An arc-analytic function with nondiscrete singular set

by Krzysztof Kurdyka (Le Bourget-du-Lac and Kraków)

Abstract. We construct an arc-analytic function (i.e. analytic on every real-analytic arc) in \(\mathbb{R}^2 \) which is analytic outside a nondiscrete subset of \(\mathbb{R}^2 \).

Let \(M \) be a real-analytic manifold. A function \(f : M \to \mathbb{R} \) is called \textit{arc-analytic} iff for every analytic arc \(\gamma : [-\varepsilon, \varepsilon] \to M \) the composition \(f \circ \gamma \) is analytic (see [K1]). For every function \(f \) on \(M \), let \(\text{Sing} f \) denote the set of points of nonanalyticity of \(f \). If \(f \) is an arc-analytic function with subanalytic graph, then \(\text{Sing} f \) is a subanalytic subset of \(M \) (see [T] or [K2]); moreover, \(\dim(\text{Sing} f) \leq \dim M - 2 \) (see [K1]). Actually, in this case a stronger result is true: there exists a locally finite composition \(\pi \) of local blowing-ups of \(M \) such that \(f \circ \pi \) is analytic (see [BM], [P]). Recently examples of arc-analytic functions with nonsubanalytic graphs were given ([K3] and [BMP], where a discontinuous example is given).

Suppose that \(f : \mathbb{R}^2 \to \mathbb{R} \) is an arc-analytic function. Professor Siciak asked whether \(\text{Sing} f \) is always discrete. By the previous remarks this is the case if, for example, \(f \) has subanalytic graph, because \(\text{Sing} f \), being subanalytic of dimension 0, contains only isolated points.

In this note we construct an arc-analytic function \(f : \mathbb{R}^2 \to \mathbb{R} \) such that \(\text{Sing} f \) is nondiscrete and \(f \) is unbounded at each point of \(\text{Sing} f \). Our construction is based on an idea of [K3].

The author is grateful to Professor Siciak for stating the problem.

Let \(a_\nu \in \mathbb{R}, \nu \in \mathbb{N}, \nu \geq 1 \), be a convergent sequence in \(\mathbb{R} \). Define

\[
\lim_{\nu \to \infty} a_\nu, \quad Z_0 = \{(a_\nu, 0) \in \mathbb{R}^2 : \nu \in \mathbb{N}, \nu \geq 0\}.
\]

We will construct an arc-analytic function \(f : \mathbb{R}^2 \to \mathbb{R} \) such that \(\text{Sing} f = Z_0 \), and \(f \) is unbounded at each point of \(Z_0 \).

1991 Mathematics Subject Classification: Primary 32B20; Secondary 32B30.

Key words and phrases: arc-analytic, blow-up, projective limit, strict transform.
We will blow up every point of Z_0 infinitely many times. To get a formal construction we take the projective limit of the following system.

Set $c_\nu = (a_\nu, 0), P_0 = \{y = 0\} \subset \mathbb{R}^2$.

(i) Let $X_0 = \mathbb{R}^2$, and let $\pi_{1,0} : X_1 \to X_0$ be the blowing-up of c_0 in X_0. Let P_1 be the strict transform of P_0. We put

\[c_0^1 = \pi_{1,0}^{-1}(c_0) \cap P_1 \quad \text{and} \quad c_\nu^1 = \pi_{1,0}^{-1}(c_\nu) \quad \text{for} \quad \nu \geq 1 \]

(we assume that $c_\nu \neq c_\mu$ for $\nu \neq \mu$).

(ii) Suppose we have already constructed $\pi_{n,n-1} : X_n \to X_{n-1}$, and P_n is the strict transform of P_{n-1} by $\pi_{n,n-1}$. Suppose we also have a sequence $c_{\nu}^n \in P_n$ such that $\pi_{n,n-1}(c_{\nu}^n) = c_{\nu}^{n-1} \quad \nu \in \mathbb{N}$. We define $\pi_{n+1,n}$ to be the compositon

\[X_n \xrightarrow{p_n^{-1}} X_{n-1} \xrightarrow{p_{n-1}^{-2}} \ldots \xrightarrow{p_1^{-1}} X_1 \xrightarrow{p_0^n} X_n = X_0 \]

where each $p_{i}^{n} : X_{i+1} \to X_{i}, \quad i = 0, \ldots, n-1$, is the blowing-up of $(p_{i-1}^n \circ \ldots \circ p_0^1)(c_{\nu}^n)$ in X_n. We put $X_{n+1} = X_n$ and

\[\pi_{n+1,n} = p_{n-1}^{-1} \circ \ldots \circ p_0^n. \]

Finally, let P_{n+1} be the strict transform of P_n by $\pi_{n+1,n}$ and let

\[c_{\nu}^{n+1} = (\pi_{n+1,n})^{-1}(c_{\nu}^n) \cap P_{n+1}, \quad \nu \in \mathbb{N}. \]

We define $Z_n = \{c_{\nu}^n \in X_n : \nu \in \mathbb{N}\}$. For every $n \in \mathbb{N}$ we put $\pi_{n,n} = \text{id}_{X_n}$, and for $m \leq n$ we put

\[\pi_{n,m} = \pi_{n,n-1} \circ \ldots \circ \pi_{m+1,m}. \]

Hence we have constructed a projective system $\pi_{n,m} : X_n \to X_m, \quad m \leq n$, with a subsystem $Z_n \to Z_m$. Then there exist topological spaces $X = \lim X_n, Z = \lim Z_n$ and continuous mappings $\text{pr}_n : X \to X_n$ such that $\text{pr}_m = \pi_{n,m} \circ \text{pr}_n$ for $m \leq n$.

Set $L = X \setminus Z$. Clearly L is a Hausdorff σ-compact topological space. We will define a structure of a real-analytic manifold on L.

Let $x = (x_n)_{n \in \mathbb{N}} \in L$. Then there exists an open neighbourhood U of x in L and $n_0 \in \mathbb{N}$ such that if $y = (y_n) \in U$ then $y_k = \text{pr}_k(y) \notin Z_k$ for $k \geq n_0$. Hence $\text{pr}_k|_U : U \to \text{pr}_k(U)$ is a homeomorphism. Notice that $\text{pr}_k(U)$ is an open subset of the real-analytic manifold X_k. Clearly the family of all such mappings defines a structure of a real-analytic manifold on L. Moreover, each pr_k is analytic on L. Notice also that

\[\text{pr}_n : L \setminus \text{pr}_1^{-1}(Z_n) \to X_n \setminus Z_n \]

is an analytic diffeomorphism. In the sequel we need $\text{pr}_0^{-1} : \mathbb{R}^2 \setminus Z_0 \to L$, which we denote by q. The mapping q has the following property:
Let \(\gamma :]-\varepsilon, \varepsilon[\to \mathbb{R}^2 \) be an analytic arc such that \(\gamma(t) \not\in P_0 = \{ y = 0 \} \) for \(t \neq 0 \). Then the mapping

\[q \circ \gamma :]-\varepsilon, 0] \cup [0, \varepsilon[\to \mathcal{L} \]

extends to an analytic mapping from \(]-\varepsilon, \varepsilon[\) to \(\mathcal{L} \).

Proof. If \(\gamma(0) \not\in Z_0 \) then the assertion is trivial. Suppose that \(\gamma(0) = c_{v_0} \) for some \(v_0 \in \mathbb{N} \). The order of contact of \(\gamma([-\varepsilon, \varepsilon[) \) and \(P_0 = \{ y = 0 \} \) at \(\gamma(0) \) is finite. If we blow up the point \(\gamma(0) \), then either the strict transforms of those curves are disjoint or the order of their contact decreases by 1. Hence for some \(n \in \mathbb{N} \),

\[\lim_{t \to 0} (\pi_n, 0)^{-1} \circ \gamma(t) = \tilde{\gamma}_n(0) \not\in P_n. \]

Clearly \(\tilde{\gamma}_n = (\pi_n, 0)^{-1} \circ \gamma \) has an analytic extension through 0. Since

\[q \circ \gamma = \text{pr}_n^{-1} \circ (\pi_n, 0)^{-1} \circ \gamma \]

and \(\text{pr}_n^{-1} \) is analytic outside \(Z_n \) (recall that \(Z_n \subset P_n \)), it follows that \(q \circ \gamma \) extends to a function analytic at 0. This ends the proof of the lemma.

Recall that our analytic manifold \(L \) has a countable basis of topology, hence by the Grauert Embedding Theorem ([G]) there exists a proper analytic embedding \(\varphi : L \to \mathbb{R}^N \) for some \(N \in \mathbb{N} \).

Take now a countable subset \(A \) of \(P_0 \setminus Z_0 \) which is discrete in \(\mathbb{R}^2 \setminus Z_0 \) and \(\bar{A} \setminus A = Z_0 \). Notice that for every \(n \in \mathbb{N} \) the set \(\pi_n, 0(A) \) is also discrete in \(X_n \setminus Z_n \); moreover, \(\text{pr}_n \) maps homeomorphically \(L \setminus \text{pr}_n^{-1}(Z_n) \) onto \(X_n \setminus Z_n \). Hence \(q^{-1}(A) \) is also discrete in \(L = \lim X_n \setminus \lim Z_n \). Thus the set \(\hat{A} = \varphi(q^{-1}(A)) \) is discrete in \(\mathbb{R}^N \), since \(\varphi \) is proper.

We claim that there exists a discrete subset \(\tilde{B} \) of \(\varphi(L) \) such that if we set \(B = \text{pr}_0 \circ \varphi^{-1}(\tilde{B}) \) then

\[B \cap P_0 = \emptyset \quad \text{and} \quad \overline{B} \setminus B = Z_0. \]

To get such a \(\tilde{B} \) let us arrange the elements of \(\hat{A} \) in a sequence \(\tilde{a}_k, k \in \mathbb{N} \). Notice that \(\varphi(\text{pr}_n^{-1}(P_0)) \) is nowhere dense in \(\varphi(L) \). Hence there exists a sequence

\[\tilde{b}_k \in \varphi(L) \setminus \varphi(\text{pr}_0^{-1}(P_0)) \]

such that \(\| \tilde{a}_k - \tilde{b}_k \| < 1/k \). We put \(B = \{ b_0, b_1, \ldots \} \), where \(b_k = \text{pr}_0 \circ \varphi^{-1}(\tilde{b}_k) \).

Let us write, in coordinates in \(\mathbb{R}^2 \), \(b_k = (x_k, y_k) \). Notice that \(y_k \neq 0 \) for all \(k \in \mathbb{N} \).

Now take an analytic function \(\tilde{h} : \mathbb{R}^N \to \mathbb{R} \) such that \(\tilde{h}(\tilde{b}_k) = y_k^{-2} \). Such an \(\tilde{h} \) exists since \(\varphi(L) \) is closed in \(\mathbb{R}^N \), hence \(\tilde{B} \) is discrete in \(\mathbb{R}^N \). Now put \(h = \tilde{h} \circ \varphi \circ q \) and observe that \(h \) is analytic in \(\mathbb{R}^2 \setminus Z_0 \). Finally, put

\[f(x, y) = \begin{cases} yh(x, y) & \text{if } (x, y) \not\in Z_0, \\ 0 & \text{if } (x, y) \in Z_0. \end{cases} \]
To see that \(f \) is arc-analytic take an analytic arc \(\gamma :]-\varepsilon,\varepsilon[\rightarrow \mathbb{R}^2 \). If \(\gamma([]-\varepsilon,\varepsilon[) \subset P_0 = \{y = 0\} \) then \(f \circ \gamma \equiv 0 \) is analytic. Otherwise the set \(\gamma^{-1}(Z_0) \) is discrete in \(]-\varepsilon,\varepsilon[\) and by the lemma \(q \circ \gamma \) extends to an analytic mapping from \(]-\varepsilon,\varepsilon[\) to \(L \). Hence also \(h \circ \gamma \) extends to an analytic mapping on \(]-\varepsilon,\varepsilon[\). Thus \(f \circ \gamma \) is analytic on \(]-\varepsilon,\varepsilon[\).

Clearly \(f \) is analytic in \(\mathbb{R}^2 \setminus Z_0 \). Observe that \(f(b_k) = f(x_k, y_k) = y_k^{-1} \) and \(\lim_{k \to \infty} y_k = 0 \). Since \(\overline{B} \setminus B = Z_0 \), for every \((x_0, y_0) \in Z_0 \) we have
\[
\limsup_{(x,y) \to (x_0,y_0)} |f(x,y)| = +\infty.
\]
This proves that \(\text{Sing} f = Z_0 \).

Remark. This example raises two questions about arc-analytic functions.

1) Can one find an arc-analytic function on a manifold \(M \) such that \(\text{Sing} f \) is dense in the analytic Zariski topology (i.e. every analytic function vanishing on \(\text{Sing} f \) must vanish on \(M \))?

2) Given an arc-analytic function \(f : M \to \mathbb{R} \), can one find a countable composition \(\pi \) of blowing-ups such that \(f \circ \pi \) is analytic? Here countable composition might be understood as a projective limit as in our example.

References

