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On Newton’s method of approximation

by A. SEARMA (Lucknow)*

1. Recently J. Mikusirski [1] has shown that if 7y, 74, 75, ... denote
the successive convergents for the continued fraction for V0 (€ >0 and

rational and not a perfect square) and if @y, @, %,, ... (% = 7,) are the
successive approximations to ¥C by Newton’s formula, viz.

(1) Ty = '}(wn'i'o/wn)

then ’

(2) Ty = Tyn_y

if and only if

(3) 0 = a*+2afb

when a and b are integers. For numbers ¢ not of this kind, he has proved
the following results:

(I) If @, = (p—1)-th convergent of VO when p is the number of terms
in o period (not necessarily primitive) the number @, ,, is equal to the (2p —1)-th
convergent of ve.

(IT) If the primitive period of V'C has 2% terms then all the iterations
that we oblain by Newton’s formula on beginning with the (k—1)-th conver-
gent of VO are also convergents of Y.

Now we know that if ,,, @, ,, are two numbers such that @, < a < @1,

f(z) is continuous and monotonic in <, #,,,> and a is a root of the equa-
tion f(#) = 0, then the number #,., given by

f(wn) (99,,+l~—m”) — mﬂj (mn+l)_'wn+1f(wn)

F(@ny1) — (@) \ F(@asa) —F(@n)

is also an approximation to the number a. Using this for a quadratic
equation #*-+Ax+B =0, we show that if co,‘<}/5-{—l<av,l +1. Where

(4) Lpyp = By —

* I am grateful to Professor Mikusifski for several valuable suggestions.
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V€41 is a real root of this equation, then
By, Ly — B
DBy By g4
gives in some cages a better approximation than @, and ,,,.
The object of this note is to extend the results (I) and (II) to a class
of numbers V01 which have a continued fraction development of the
type

(6) (@, g,y ..

(5) Tpyy =

.y p)y
the elements in the braces denoting a period. We also obtain similar
results for formula (5) by taking x, and @, to be two successive conver-

gents of (6), which as we know are approximations from above and below
to the irrational number.

2. Consider the number (V85 —1), which is a root of the equation
32?42 = 7 and which has the continued fraction 1(2, 1, 2). The successive
convergents are

1 3 4 1 26 37 100 237 337 911 2159 3070

The corresponding Newton’s formula gives

302 4+7
Bppy = .
6x,+1
Taking @, = 3, We get @, = 3 @, = v, ... Again formula (5) becomes
o 32, %, 1+ T

" B o )1

N ’ 3 ’ 4 ¥ 1

Taking o) =3, o, =5, We get o, =%. Or again taking =2,
s 81 ro 2159 i 3 i i

@3 = g, We get x, = =2 and so on. Again take 1(V54-2), which satis-

fies the equation 92*—12z—1 = 0. It has the continued fraction
1(2,2,2,1,12,1)
and its successive convergents are

1 3 7 17 2;2 305 329 963 2255 5473 7728 98200

7 27 5) T2 T 2167 2837 62’ 1597 9876? 54737 G9ssa? 't
By Newton’s formula, in this case
N
I 92l +1 .
nl T ST o)
6(3x,—2)

icm

©

On Newton’s method of approvimation 297

and taking =, = % we have x,

; 305
taking x, = 98209 2

Ol
it 36 Ve have By = GoEmo
- gﬁ Similarly formula (5) now becomes

’ 9'”':»50;14-1“1“1 )
wn+2 Sy e
(@ +2y,)—12
. " ’ 24 ’ 305 ’ 7728
from which on taking #y = and »; = 5z, we get 4, = ;.

We may now state the general results:
(I') If @, is the (p—1)-th convergent of a given by (8) (p being the number
of terms i a period not mecessarily primitive) then the number @, ., given by

2:—B

7 =
(7) Lnyy 20, L 4

8 equal to the (2p—1)-th convergent of a, where a i a root of the equation
o'+ Arx+B = 0.
(I1') If the number a has a period of length 2¢ and is given by

@ = a{@y, Gy oeny Giyy by Gy, veey Oy, d),

so that the period is symmetric ewoept for the last term, then all iterations
given by Newton's formula on taking z, = (i—1)-th convergent of a are
also conwergents of a.

It may be remarked that an increase in the non-periodic part disturbs
the rules very much, as is seen from the following examples:

Congider the number 4—1@», whose continued fraction is 2, 3 (1, 2)
and successive convergents are

2 25 34 93 127 347 474 1295 1769
) 37 & T 15 a1 56! 1530 2097 ST Te0 Y U !

Newton’s rule gives

22 —13
50 that taking o, = 2, We geb @, = > = 1y, & = o = 7, By = Ipags = T
Taking @, = ";‘ =7y We get o =%=7’M %:%ﬁg = 10y 3 = Fyg7ge0 — Te2-
On the other hand the number 11—3(17 -+ V§), which satisfies the equa-
tion 32*—34w+422 = 0, has the continued fraction 1,2,3(1,2), and

its successive convergents are

1 3 10 13 36 49 134 183 500 683
2 3 7Y 9 TG 340 93 7 1377 3477 4780 '
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By Newton’s rule
1322 —22
Ini1 = 536, —17)

On putting successively the first 4 values of the above convergents we
obtain

9 29 111 415

B 200 7T 788 ?
none of which agrees with any of its convergents. It is the same with
2(17—V3) =1,5(1,2).

3. Proof of (I'). Observe that a = VO+1 where C and I are rational
(C >0) and C is not a perfect square. Put

_ aP+P,

i, 1] 1]
e T e 2@+,

]a [a _a;*

fl@) = a+!

and let P./@, denote the k-th convergent. Then
VO+1 = f(ay+a—a) = f(m+VC)
_ (mAVOPAP,,
(me+VO) Qe+ Qucy |
which, on simi)lﬁying and gince V0 is irrational, gives the following:
(®) Pi=(+4m)Qi+Qiyy  UmiQi+ Q1)+ 0@ = mP;+P;_,.
‘We now have

where m; = a;,+1—a

Pyiy _ f( ot ) _ (Pt P ) Qi—1PQ,+ P}
Qaips T 2(P;—10,)Q;

Again, eliminating m; with the help of (8), we have

© Puy _ P+ (0-1)Q}
Qi 2Qu(Pi—1Q;)

Now VC+1, being a root of @'+ Az+ B = 0, gives

(10) B=PF-0, 4=-2,
and putting , = P;/Q;, we have by (7)
P}—BQ:

o, e o
" QP+ AQ)
which reduces to (9) on using (10), which proves the result (I').
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It is easy to show in an analogous way the following theorem for
formula (5):

(Ia) If in (B) we take for x, the (p—2)-th convergent and for =, the
(p—1)-th convergent for VO-+1 having o continued fraction given by (6),
then w, 18 the (2p—2)-th convergent.

4. Proof of (II'). Take a to be given by

(11) 0= 0(8yy Gyyoovy Byyy by 04y, ..., 0, d),
so that the period is symmetric except for the last term, and put

1 P+P e

fla) = ot 2 1

I“ -1 bto  Qi+Qi,w’
1], 1] 1| Qg+ (Pis—0Qiy)o
(@) =r——+r——+...+ = .
o ]“4—1 ,‘h 2 |a1+m Qi+ (P —aQ;_y)o
Then the number a given by the continued fraction satisfies the equation
(12) » = flg(1 [+ d—a))].

Simplifying and putting
PiQi 1+ Pi1Qis = &,
P 1@+ Qi Piy =By

we get from (12),

(14) o* +2[5;(d—2a)+ fi— o] = (d—2a) a;+;.

It is easy to see that f; = ¢;. Newton’s formula now gives

;w5 + (d—2a) o+ y; _ 6, Pi_1+@Q%_,[(d—2a) a;+ ;]
26,2+ 6;(d— 2a) 0;Q:-1[2P;_,+(d—20)Q;_,]

Py (Pi+Piy) = yiy

(13)
Qi—-l (Q'L—!— Qd—:) =6

(18 &=

Algo
Py 1@y = FL9(0)] = ay/é;.

It then remains to show that the right side of (15) = a;/d;. Simplifying
the right side of (15) with the help of (13), we must show that

Qi1 (PitPyg)+ Py (@ Qis) —2(Py@Qiy +Pi1@s-p) = 0,
and this is easily verified if we recall that a; = ;. This proves (II').

5. A theorem analogous to (II') for formula (5) does not seem to hold
true, as the following example shows:

V19 =4(2,1,3,1,2,8)
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and the successive convergents are

4 9 13 48 61 170 1421 3012 4433 16311 20744

3 ; 9 ! 13 ’ 231
Taking @, = ¢, @, = 3, we have @, = &,

1421

which lies between 27° and

39
. But on taking @y =3, 2] =%, we get @ =4 TIn the first
case we get what is called by Weber [2] a Nebenbruch, and it appears
that in order to obtain similar relations between Newton’s formula and
formula (5) and the successive convergents one must take into conside-
ration the Nebenbriiche also. This is clear on examining the example of
V89 and V13 considered by Mikusingki. To this problem we propose to

return later.
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Interprétation géométrique des conditions d’intégrabilité
d’un systéme d’équations aux différentielles totales

par J. SzARSKI et T. WAZEWSKI (Krakéw)

Considérons un systéme d’équations aux différentielles totales

7zn)dw+Qi(w7 Y, 2ty ..., 2N dy
(1=1,2,...,m),

(1) d&* = Piw,y,2", ...

out les fonctions Pi(x,y, 2", ..., ") et @'z, y, ', ...,4") sont de classe
C' dans un domaine Q. Le systéme (1) est dit complétement intégrable dans
£, lorsqu’on a dans £
k3
(2) Qi—Py+ QU —PLg) =0 (i=1,2,...,n).
=1

Nous nous proposens de donner une interprétation géométrique des
premiers membres des identités (2). L’idée de cette interprétation est la
suivante.

Le systéme (1) définit en chaque point (&, 9, &, ..., {*) du domaine 2
un plan & deux dimensions

(3) At =Pi(£: 7y 8y ey cﬂ)(”_f)+qi(fy 7y ey (Y —17)
(7: = 1, 2, ...,1?/).

Soit (1, Yy, 25y -+, £3) un point du domaine L et considérons la surface
cylindrigue & n-+1 dimensions dont les équations paramétriques sont

(4)

olLr > 0 est fixé et suffisamment petit et y, A', ..., h" sont des paramétres.
Désignons par X, la partie de la surface (4) contenue dans Q et soib

()

un point quelconque appartenant & Z,. Le plan (3) passant par le point
(6) coupe la surface (4) le long'de la courbe dont 1’équation paramétrique,

@ = g+ reo8y, Y =Y+rsiny, & =01 (i=1,2,...,n),
*

& = m+roosp, 7 =1uy+rsing, F=h ((=1,2,...,n)
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