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we have
( “7) f O(AB)RED, |

2 la, RYY| < 5’

()

Qa

k—7 +0
= |0 (AP) BRI < oo,
pP=-00

=0

ﬁ

for Agc) =04 (’2;“_7‘,.)
We have to prove that the sequence

8 = Z”'% = Zv Z by = :2_’; pzv tra = 4.2_4; P“;”"“b

D=y P=—7% g=—00
400 +00
1 1)
=Sl S 3 ) 3 art 3 am,
=—00 P=—v—g D=y—g+1 g=—00 g=-00

(4,) summable to 0, i e. that t, = o(4¥), where

is N, (4,
n
tn = ZAsbk——vl)'gv
v=0
n +o0 n +00
= ZAgc"’l) 2 aqR(—lz'qH ZA("k:”l) 2 %Rv(l—)q-t—l =ly—1tp.
y=0 =0 y=0 g=—o0
Applying Abel’s transformation % times we obtain
n n
ZAgc:vl)R(—ll—q = (—“1)7‘: Z AArH-k— R(—kﬂg—‘
y=0 v=0
k
2 1/ A& RO+ 2 1Y AFPROFY,
j=1
whence
- v Z 7‘ 1_A(" i) Z R(7+1)
+ - 2

a,R%)
g=-—00

o
k
+ 2 1y A 42_700“ oREED g

Since the sequence A satisfies for % > 1 conditions (2.1)-(2.3),
hypotheses of the theorem coincide with the hypotheses of lemma 2.3
for the series Ya, and Y R§*Y, whence

+00
3 4 RE = 4P, 6 =o(L).

7=—c0

t= (=1 Y Adpse, D)
v=0

= I4II4-III.
the
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Now we have

n

< D) 144,040, AP

»=0
in/2] [

< Agc) [Z IAA')L+IG-P Ev; + Z ‘A-An+k—v 8‘,]]

=0 . v=[n/2]+1

n n
< AP | max |44, &,|+max AA
< AP | max | | 2 leltmaxie)] 3144,

vonf2+k

l n
— A® 0( A= ) . — o(A®
O [0fnr 3 tel)+maxial 0] = o (4.
From the convergence of the series Ya,RU#Y for j =1,2, ..., k, follows
IT = O(A$™Y) and therefore IT = 0(4A®). Finally, in virtue of lemma 2.3
applied to the series Y, and Y'R{*) we have

“+eco
Z “QREI;—)J‘—Q = O(A(BHJ) = O(Agc))$

4=—w

i=1,2,...,k,

whence ITT = O(4®), Thus we have #, = o(A4®).

By similar arguments it follows that ¢, = o(A®). Hence we have.
t, = 0(4) and the theorem is proved.

In conclusion we observe that from the hypotheses of the theorem
concerning the series Y'b, follows

+00

+oo +o0
2 bpz Z Rg)z...z Z Rgc);_-O, provided_ |¢l’p‘>€>0-
P=—00 P=—c0 25—

In fact, the convergence of the series Dla,REHY, §=0,1,..., &, implies
RE* = o(1) for [p| - +oo, whence

+oo
0= lim R = lim ) BY =

P—o>—o0 Po>—00g—p

+00
D EY.

g=—00

TE:EORELILCE 2.6. Let A, be a sequence satisfying conditions (1.1)-(1.4).
If ay = o(4)), b, = O(|p|™*~%), where & is a positive integer, and

+o0 +oo too
2 b, = 2 Pb, = ... = 2 %8, = 0,

P=—c0 P=—00 00

then the formal product of the series

then 2y and 3'b, ds Ny(4,) summable

icm
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Proof. From the hypotheses of the theorem follows RE*Y =
=0(]p|™+%) j =0,1,...,k In fact, we have for p > 0

+0o0 +o0
RY = Y= 3 0(gI™*) = 0(lg ™

a=p a=p

and for p < 0, since b, = 0,

RY = — 3 b, = O(Ip|~*).

a=p-1

Supposing that R = O(|p|~*+'~%) we obtain for p >0

“+00
B = 3R = 0(jpj+7).

a=p

Now, in virtue of lemma 2.4,

+o00 . 1 +oo .
2 Rg) =T 2 ¢ bys
g=-c 7: g=—00

whence, the last series converging to 0, we have for p < 0

B = — 3 B = 0(lpl =),
g=p—1

From these estimations and taking into account that, in virtue of lemma
1.1, A = 0(n*) we have

+o0 +oo
> IABGRED = 3T 0(p]™) < oo
P=—00 pP=—00

Thus, the hypotheses of theorem 2.5 are satisfied and our theorem follows.

THEOREM 2.7 If we suppose in theorem 2.6 that the series b, con-
verges to the sum 2, then the difference

“+ox +00
2 4 Z s
p=—co P=—c0

is Ny(4,) summable to 0.
For the proof we need only recall the proof of theorem 2.2.

TuuoREM 2.8. Let A, be a sequence satisfying conditions (1.1)-(1.4),
a, = o(AE), b, = O(|p|™™ %), where m > 2k+1, and

" +oo +00 +o0
D b= D phy=..= > p"b, =0.

P=—00 P=—00 B=—00
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If Yd, denotes the formal product of the series

+oo
S,

P="oc0

+0o0
,
2 p"a, and

p=—co

where 3 indicates that the term for p = O is omitted, then the series

oo
Z pm dp
D=—00

is Ny (4,) summable to 0.

Proof. From the proof of theorem 2.3 it follows that our theorem
will be established if the formal products of the series

T, +o0
- )
2 p~’a, and 2 b,
D=-00 P=—c0

for » =0,1,...,m are Ny(4,) summable to 0.

For » =0,1,..., k—1 we have p~’a, = o(p AR = o(4f™) and
Dby = O(fp|=" %) = 0(|p|~**=3%), 50 that, according to theorem 2.6,
the corresponding formal products are Np-,(4,) summable, and therefore
N.(4,) summable, to 0.

For v =k, k+1,...,m we have p~a, = o(1) and P'b, = 0(p™%,
80 that, in virtue of theorem 2.1, the corresponding formal products are
N(1) summable (convergent), and therefore Ni(4,) summable, to 0.

THEOREM 2.9. If we suppose in theorem 2.8 that the series by, conver-
ges o swm 1, then the difference

400 +°°,
Z P dy— 2 Z p
p=—00 P=-0c0
is Np(4,) summable to 0.

For the proof viz. theorem 2.2.

Coneluding this chapter we remark that in the sequel we shall be
dealing with series whose coefficients depend upon a parameter. Now,
if we suppose that the coefficients ap and b, are functions defined on a set
F and satisfy uniformly in this set all conditions of lemmas and theorems
we have proved, then the conclusions of these lemmas and theorems hold
also uniformly in this set. For the sake of brevity we omit the proof

of this statement.
IIL. The theory of localization for single trigonometric series

. Using the results of the last chapter we may prove theorems concer-
ning the theory of localization for single trigonometric series. We shall

icm
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use the complex form of these series:

+o0
2 a’peipx’
D=-—00
where @, = a_,, Ja, = 0. Convergence and summability of such series
are always defined by means of their symmetric partial sums.

It is easy to see that the formal product of two trigonometric series

+oo
ipx
2 b

PV=—00

+o00
by aye?  and
ld

p=—c0

is also a trigonometric series with coefficients

o
Cp = Z, aqbp—q'

g=—00
Let us suppose that the coefficients of the former series are o(A{),
where 4, is a sequence satisfying conditions (1.1)-(1.4) and % is & non-
-negative integer. Integrating formally this series m times with respect

to # we obtain the series
™ & oa, |

0 ' F Uy ™ L Uy B Uy 2 @l)"ﬂemz

P=—00

m

with coefficients o(4{/1pI™) = o(Ip*~™).
If m is large enough, then the series integrated converges absolutely
and is the Fourier series of its sum. Let us denote by F(x), G (z) and P(x)
the sum of the series integrated, the sum of its periodical part and its
polynomial part respectively. Of course,
F(z) = P(2)+G(z).
Let —nm <a<a' <b' <b<n A periodic function A(z) with the
period 2r is called a localizing function if
1 a', b’
Aoy = |2 T, (mod2m)
0, = outside (a, b
and A(x) has sufficiently many continuous derivatives.
Denoting by
g
2 b,é""

P=—c

the Fourier series of the localizing function A(z) with m continuous deri-
vatives we have b, = O(|p|™™) (viz. Zygmund [2], p. 39).
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As a matter of notation we let D, () be the Dirichlet kernel of
order n:
_sin(n+§)t

Dn(®) 2sin $t

THEEOREM 3.1. Let A, be a sequence satisfying conditions (1.1)-(1.4).
If ap = 0(4y), m = 2 and the localizing function A(z) has m-+4 continuous
derivatives, then the difference

b
(=™ N ipz
- !F(t)l(t)wl)n(mht)dtw Z 4, 6%

P=—n
is uniformly N(4,) summable to 0.
The proof of this theorem follows the lines of the proof of the next
one.
THEOREM 38.2. Let A, be a sequence satisfying conditions (1.1)-(1.4).
If ap = o(AR), m > 2k+1 and the localizing fumction A(z) has m--4
continuous derivatives, then the difference

(—1)™ b am kil
N o . _ ipx
~ fzﬂ(t)z(t) 5 Doo—)dt 2 0y
a D=—n
is uniformly N,(4,) summable {0 0.
Proof. We let the series
+00
Z' d,6v®
P=—00
be the formal product of the series
+00 P +o0
’ Gy €
—_ % 1px .
pg; (" nd Z b,e”

=—00

The first series iy absolutely convergent, for ifs coefficients are o(|p|*~™)
and k—m <k—(2k+1) < —k—1 < —2. The second series being the
Fourier series of the localizing funetion with m-+4 continuous deriva-
tives, its coefficients are O(|p|~™ %) = O(p™). Since both series satisfy
the hypotheses of theorem 2.2 for 4, =1, their formal product is uni-
formly N (1) summable or, simply, uniformly convergent, namely to the
sum ()G (x), where G (x) denotes the periodic part of the function #(w).
From the uniformity of convergence it follows that this formal product

©
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is the Fourier series of the function (@)@ (), whence

n 2
67" = T)_f A4 (z) D, (x—1t)dt
a7
P=—0
and
7 1 2z qm
p_z_lmnma,,ew - f 4@)6 @) = Dy (o~ 1),

Now the series Y'a,e™ and Yb,67 verify uniformly in the interval
{a’, b’y the conditions of theorem 2.9. In fact, according to the definition
of the localizing function we have for ze(a’, b’>

AMzy=1, V(@) =2(®)=..=21"z)=0,

which means that

+o0o
\ 0T __
Z by =1,

P=—00
400 X 4o . 400 )
Z iph,e?® = 2 (ip)?D, €7 = ... = 2 (ip)" b, € = 0
P=—c0 P=—0c0 P=-—0c0

uniformly in <a’,b'>. Also a,6®® =o(Al) and 1,67 = O(jp|™"%)
uniformly. In virtue of theorem 2.9 the difference

n n

Z (ipy"d, e —1- Z' a, 67"
P=—n DP=—n

is uniformly N, (4,) summable to 0. Taking into account the formula

concerning the former term of this difference and the fact of the vanishin,

of A(x) outside {a, b>(mod2x) we obtain the difference ’

b n

(_l)m ar ! ipT
= !A(t)G(t)—lﬁ—Dn(w—t)dt—— 2 0,67,

p=-n

which is uniformly N,(4,) summable to 0.
Our theorem will be established if also the difference

b
— m dm
pute) = S (AP -2 Dte—vit—a,

is N(4,) summable to 0 uniformly in <{a’, b’>. Integrating m times by
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parts we obtain

b
1 [ZW'L
Pul®) = o= | = [A(1) P (2)]1D, (x— 1) dt— ay
27 P dt
1 b m
m
= 20 () P (1) D, (w—t) dt —
= Z() (P10 D, (0~ 1)dt— ay
m 1 b
- Z("‘)F: f AO (PO (1) D, (52— 1) dt—
oy Y] oan
a 2
‘}%f [1—-A(t)]D,(a—t)dt.
0
Since for mela’, b’y 1—A(x) = () = ... = A™(x) = 0, the sequence

p,(w) uniformly converges to 0 and therefore is uniformly N, (4,)
summable to 0. Thus the theorem is proved.

Theorems 3.1 and 3.2 contain the theory of localization for trigono-
metric series.

TEEOREM 3.3. If a, = 0(4), m > 2k+1 and the function

™ Fu g™, N ot I
P e Z(z'p)m

Fx) = .

P==00
vanishes in an interval {a, b, then in any inlerval {a’, b") interior to <{a, b>
the trigonometric series Y a,e™® is uniformly N, (4,) summable to 0.

THEOREM 3.4. Let a, and a, be o(A®), m > 2k+1 and let F(x)

and F () be the sums of the series obiained by integrating m times the series
Ja, 6™ and Yan,é™ respectively. If F(z) = F(z) in an interval {a, B>
or, more generally, if F(m)—ﬁ(m) is equal to a polynomial of degree m in
this interval, then in any interval {a’, b interior to {a, b) the series Sla, e
and Ja, 6 are uniformly Ni(4,) equisummable, which means that the
difference of these two series is wniformly N,(4,) summable to 0.
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Remarque sur la régularité des intégrales des équations
différentielles hyperboliques du second ordre

par J. SzARSET, Z. SzuyDT et T. WAZEWSKI (Krakéw)

Considérons le probléme de Darboux dans lequel il s’agit de trouver
une intégrale de 1’équation

(1) “zy(my Y) =f($3y’u(wyy);“m(w:y):“y(m) :‘/))

prenant des valeurs données le long des caractéristiques z = 0 et y = 0.
Cette solution peut étre cherchée parmi les fonctions appartenant & di-
verses classes de régularité.

DEFINITION 1. Une fonction ¢ définie dans un ensemble Z sera
appelée dans la suite fonction de classe C™ (n > 1), lorsqu’elle posséde des
dérivées partielles continues d’ordre n dans I’ensemble Z.

La plupart des théorémes concernant le probléme de Darboux re-
latif & l'équation (1) assure lexistence d’une solution dans I’ensemble
des fonctions w(w,y) continues avec leurs dérivées w,, u,, 4y ou, ce
qui revient au méme, en vertu de la continuité de la fonction 7 qui y inter-
vient, dans ’ensemble des fonctions de classe O L’importance des solu-
tions de classe (2 a été indiquée par B. Kamke (cf. [1], p. 402, renvoi(1)).
Dans Phypothése que f(z, y, u, p, ¢) est une fonction de classe 01 dans le
parallélépipede: (o, ly] < d, |u|, |p|, g < M (d >0, M >0), H. Schae-
fer (cf. [2]) a démontré que ’équation (1) admet dans le rectangle suffi-
samment petit: {2|, |y] < d, (d, < d) une solution unique de classe (2
s’annulant le long des caractéristiques z = 0 et y = 0.

L'une des deux démonstrations de ce théoréme, données dans [2],
est basée sur le résultat bien connu concernant l'existence et l'unicité
d’une solution w(x,y) de classe 0% du probléme considéré. Ainsi cette
démonstration se raméne &4 prouver 'existence et la continuité des déri-
Vées Uy (2, y) et (2, y) (cf. [2], 2). Dans la suite nous donnons une
autre démonstration, plus simple, de cette derniére propriété et méme dans
un cas plus général, & savoir dans le cas ol u(x, y) est une solution ar-
bitraire de I’équation (1), de classe C* dans le rectangle R,

B: —e<az<a, —B<y<f ol O<a<oo, 0<f<oo
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