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On the density of the equilibrium distributions
of plane sets ~

by A. Szymiax (Krakéw)

I. Let D be a domain (bounded or not) in the z-plane and the set F

- be its boundary. We assume that F is of positive capacity(*). A point

feD being fixed, we consider
inf [ [loglz—a|"du(a)du(z) it ¢ = oo,
[

or
inf [ [ (loglz—a] ' —~2log|¢—al ) du(a)du(z) it L oo,

» varies over the class of all non-negative Radon measures whose sup-
ports are contained in F and whose total mass is equal to 1. It is proved
in [2] that by the above assumptions there exists a unique meagure which
realises the considered infimum. This measure is called the equilibrium
distribution of the set F with respect to the point {(*) and we denote it by u,.
Then the Green function(®) g(z, {) of the domain D is expressed by

(1 gz, ) = [log|s—a| ' Ates(@) — 7eo
or
(1) gz, &) = logjz— &' — [logle—a| " du(a)—;

with respect to { = oco or { % co. The quantity y, does not depend on #
and is expressed by the formules

ye=0 i ocoeD, y,=g(, 00 Iif coeD.

The details and elegant proofs are to be found in [5].

(1) For the definition c¢f. [5] and (3] ‘

(%) Cf. [2]. O. Frostman uses the term masse du balayage instead of equilibrium
distribution.

(*) We mean here and throughout this paper the generalised (in Wiener's
gense) Green function. .
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Let ¢ be a Borel subset of F. Denote by . its characteristic func-
tion. Then

er )due(a

is a harmonic function of the point £ in D. It is the solution of the gene-
ralised Dirichlet problem for the domain D with the boundary values
10(2). This function is identical with the harmonic measure of the set ¢
with respect to the point {. The details are to be found in [5] and [3].
The object of this paper is the invegtigation of the density of the
measure u, with respect to the linear Lebesgue measure in the case when F
or its part is an analytic or rectifiable arc. In the proofs we shall use some
properties of the harmonic measure and of the conformal mapping.

II. Consider first the case when D is a simply connected domain
bounded by a Jordan curve F. Assume also that { £ co. Then the func-
tion w(z, {) which maps conformly D into the interior of the unit circle
of the w-plane in such a way that the point 2z = { corresponds to w = 0,
is expressed by the formula

@) w(z, £) = (=—{)exp{[log(e—a)~ du(a) + y,— i},

a being an arbitrary real constant. This formula follows immediately
by (1) and by the known relations between the Green and mapping
function, viz.

9(2, ) = loglw(z, )|
Now we assume that a part of the boundary F is an analytic acc L.
Then the mapping function w may be continued analytically onto L.

The real part g(z,{) and the imaginary part —h(z, () of the function
—logw(z, {) satisfy the Cauchy-Riemann relation

0g(z,{)  0h(z L)
8,5 dm

where s and » denote (by the convenient orientation of the arc L) the
normal and the arc element on L.

It is proved in [5] that for every measurable set ¢ C L we have the
equality

(3) : () = f@—g%—Qd,s.

In view of the definition of the functions g and » we obtain by (3) the
expression for the difference of the argument of w at the points of the
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boundary. We choose on F two different points ¢ and ¢ and we introduce
the notation Alargw = argw(g, ¢{)—argw(o, £). We have

= [ 0| [ 20

where 1,, denotes the arc leading from ¢ to ¢ in the established direction.
Now we fix ¢. Denote by |I,| the length of the arc ,. Then (4)
implies directly the equality

Tim .ué'(lag) —

00 I Zug ]

(4) |Alargw (2 (Lg) 5

dargw , 0) l 2, )
- Ml

‘We have proved the following

THEOREM 1. If the boundary of the domain D is a Jordan curve F,
and F contains an analytic arc L then the equilibrium distribution p, of F
for every [eD has the density with respect to the Lebesgue linear measure
on L.

HI. Now we shall investigate the case when F is a rectifiable Jordan
curve. Consider the curves

IL={e: gz, 0)=¢) (0<e<1)

and denote by D* this part of D which is bounded by I, and contains
the point {. Choosing on F an arbitrary point o we denote by J, the
curve

J, = {z: h(z, ) = h(o, O)}.

On the curves I, we define the measures u; in the following manner:
We take into consideration the two points o and g F and the corresponding
curves J, and J,. We denote by ¢’ and ¢’ the points of coincidence of I,
with J, and J, respectively. Denote by I;, the arc of I, which leads from
¢’ to o’. Now we put
/"Z’(Z;g) = /‘Ll(lug)'
There is defined in this way an additive set function of the arc on I,.
We extend this function in the usual manner to the (completely
additive) measure.
LeMMa 1. The measure u; 15 the equilibrium distribution of I,.

Proof. The function g(2, {)—e is the Green function of the domain

D and —h(z, ) is its conjugate. We have by the construction
duilly) _ dh(z, ) _ dg(e, 0)
ajlg,| dle| dlz]
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In view of theorem 1 and the unicity of the equilibrium distribution this
equality gives our theorem.

The funetion w,(z, {) which maps conformly D° onto a circle |w| < 1
may be expressed as follows

(e, £) = (e—C)exp{— [log(e—a)djuf (@) + 7, +-ef.

The carriers of all the measures uf (0 < &< 1) are contained in the
common compact K = D—D* and they have the common value of the
total mass, which is equal to 1. We choose from {ui} a sequence {u{}
which converges to some measure pl by e, — 0(*). Then we have

(6) wiz,{) = limw, (2,{) = lim(z— C)exp{—flog z—a)dy‘g"(a)%-yc-ksn}
= (e—{)exp{— [log(e— a)dud(a)+ v}

Henee, in view of the unicity of the equilibrium distribution u,, we
obtain uf = u,. Further we have

(6) |48 argw, (2, O) = 2mug(ly,);
then, by (5) and (6) we obtain

jdlargw(z, {)| = lim2n (ufrl) = 27w, (ly,)-

&py—>0
We have proved

Lemma 2. If D 4s a simply connected domain and ' 4s a rectifiable
Jordan curve, then we have

|[Alargw(z, L) = 2pe(ly,) -

Now we fix geF. Then u,(l,) considered as a function of the point o
is continuous and monotonie, i. e. if 7,, C 1,,, then we have u,(ly,) <ty (L)

THEOREM 2. The function u,(l,,) is absolutely continuous with respect
to the arc length |ly,|.

Proof. It is proved in [3] (p. 462) that the function argw (z, {) maps
the sets of linear measure 0 on F' into the sets of linear measure 0 on the
circle |w| = 1. We make use of the Banach-Zarecki theorem (%), which
states that if a function of one real variable is continuous and of bounded
variation (in particular if it is monotonic and continuous on a compact)
and maps the sets of Lebesgue measure 0 into the sets of Lebesgue mea-
sure 0, then this function is absolutely continuous. Our function sati-
sfies the above conditions.

(*) We ure here the principle of choosing for measures. For the details cf. [2].
(*) The proof of this theorem is to be found in [4], p. 219.
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COROLLARY 1. For almost all z there exists the limit

38,057 [
zelug

—f:

and f(z) is summable with respect to the arc length on F, 1. e., if 2(s) is
a natural parametrisation of F, then for each pair of points u, and u,
(0 < uy < |F|) we have

) = fﬁf(z(s)) ds.

Uy

#2 (L) atug)

COROLLARY 2. The GQreen function g and the mapping funciion w of
the domain bounded by a rectifiable Jordan curve may be written in the form

9(z, 8) =logle— |7 — [logle—a| ™ fe(@)dus— v,
rFa
w(zy £) = (z—{)exp] [logle—a| (@) das + y;— id}.
F
Theorem 2 and both corollaries may be extended to the case when

¢ = oo. Then there exists on F a summable function f such that almost
everywhere on F we have

lU

f(z) = lim 'u°°——(—gl-
02,032 lla'gg
zelg.

This function may be used for the expression of g(z, oo) and w(z, oo)
in terms of the Lebesgue integrals.

IV. We consider two domains D, and D, bounded by the Jordan
curves ¥, and F, respectively. Let £, and £, be two points, of the domains
D, and D, respectively. Let U be a function which maps conformly
D, onto D, so that U(f;) = &. We shall prove

THEOREM 3. The equilibrium distribution of the Jordan curves is in-
varignt with respect to the conformal mapping, i.e. we have

py(e) = ug,(U(e))  (Ule) = (2": 2" = Ua), zee}).

Proof. It will be sufficient to prove the theorem in the case when e
is an are, say ¢ = l,. Denote by w;(z, §;) (¢ = 1, 2) the function which
maps conformly D; onto the unit circle |w| < 1, so that w;(L;, &) = 0.
Then we have

U(Z) = w:'_l (’Ll)]_(z, 51)7 ‘:2)5

and hence

27‘7#%2(17(9)) = Agﬁ))arng(% £e) = largw, (e, {;)—argw, (o, {;)| = 27‘:/41("')-
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V. In the following we shall investigate the variation of the
equilibrium  distribution when the corresponding domain varies. Let
us consider two domains D and D* with the boundaries F and F* respe-
ctively. We leave out the previous asswmptions regarding the simple
connectedness of the domains and the rectifiability of the boundaries.
We assume only that F and F* are of positive capacity. Denote by u;
and p; the corresponding equilibrium distributions.

TrmoREM 4. If D is contained sirongly in D*, CeD and the sets
B =PF~F* and H=F—F" are of positive capacity, then for every
Borel set e C B such that the set e~(E—e) is of capacity 0 and e is of po-
sitive capacity, we have

pr(e) > pi(e).
Proof. We fix the set ¢ satisfying the assumptions of the theorem
and we denote its characteristic function by x,. We have

= [r(@)du(a) and  pi(e) = [ a(a)dui(a

Then g{¢) and u; (¢) treated as the functions of { are in D the solutions
of the generalised Dirichlet problem for D and D* respectively, with the
boundary condition y,(2). Evidently we have

0 < ) <1 and 0 < pfle) 1.

The equalities on the left o1 the right side hold it and only if e or B—e¢
is of capacity 0. The first of these cases implies u.(e) = /,L;( ) = 0, the
second is impossible in view of the assumption that F —F"* is of positive
capacity. Consider the function

p(2) = pg(e)—ule);

@(£) is harmonic in D. We shall denote its boundary values, at those
points, where they exist, also by @({). We have

pl&) =0 if zeco—(H—e),
pe) =0 if ze(P~F*)—e
p(z) >0 if zeF—F",
< limg() < hmrp(t) <1 it zein(T—e).

(=%

Denote by w(f) the solution of the generalised Dirichlet problem for
the domain D with the boundary condition

F*~F,
F—F".

0 on

p(?) = o(&) on
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We shall show that ¢ =y in D.

Let 7({) be the Evans function of the set #~(F—e), i. e. the function
which has the following properties:

1. 7(£) is of the shape
= [log|t—a|" do(a),

where g is a convenable Radon measure of the carrier contained in Em(E— —_e)
and the total mass is equal to 1.

2. 7(¢) has the limit value equal to -+ oo at every point of the set
en(B—e). Outside this set it is evidently harmonic(®).

We consider in D the function

P(O)— (L) +er({)+elogd
where § = 51113) |#—al. It is easy to see that the boundary values of this
2,06.

function are non-negative on ¥. Then this function is in D non-negative.
In view of ¢ being arbitrary we obtain the inequality

P(0)—yp(l} >0

By a similar treatment we obtain the converse inequality

(&) —e(£) = 0.

(¢ >0, ¢ = const)

Hence ¢(£) = p(2).
Since y{f) >0 on F—F" then p(¢) >0 in D, and

(0 = @(l) = pp(e)—
COROLLARY 3. If E is a rectifiable arc, then for every arc leE we have
e () < e (0)

Denoting by f, and f; the densities of the measures u, and u} respectively
we have

se(e) > 0.

12 (&) < fe(2)
almost everywhere on B. If B is an analytical arc then this inequality holds
in the whole arc.
We shall prove a theorem which is stronger than the one contained
in the above corollary, viz.

THEOREM 5. If DC D', F and F* have a common point z, and in
some neighbourhood of z,, F and F* are the analytical arcs, then we have )
the imequality

fe(=o) < f:(zo)
(%) Cf. Evans’ paper [1].
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Proof. The case when F = F* in some neighbourhood of z, will
be omitted, beeause it has been considered.
We shall use the notations

K, = {z: |s—=)| <o} (0 >0},
D, = (D*~K)+D, F,=D,—D.

4§ denotes the equilibrium distribution of F, with respect fo the
point ¢. The set F~F,= FnI,is for all sufficiently small ¢ an ana-
lytic arc. Theorem 4 easily implies the inequality

(M pe( ) < p(I) < g (Ky).
Then for the density f3 of the measure uf we have the inequality
felzo) < f2(20)-

In order to prove our theorem it will be sufficient to show that fi(z,)
< f(2,)- This follows directly from the equalities
() * ()
2(2) = lim —— 2) = lim ——
fole) =lim 2, £ () = lim o7
and the inequality (7).

The assumptions of theorem 5 remaining valid, we consider the spe-
cial case when D and D* are simply connected. The functions which map
conformly D and D* into the unit circle so that ¢ corresponds to 0 will
be denoted by w(z, () and w* (2, £) respectively. We have the expression

w(e, §) = exp{—g(z, O)+ih(z, 1)}
and an analogical formula for w”*. This easily implies the expression for
the absolute value of the derivative of w, viz.
(e, )| | _ 40
dz dn

= fe(2)

%

%0

and an analogical formula for w*. Hence, in view of theorem 5, we obtain

COROLLARY 4 (The result of Lindelsf). If D and D* are simply con-
nected domains, then by the asswmptions of theorem 5 we have

’ }dw(z, o) | igw*(z_,g

e | | ¢ dz

%0 %0

Using the above results we shall generaliyse theorem 2.

Let D be a p-connected domain, 1 < p < oo. Its boundary F be of
positive capacity. Assume that one of the components of F ig a Jordan
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curve K or a sum of a Jordan curve K and some continua. Then there
holds

TEEOREM 6. If a part L of K s a rectifiable arc, then for every (<D
the equiltbrium distribution p, of F is on L absolutely continuous with res-
pect to the linear Lebesgue measure.

Proof. The curve K intersects the plane into two domains G and G'.
One of them, say @, is contained in the complement of D. We join the
extremities of the arc L by an arc L’ which is comprised in &, and we do
it in such a way that both I and L’ form a Jordan curve. Denote by D*
that domain bounded by L vI’ which contains D. Let uf be the equi-
librium distribution of L w1’ with respect to the point {. According to
theorem 4 for every measurable set ¢ C L we have the inequality

8) pele) < pz (e).

Since pf is on L absolutely continuous with respect to the linear Te-
besgue measure, in view of (8) u, is also absolutely continuous.
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