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Nous obtenons

1
(18) W< Sy
’ 2’ 1
as) < e imtn

et en réduisant au commun dénominateur nous aurons, d’aprés linéga-
lité (18')

(18") |Al{2D(m+n)[a(I+D)—=bl|Ala(I+D)+mb+2D(m+n)} < 1.

Désignons par p, un nombre positif arbitraire vérifiant 1'inégalité

1
(I+D)’ 2D<m+n)]'
Alors il en résulte Vinégalité suivante:

1 1
2D(m+n)[a(I+D)—=blps+a(l+D)+mb+2D(m+n)  p,

P1 <m1n[b

(19) A<

En vertu des inégalites (18), (18’) et (19), si les valeurs absolues du
parameétre 1 satisfont & 1'inégalité (16), nous obtenons la thése du théo-
réme 5.
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On summability of double sequences (II)

by A. Arexmwicz and W. OrLicz (Poznar)

In paper [2](!) we have proved strong consistency theorems for the
regular summability of double sequences. In the present paper analogous
theorems are proved for the restricted summability of double sequences.
After preliminary definitions we prove, in section 2, some theorems of
Toeplitz type for restricted summability; some instances of these results
were proved in an alternative version by C. N. Moore ([5], p. 92). The
main result, the consistency theorem, is then proved in section 4. The
method is based, as in [2], on the application of two norm spaces. The
results may be extended without any alteration to the summability of
sequences of multiplicity greater than two.

1. Definitions and preliminaries. By a convergent sequence we
shall always mean sequences convergent in Pringsheim’s sense; the limit
of such a sequence # = {z;} will be denoted by lim 2. To recall the no-

1,00
tion of restricted convergence let us denote by S, the set of the pairs
(4, k) of indices such that n~* < (4+1)(k+1)"" < n; the sequence » = {w;}
is called restrictedly convergent to .. (Moore [6], p. 567) if, given any ¢ >0
and n, there is a N ‘such that ¢, % > N together with (i, k) eS8, implies
[ —®..] < &; @.. i3 then called the limit in the resiricted sense of the
sequence x and will be denoted by []Eogwik'

Let 4 = (ay,,) be a four dimensional matrix; given a sequence
@ = {u;,}, let us consider the transforms
o
Ap(m) = 2 itepin B+

o, v=0
Tf these series converge (in Pringsheim’s sense) for every 4, % and there
exists lim 4,,(z) = 4..(z), then the sequence z is called A-summable

i, ko0

to A..’(m); the quantity 4..(») will be written interchangeably A-lim z;,.
i, k—>o0

(1) Let us correct the following misprints of this paper: p. 176, line 6 is to be
read ||zg—o'||* < &, |[zg—a||* < &, p. 176, line 18 is to be read 2ix+ eik®ik.
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If only [lim]A4;(x) = [4].. (%) exists, the sequence z is called restrictedly
1,k—>00
A-summable to [4]..(z); [4]..(x) will be denoted also by A-[lim]s,,.
i, ko0

Z,

The matrix 4, as giving rise to the sequence {4, (»)} of transforms,
is called the method of summability A.

By BC and [BC] we shall denote the class of all bounded (?) con-
vergent and all bounded restrictedly convergent sequences respectively;
these are Banach spaces if addition and multiplication by scalars is de-
fined in the usual way, the norm being [jz|| = ksup | . BCy and [BC,]

t, k=0,1

1,k=0,1,... .
will stand for the subspaces of BC and [BC] composed of the null-con-
vergent and restrictedly null-convergent sequences respectively.

Let Z be any class of bounded convergent or bounded restrictedly
convergent sequences; the method A4 is called restrictedly conservative
(shortly r-conservative) for Z if it transforms every sequence of Z into
& bounded restrictedly convergent sequence. The method 4 is called
restrictedly permanent (briefly r-permanent) for Z if it is r-conservative for
that class and the generalized limit [A4]..(x) is equal to the ordinary
Limit (or the limit in the restricted sense) for every zeZ.

In the study of restricted summability-the methods reducing the

number of dimensions of the sequences seem to be helpful. Those are -

methods obtained by aid of three dimensional matrices L = (L), the
transforms being defined as .

o0
Li@) = > U,
Hyr=0
The definition of L-summability is then clear. Let us arrange all the trans-
forms A, (2) with (i, k)eS, into a single sequence I (x), L{(x), ...
and denote the matrix giving rise to this sequence by L™ — (1), It is
obvious that the sequence # = (@} is restrictedly A-summable to ..
if and only if for each n it is L™-summable to z. .; this fact enables us to

reduce cerfain arguments to the case of two-to-one dimensional transfor-
mations.

2. Toeplitzian theorems for restricted summability.

2.1 ProposITION. The method A transforms each bounded sequence
of BC, into a bounded sequence if and only if

(ay) sup
i,k=0,1,.,

Zu;’ (84| < oo

- iy y=0

(1)- Unlike the notion of convergence which is meant in Pringsgheim’s sense,
the notion of boundedness is the usual: the sequence {=ix} is bounded if sup { @l :
i k=0,1,..} < oo

icm
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This is well known. The supremum in (a,) will be denoted in the
sequel by M.
The following lemma is also well known.

2.2 LemmA. Let (b,,) be a matriz; then the limit

lim > b,z = B(z)
i 2y
exists for each bounded sequence z

= {z,} if and only if
(0,) limb,, = b., ewists for v = 0,1
n—00

'y

iy

~
(0,) the series 3 |b,,| are equiconvergent as n = 0,1,2,...(3).

=i

If these conditions are satisfied, then
el
B(z) = Zb,,z,.
v=0

2.3 PropoSITION. The method A is r-conservative for BC, if and
only if (a;) and the following conditions are satisfied:

(b,) there emists
(lim]ay, = @, for p,v=0,1,..,
ik

i,k—+oco

o0 o0
(by) for each m and n the series > |Gyl and Y |Ggm,| are equiconvergent
v=0 p=0

as (i, k)e8,.
If these conditions are satisfied, then

[A]..(@) = D a2,

#,y=0
for every xeBC,.
Proof. Necessity. (b;) is obviously necessary. Now let m and =
be fixed, and let {z,} be any bounded sequence. Set

z, for
X =
i 0 elsewhere.

lu:'m,, 'p=0,1,.-.,

hed .
(%) The series 3 amy, are called equiconvergent as teT if for every &> 0 there
ni=0

a2
is an N such that | Y am| < ¢ for g=p > N, teT.
n=p
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Then @ = {z,}<BC;. The restricted A-summability of 2 implies

o
by lemma 2.2 for every n the equiconvergence of the series Zmim

if (i, k)eS,. The equiconvergence of the series Z[alk,,m| follows similarly.
=0

To prove sufficiency let us observe f]rst that a,., = lima,

100
whence (a,) implies
00

Z lo..,.] <M.

,7=0
Now let D denote set of all elements z = {2;;} of BC,, for which

2y, = 0 for 4,k = p (p being, of course, dependent on 2). Condition (b,)
implies for every fixed ze.D and every »n the equiconvergence of the series

©
2 lwik/n» 3”,1
p,y=0

a8 (1, k) «S,, which implies by (b,) and lemma 2.2 the existence for each
zeD of the limit of 4;(2) a8 4,k — co through the set 8,; moreover,

0

this limit is equal to } .. ,2,. Now, n being arbitrary, we deduce the
B,y=0 .

existence of

[4]--(2) = [lim] 4y () = Zam »

B, y=0

for every zeD. The last formula defines an (obviously linear) funectional
on BC,, and since the set D is dense in BC, we infer that [hm]Atk( x)
1,00

exists on the whole of BC, and is equal to 2 a,

#yr=0
2.4. PROPOSITION. The method A is r-conservative for BC if and only
if the conditions (ay), (by), (by), and the following are satisfied:

(e,) there exisls

s

mim] 3 g, —s.

’tk—m,‘,zn

If these conditions are satisfied,

0

[4]..(x) = Zw: a,,,,m,,{-w..(s.,— 2 a,_,w)

Ay=0 Byy=0

for each z<BC.
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Proof. The necessity of (c,) follows from the fact that the sequence
composed of omes iy in BC. Now let the conditions of our theorem be
satistied, @ = {2} eBC and set 2y — ay—x.., ¢ = {zx}. Then -zeBC,
and

On the other hand

[4]..(2) = [lim] 2 B (L — L)

i, k00 =0

2 Gt Ty — .. [lim ] Z iz

1, k-0 £, 9=0
which gives

[A]..(w):ﬂé’oa e, ( 2 )

for every xz<BC.

From 2.3 and 2.4 there follows directly

2.5. PROPOSITION. The method A is r-permanent for BC, if and only
if the conditions (2,), (by), (bs) are satisfied and a.,,, = 0 for p,v = 0,1, ...

2.6. ProposITION. The method A is r-permanent for BC if and only
if the conditions (a,), (by), (bs), (¢,) are satisfied, a..,, = O for u,» = 0,1, ...,
and s.. = 1.

NOW we shall prove analogous propositions involving the spaces
[BC,] and [BC). In the sequel 7' will denote the set of all sequences
{#t, v} of pairs of indices such that either lim(u,+1)(»,+1)"'=0 or

N300

lim(g,+1)"Y(»,+1) = 0.
N—s00.

2.7. ProOpOSITION. The method A is r-conservative for [BC,] if and
only if the conditions (a;), (b;) and the following are satisfied:

(dy) for each m and {u,,v,}eT the series Z’}aﬂ%,u] are equiconvergent as

(4, k) eSp,.

Proof. Necessity. Conditions (a,) and (b,) follow from the inclusion
BC, C [BC,]. Now let {u,, »,} «T and let z = {z,} be an arbitrary bounded
sequence. Write
for (6, k) = (ptmy %)y n=0,1,...,
elsewhere;

zﬂ
2y (2) = { 0
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then #(2) = {®;(2)} <[BC,]. Let m be fixed and write
i) = A«:k(a’(f")) = Z‘Zikuauﬁai
=0

arranging Cy,(2) with (¢, k)8, into a single sequence we obtain a con-

vergent sequence, since [h'm]Aik(m(z)) exists. This gives in virtue of
1, k=00

lemma 2.2 the condition (d,).

Sufficiency. By (a,) 4 (») are linear functionals on [BC,] with
norms, |Agll, uniformly bounded. Let E denote the set of all elements
@ = {mg} [BC,] such that {(i, k): zy # 0)eT. By (b,) and (d,) we infer
from lemma 2.2 that A4;.(x) tend to

C(w) = 2 Q... %

ur=0
for every z<B, as i, k — oo through the get §,,, i. e.
[(Hm] 4 () = C(x)
1,k—00

for every zeE. The functional C(x) with arbitrary @<[BC,] is obviously
linear on [BC,). To prove our theorem it is sufficient to show that the
set B is dense in [BC;). Let & = {1;}<[BC,] and let ¢ >0 be given;
then for every « there is a N, such that |z;| < ¢ for (i, k)eS,, 4,k > N,;
we may suppose freely that N, < N, <... Set

0__{() for (i, %k)eS,, i, k>=N,,
Lip =

Ty elsewhere;
obviously #° = {3} e B and |jz— a9 < s.
Just as for the space BC, one can prove
2.8. ProrosrrioN. The method A 4s r-conservative for [BC] if and

only if the conditions (ay), (by), (d,), and (c,) are satisfied.
If these conditions are satisfied,

[A]l..(z) = Z a,_p,wp,+w.,(s..— 2 “.W)-
#,y=0 #,¥=0
2.9. ProPOSITION. The method A is r-permament for [BC] if and
only if the conditions (a,), (by), (dy), (c,) are satisfied with a.. w=0 fiw
pyr=0,1,... and .. = 1. .
The quantity

n=1,2,...,

icm

-
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defined for methods r-conservative for BC is usually called the characte-
ristic of A. .

3. The space of restrictedly summable sequences. Let 4 be an
r-conservative method for the space BC,; we shall denote by [B4,] the
space of all bounded sequences x = {z;} restrictedly 4-summable to
zero, This is a linear space under the usual definition of addition and
multiplication by scalars. Let us introduce two norms in [BA,]

2]l = sup jogl,

i,k=0,1,...

ol = 3 27z, |+ 3127 sup |44().

=0 a=1 (£,k)eS;

By 2.1 [jo|* < (M+2)|x|, i. e. the norm | || is not weaker than | |*
Tt is easily seen that the conditions (n,) and (n,) of [2] (see also [1]) are
verified. Thus ({BA,], || |I, | [*> is a two-norm space in which the two-
-norm convergence y [1] is defined.

Let us denote by F the set of those sequences x = {;} for which
the set {(Z, k): @y 5= 0} is finite. We shall prove that this set F' is y-dense
in [B4,]. This follows directly from

3.1. LevmmA. Let the method A be r-conservative for BC, and let & =
= {@y} e[BA,]. Then for every s > 0 and n there is a positive integer p and
a sequence z = {2z} such that |z| <oyl for 4,k =10,1,... and

. {wi for i,k <mn,
=10  for max(i,k) >ntop,
[p(z)— Az} <e for (3, k)eS,.

Proof. Let us arrange the transforms A, (z) with (7, %)eS, into
a single sequence B{w), By(%), ...; denoting

Bu(@) = D) buu
v =0
let us write
5
Bm(fv) = Z bn;nvwm’
#,7=0
Ug = {an(m)}n=0,l,...: Uy = {Bn(m)}n=n,l,...'
Then. %,, #yeCy, the space of (single) null-convergent sequences. Obvious-
1y ] < ljall- 2
Lm B, (z) = Bn(w)y
8—+00

Annales Polonicl Mathematici VI. 12
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whence u, converge weakly to u, in the space C,. By a theorem of Mazur
([8], p- 81) there exist non-negative 4,,..., 4, ,suchthat 4, +...4-14,,, =1
and

HAn oo Ay U — ol << .

Setting @, = {25}

(8) —

. for 4,k <s,
% =1

elsewhere

we see that
Ittt Aty = {Aip(nBnte oot Angp @)} (4, ) €8,,).

Hence writing 2 = 4,&,+...+ Ay, %y, W6 obtain the desired conditions.
Let § denote the ball {#: [z]| <<1}; we shall prove that the following
property is satisfied: :
(ng) For every z,¢8 and & >0 there is a 6 >0 such that every xeS such
that |z][* < 6 may be written in the form @ = o’ —a&'’ where |jwy—o'|* < &
and |jg,—o"'|* < e.
3.2. TeEOREM. The space <[AC.1, | I, || |*> has the property (ny).
Proof. Let us denote by P, the set of the pairs (¢, k) of indices for
which max(i, k) >n. Choose = £/(4M+7) and » so large that

2 D 2oy <
(1,9)e Py,

Let @) = {zf); by lemma 3.1 there exists an element 2 = {z;)F
such that

{w‘i’k for i,k <0,

Zx = X

0 for (i, k)P, .,
(@) — Au(e)l <s for  (i,%)e8,.

Thus ze8, and §,C 8, C... implies

oo
i —(Ete) 10 N o—
=" = 3 27 ah—zyl+ 397 sup |4y (m)— Ay (o)
(&,r)e Py, o=l (v,k)sSa

<2 Y 2P (L4 27 2 sup | Ay (@) — Ay (4) +

(#,7)ePyp,

o0
+ Y 2aM < 2.

o=n+1

icm°®
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Nowlet wes, |[z]* < 6§ < 27y, & = lz,}. Then |my <25 < 7 <1
as 4,k <n+p. Obviously min(|zf+ zul, ofh— zxl) <1, whence there
exist ey = 41 such that |2 —e;oy] < 1. Let us set

Zgtepty i G E<ntp, ep=1,
T =1 2y it L, E<L<atp, ep=-—1,

T elsewhere,

2k if i, k<ntp, egp=1,
@y =1 tgtegty L ESatp, ep=—1,

0 elsewhere,

’

2 = oy, o' = |z}

Then ', ¢S, # = o' —a" and for (i, k)8,

@)= dg @ < Y apeutult| D G0,

HY<NED @) ePrip
o0
< M7]+I Z aikmmmi + 2 1t @)
#,v=0 By<ntD

< 2Mn+|4g(@)] < 2M77+(‘Sk‘;11; [Au(®)] < 2(M+1)7,

gince |Ay(2)| < 2"@|* < 5 for (¢, k)eS,. Thus
277 sup |Ag(z' —2) <(1+27 ... +27") sup [Au(a)—Au(e) +
=0 (GB)eS; (i,k)e Sy

+ 27 sup [Ap(e)— Aa(@)| <A +1)n+2:27M < ($H+2)0.
oomt1l (RS,

Also
0
Z 2P |l —z,| < 2 27 | |+ 2 276z | < 37,
=0 RETES (m9)ePptp
whence
o' — 2 < (4M+5)y, lm—a|* < lge—2I"+le—2'* < (EM+T)7.

Similarly [lz,—2"|[* < (2M+4)9.

4. Consistency theorems. Property (n;) together with (n,) and (n,)
imply for the space {[B4,], [ Il |l [*> that the limit of any sequence of
y-linear functionals is also y-linear, the method being of course supposed
r-permanent for BC,. Let B be another method of such a type and let
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each sequence of [BA,] be restrictedly B-summable. Then B..(z)
= limB,, () for z¢[BA,]; the functionals B,,(x) are y-linear since they

n->00

are limits of y-linear functionals (the partial sums of the involved series);
thus B..(z) is y-linear on [BA,]. For z<BC, we have B..(x) = 0, and
since the set BC, is y-dense in [BA,], we have B..(2) = 0 on [BA,]. Thus
we have proved

4.1. TeroREM. Let the methods A and B be r-permanent for BC,
and let every bounded sequence x = {mlk} restrictedly A-summable to zero
be restrictedly B-summable. Then B-[‘]im o] = 0.

1, k—00 .

The methods 4 and B are called r-consistent for the class Z of sequen-
ces if each sequence of Z is restrictedly summable by both methods to
the same value. It is easily seen that if the methods A and B are »-con-
sistent for bounded sequences, then the constants defined by (b,) and
(c,) coincide for both methods, whence y(4) = y(B).

Using the device of [4], p. 140 (concerning our case see also [2],
p. 180), one can prove

4.2. THEOREM. Leét the methods A and B be r-consistent for bounded
convergent sequences and let y(A) # 0. If each bounded restrictedly A-sum-
mable sequence » is restrictedly B-summable, then [A]..(z) = [B]..(z).
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Sur I'allure asymptotique des solutions
de I'équation différentielle v+ a(f)u'+b(t)w = 0

par Z. OpiAn (Krakéw)

§ 1. Dans la monographie sur la théorie de la stabilité des équations
différentielles M. R. Bellman consacre un petit paragraphe & 'étude de
Pallure asymptotique des intégrales de I’équation différentielle linéaire
du second ordre

(1.1) w'tat)u'+u=0,

dans ’hypothése que a(?) est une fonction continue tendant vers linfini
lorsque # croit indéfiniment ([1], Ch. V, Sect. 20).

L’auteur remarque que la comparaison de I’équation (1.1) avec une
équation de la méme forme, mais dont le coefficient a(f) est constant,
powrrait nous mener A supposer gue toute intégrale de I'équation (1.1)
doit tendre vers zéro lorsque ¢— +oo, mais qu’en réalité il n’en doit
pas étre ainsi. Aussi est-il plus raisonnable, remarque-t-il, de comparer
Péquation (1.1) avec les équations

(1.2) wtat)u =0 et a{f)u'+u=0

ce qui permet de mieux comprendre le réle que doit jouer, dans le prob-
léme de 1’allure asymptotique des solutions de ’équation (1.1), I'intégrale

(1.3) f ds

a(s)”

En effet, si elle est finie, les intégrales non banales de la deuxiéme des
équations (1.2) tendent, pour ¢ — +oo, vers des limites finies, différentes
de zéro et, par suite, on peut espérer qu’il existe au moins une intégrale
de D'équation (1.1) qui jouit de la méme propriété. Et inversement, si
T'intégrale (1.3) est égale & oo, on peut espérer que toute intégrale de 1’é-
quation (1.1) tende vers zéro lorsque i - +co.
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