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On a class of functional boundary value problems for the
equation x′′ = f(t, x, x′, x′′, λ)

by Svatoslav Staněk (Olomouc)

Abstract. The Leray–Schauder degree theory is used to obtain sufficient conditions
for the existence and uniqueness of solutions for the boundary value problem x′′ =
f(t, x, x′, x′′, λ), α(x) = 0, β(x) = 0, γ(x) = 0, depending on the parameter λ. Here
α, β, γ are linear bounded functionals defined on the Banach space of C0-functions on
[0, 1] and x(t) = x(0)− x(t), x(t) = x(1)− x(t).

1. Introduction. Let X be the Banach space of C0-functions on [0, 1]
with the norm ‖x‖ = max{|x(t)| : 0 ≤ t ≤ 1} and α, β, γ : X→ R be linear
bounded functionals such that

x, y ∈ X, x(t) < y(t) on [0, 1]⇒ α(x) < α(y),(1)
x, y ∈ X, x(t) < y(t) on (0, 1)⇒ β(x) < β(y),(2)
x, y ∈ X, x(t) < y(t) on [0, 1)⇒ γ(x) < γ(y).(3)

For x ∈ X define x, x : [0, 1]→ R by

x(t) = x(0)− x(t), x(t) = x(1)− x(t).

Consider the boundary value problem (BVP for short)

(4) x′′ = f(t, x, x′, x′′, λ),
(5) α(x) = 0, β(x) = 0, γ(x) = 0,

depending on the parameter λ. Here f ∈ C0([0, 1]× R4).
We say that (x, λ0) is a solution of BVP (4), (5) if (x, λ0) ∈ C2([0, 1])×R

and x is a solution of (4) for λ = λ0 and satisfies (5).
In this paper, the existence and uniqueness of solutions for BVP (4), (5)

is studied. Using the technique of Tineo [11] we shall show that under some
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assumptions BVP (4), (5) is equivalent to BVP of the type x′′ = g(t, x, x′, λ),
(5) and the proof of an existence theorem for the latter is based on the theory
of completely continuous mappings and on the homotopy invariance of the
Leray–Schauder degree. More precisely, we apply the following theorem.

Theorem 1 [1, Theorem 1]. Let X be a Banach space, A : X → X
be a completely continuous mapping such that I − A is one-to-one, and let
Ω be an open bounded set such that 0 ∈ (I − A)(Ω). Then the completely
continuous mapping T : Ω → X has a fixed point in Ω if for any c ∈ (0, 1),
the equation

x = cTx+ (1− c)Ax
has no solution on the boundary ∂Ω of Ω.

We notice that the existence and uniqueness of solutions for the BVP

x′′ = F (t, x, x′, x′′), x ∈ E ,

where F ∈ C0([0, 1]×R3) and E is a closed subset of C2([0, 1]) of codimension
two such that for all x ∈ E there exists t0 = t0(x) ∈ [0, 1] with |x(t)| ≤ |x(t0)|
(0 ≤ t ≤ 1) and x′(t0) = 0 was considered in [11].

In [3] sufficient conditions for the existence of solutions of the differential
equation

x′′ = f(t, x, x′, x′′)− y(t), 0 ≤ t ≤ T, y ∈ C0([0, T ])

subject to either Dirichlet, Neumann, periodic, Sturm–Liouville, or antiperi-
odic boundary conditions were obtained. The proofs are based on the au-
thor’s continuation theorem for semilinear A-proper maps and a priori
bounds for the solutions of the equation x′′ = f(t, x, x′, x′′).

In [4] the author studied the BVP

(6)
x′′′ − 4a2x′ = f(t, x, x′, x′′, x′′′, λ),
x′(t1) = x(t2) = x′(t2) = x′(t3) = 0

(−∞ < t1 < t2 < t3 < ∞, 0 < a < ∞) depending on the parameter λ.
Sufficient conditions were given for the existence and uniqueness of BVP
(6) using the Schauder linearization technique and the Schauder fixed point
theorem.

BVPs for second order differential and functional differential equations
depending on a parameter were considered in [5]–[8] using the Schauder
linearization and quasi-linearization technique and the Schauder fixed point
theorem, and in [10] using a surjectivity result in Rn. Applying the Leray–
Schauder degree method, sufficient conditions for the existence of solutions
of the one-parameter BVP x′′ = f(t, x, x′, λ), α(x) = A, x(0) − x(1) = B,
x′(0)− x′(1) = C were stated in [9].
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2. Auxiliary lemmas

Lemma 1. Assume x∈X and α(x) = 0 (resp. β(x) = 0; resp. γ(x) = 0).
Then there exists a ξ ∈ [0, 1] (resp. τ ∈ (0, 1); resp. κ ∈ [0, 1)) such that
x(ξ) = 0 (resp. x(0) = x(τ); resp. x(1) = x(κ)).

P r o o f. Assume α(x) = 0 and, on the contrary, x(t) 6= 0 on [0, 1]. Then
x(t) > 0 on [0, 1] or x(t) < 0 on [0, 1] and therefore α(x) > α(0) = 0 or
α(x) < α(0) = 0, a contradiction.

Assume β(x) = 0 and x(0)− x(t) 6= 0 on (0, 1). Then x(0)− x(t) > 0 on
(0, 1) or x(0)−x(t) < 0 on (0, 1), hence β(x) > β(0) = 0 or β(x) < β(0) = 0,
a contradiction.

Analogously we can prove that γ(x) = 0 implies x(1) − x(κ) = 0 for a
κ ∈ [0, 1).

Corollary 1. Assume x ∈ X and β(x) = γ(x) = 0. Then x(0) = x(τ)
and x(1) = x(ε) for some τ, ε ∈ (0, 1).

P r o o f. By Lemma 1 we have x(0) = x(τ) for a τ ∈ (0, 1) and x(1) =
x(κ) for a κ ∈ [0, 1). If κ = 0, then (x(κ) =)x(0) = x(1) = x(τ) and
therefore setting

ε =
{
κ if κ ∈ (0, 1),
τ if κ = 0,

we see that ε ∈ (0, 1) and x(1) = x(ε).

R e m a r k 1. By the well-known general form of linear bounded func-
tionals on X it is clear that the functional α (resp. β; resp. γ) defined on X
by

α(x) =
1∫

0

x(s) dv1(s)

(
resp. β(x) =

1∫
0

x(s) dv2(s); resp. γ(x) =
1∫

0

x(s) dv3(s)
)

is linear bounded and satisfies (1) (resp. (2); resp. (3)), where v1 ∈ A1 :=
{x : x is nondecreasing on [0, 1], x(1) > x(0)} (resp. v2 ∈ A2 := {x : x is
nondecreasing on [0, 1], x(1) > x(0) and x is continuous at t = 0 and t = 1};
resp. v3 ∈ A3 := {x : x is nondecreasing on [0, 1], x(1) > x(0) and x is
continuous at t = 1}).

Example 1. The boundary conditions (ξ ∈ (0, 1))

(i) x(0) = x(ξ) = x(1) = 0,

(ii)
1∫

0

x(s) ds = 0, x(0) = x(ξ) = x(1),
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(iii)
1∫

0

x(s) ds = 0, x(0) = x(1) = 0

are examples of boundary conditions (5). We get (i)–(iii) putting α(x) =
γ(x) = x(0), β(x) = x(ξ) and α(x) =

∫ 1

0
x(s) ds, β(x) = x(ξ), γ(x) = x(0)

and α(x) = γ(x) = x(0), β(x) =
∫ 1

0
x(s) ds, respectively.

Lemma 2. There exists an ε0 > 0 such that

(7) β(sin(εt))γ(cos(εt)− cos(ε))− β(1− cos(εt))γ(sin(ε)− sin(εt)) 6= 0

and

(8) β(1− eεt)γ(e−ε − e−εt)− β(1− e−εt)γ(eε − eεt) 6= 0

for all 0 < ε ≤ ε0.

P r o o f. Since 0 < t2 < t on (0, 1) and 0 < 1 − t ≤ 1 − t2 on [0, 1) we
have 0 < β(t2) < β(t), 0 < γ(1− t) ≤ γ(1− t2), and consequently

(9) β(t2)γ(1− t)− β(t)γ(1− t2) < 0.

Since

lim
ε→0

[
sin(εt)
ε
− t
]

= 0, lim
ε→0

[
cos(εt)− cos(ε)

ε2
+
t2 − 1

2

]
= 0,

lim
ε→0

[
1− cos(εt)

ε2
− t2

2

]
= 0, lim

ε→0

[
sin(ε)− sin(εt)

ε
− 1 + t

]
= 0

uniformly on [0, 1], we have (cf. (9))

lim
ε→0

1
ε3

[β(sin(εt))γ(cos(εt)− cos(ε))− β(1− cos(εt))γ(sin(ε)− sin(εt))]

=
1
2

[β(t)γ(1− t2)− β(t2)γ(1− t)] > 0,

and therefore there exists an ε̃ > 0 such that (7) holds for all 0 < ε ≤ ε̃.
Assume (8) does not hold on a right neighbourhood of 0. Then there is a

decreasing sequence {εn} of positive numbers such that limn→∞ εn = 0 and

β(1− eεnt)γ(e−εn − e−εnt)− β(1− e−εnt)γ(eεn − eεnt) = 0 for all n ∈ N.

Since

0 = β(1− eεnt)(γ(e−εn − e−εnt) + γ(eεn − eεnt))
− (β(1− eεnt) + β(1− e−εnt))γ(eεn − eεnt)

= 2β(1− eεnt)γ(cosh(εn)− cosh(εnt))
− 2β(1− cosh(εnt))γ(eεn − eεnt)



A class of functional boundary value problems 229

and

lim
n→∞

[
1− eεnt

εn
+ t

]
= 0, lim

n→∞

[
cosh(εn)− cosh(εnt)

ε2n
− 1− t2

2

]
= 0,

lim
n→∞

[
1− cosh(εnt)

ε2n
+
t2

2

]
= 0, lim

n→∞

[
eεn − eεnt

εn
− 1 + t

]
= 0

uniformly on [0, 1], we obtain

0 = lim
n→∞

1
ε3n

[β(1− eεnt)γ(cosh(εn)− cosh(εnt))

− β(1− cosh(εnt))γ(eεn − eεnt)]

= − 1
2

[β(t)γ(1− t2)− β(t2)γ(1− t)],

which contradicts (9). This proves that there exists a constant ε∗ > 0 such
that (8) holds for all 0 < ε ≤ ε∗. The assertion of Lemma 2 is true for
ε0 = min{ε̃, ε∗}.

Lemma 3. Assume h ∈ C0([0, 1] × R3) and there are constants λ1 < 0,
λ2 > 0, M > 0, N > 0, T > 0 and a nondecreasing function w : [0,∞) →
(0,∞) such that

(10′) h(t, x, 0, λ2) > 0 for all (t, x) ∈ [0, 1]× [0,M ],
(10′′) h(t, x, 0, λ1) < 0 for all (t, x) ∈ [0, 1]× [−N, 0],
(11) h(t,−N, 0, λ) < 0 < h(t,M, 0, λ) for all (t, λ) ∈ [0, 1]× [λ1, λ2],
(12) |h(t, x, y, λ)| ≤ w(|y|)

for all (t, x, y, λ) ∈ [0, 1]× [−N,M ]× R× [λ1, λ2]

and

(13)
T∫

0

s ds

w(s)
> 2 max{M,N}.

Assume x(t) is a solution of the differential equation

x′′ = h(t, x, x′, λ)

for λ = λ0 satisfying (5) and λ1 ≤ λ0 ≤ λ2, −N ≤ x(t) ≤M for t ∈ [0, 1].
Then

λ1 < λ0 < λ2, −N < x(t) < M, |x′(t)| < T, |x′′(t)| < w(T ) + 1
for all t ∈ [0, 1].

P r o o f. Let λ0 = λ2. By Lemma 1, there exists a ξ ∈ [0, 1] such that
x(ξ) = 0, and therefore 0 ≤ max{x(t) : 0 ≤ t ≤ 1} = x(ε) for an ε ∈ [0, 1].
Without loss of generality we may assume ε ∈ (0, 1) (cf. Corollary 1). Then
x(ε)≥ 0, x′(ε) = 0, x′′(ε)≤ 0, which contradicts x′′(ε) = f(ε, x(ε), 0, λ2)> 0
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(cf. (10′)). Analogously we can prove that λ0 = λ1 is impossible; hence
λ1 < λ0 < λ2.

Assume, on the contrary, x(%) = −N (resp. x(%) = M) for a % ∈ [0, 1].
By Corollary 1 we may assume % ∈ (0, 1). Then x(%) = −N , x′(%) = 0,
x′′(%) ≥ 0 (resp. x(%) = M , x′(%) = 0, x′′(%) ≤ 0), which contradicts
(cf. (11)) x′′(%) = h(%,−N, 0, λ0) < 0 (resp. x′′(%) = h(%,M, 0, λ0) > 0).

Finally, since β(x) = 0, there exists a τ ∈ (0, 1) such that x(0) = x(τ)
(cf. Lemma 1) and therefore x′(ν) = 0 for a ν ∈ (0, τ). Using (12) and (13)
and a standard procedure (see e.g. [2]) we can prove |x′(t)| < T for t ∈ [0, 1]
and, moreover, |x′′(t)| = |h(t, x(t), x′(t), λ0)| ≤ w(|x′(t)|) < w(T ) + 1 for
t ∈ [0, 1].

Lemma 4. Assume that r ∈ C0([0, 1]×R3) and that there are constants
λ1 < 0, λ2 > 0, M > 0, N > 0, T > 0 and a nondecreasing function
w : [0,∞)→ (0,∞) such that

r(t, x, 0, λ2) ≥ 0 for all (t, x) ∈ [0, 1]× [0,M ],

r(t, x, 0, λ1) ≤ 0 for all (t, x) ∈ [0, 1]× [−N, 0],
r(t,−N, 0, λ) ≤ 0 ≤ r(t,M, 0, λ) for all (t, λ) ∈ [0, 1]× [λ1, λ2],

|r(t, x, y, λ)| ≤ w(|y|) for all (t, x, y, λ) ∈ [0, 1]× [−N,M ]× R× [λ1, λ2]

and
T∫

0

s ds

w(s)
> 2 max{M,N}.

Then the BVP

(14) x′′ = r(t, x, x′, λ), (5)

has at least one solution.

P r o o f. Denote by Y the Banach space of C1-functions on [0, 1] with
the norm ‖x‖1 = ‖x‖ + ‖x′‖, Z the Banach space of C2-functions on [0, 1]
with the norm ‖x‖2 = ‖x‖1 + ‖x′′‖, Y0 = {x : x ∈ Y, x satisfies (5)},
Z0 = Y0∩Z. Let X×R, Y0×R and Z0×R be the Banach spaces with the
norms ‖(x, λ)‖ = ‖x‖+ |λ|, ‖(x, λ)‖1 = ‖x‖1 + |λ| and ‖(x, λ)‖2 = ‖x‖2 + |λ|,
respectively. Set S = {(x, α(x)) : x ∈ X} (⊂ X×R). Clearly S is a Banach
space.

Let

0 < ε = min
{
ε0,

√
w(0)

2 max{M,N}

}
, 0 < k =

ε2 min{M,N}
2 max{λ2,−λ1}

be constants, where ε0 is defined in Lemma 2.
Define the operators L,F,K : Z0 × R→ S by

(L(x, λ))(t) = (x′′(t) + ε2x(t) + kλ, α(x′′(t) + kλ)),



A class of functional boundary value problems 231

(F (x, λ))(t) = (r(t, x(t), x′(t), λ), α(r(t, x(t), x′(t), λ))),
(K(x, λ))(t) = (ε2x(t) + kλ, α(kλ)).

Consider the operator equation

(15c) L(x, λ) = c(F (x, λ) +K(x, λ)) + 2(1− c)K(x, λ), c ∈ [0, 1].

We see that BVP (14) has a solution (x, λ0) if and only if (x, λ0) is a solution
of (151). We use Theorem 1 to prove the existence of a solution of (151).

We shall show that L : Z0×R→ S is one-to-one and onto. Let (u, α(u))
∈ S and consider the equation

L(x, λ) = (u, α(u)),

that is, the equations (see the definition of L)

x′′ + ε2x+ kλ = u(t),(16)
α(x′′ + kλ) = α(u),

where x ∈ Z0 and λ ∈ R. The function x(t) = c1 sin(εt) + c2 cos(εt) −
(k/ε2)λ+ v(t) is the general solution of (16), where

v(t) = (1/ε)
t∫

0

u(s) sin(ε(t− s)) ds

and c1, c2 are integration constants. The function x(t) satisfies the boundary
conditions β(x) = γ(x) = 0 if and only if c1, c2 are solutions of the linear
system

(17)
c1β(− sin(εt)) + c2β(1− cos(εt)) = −β(v),

c1γ(sin(ε)− sin(εt)) + c2γ(cos(ε)− cos(εt)) = −γ(v).

This system has a unique solution, say c1 = a, c2 = b, since its determinant

−β(sin(εt))γ(cos(ε)− cos(εt))− β(1− cos(εt))γ(sin(ε)− sin(εt))

is different from zero by Lemma 2. Hence

x∗(t) = a sin(εt) + b cos(εt)− (k/ε2)λ+ v(t), λ ∈ R,
are all solutions of (16) satisfying β(x∗) = γ(x∗) = 0. The function q :
R → R, q(λ) = α(x∗′′(t) + kλ), is continuous increasing, limλ→−∞ q(λ) =
−∞, limλ→∞ q(λ) = ∞, and therefore there exists a unique solution of
the equation α(x∗′′(t) + kλ) = α(u), say λ = λ0. Then x(t) = a sin(εt) +
b cos(εt)−(k/ε2)λ0 +v(t) is the unique solution of (16) satisfying (5). Hence
L−1 : S → Z0 × R exists, L−1 is a linear bounded operator by the Banach
theorem and (15c) can be written in the equivalent form

(18c) (x, λ) = c(L−1Fj(x, λ) + L−1Kj(x, λ)) + 2(1− c)L−1Kj(x, λ),
c ∈ [0, 1],
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where j : Z0 × R → Y0 × R is the natural embedding, which is completely
continuous by the Arzelà–Ascoli theorem and the Bolzano–Weierstrass the-
orem. Define

Ω = {(x, λ) : (x, λ) ∈ Z0 × R, −N < x(t) < M on [0, 1],
‖x′‖ < T, ‖x′′‖ < w(T ) + 1, λ1 < λ < λ2}.

Then Ω is a bounded open subset of Z0×R. Moreover, L−1Fj+L−1Kj is a
compact operator on Ω and 2L−1Kj is completely continuous on Z0×R. In
order to prove that (151) has a solution, that is, L−1Fj+L−1Kj has a fixed
point, we have to show (cf. Theorem 1) that (x, λ)− 2L−1Kj(x, λ) = (0, 0)
implies (x, λ) = (0, 0) and for any c ∈ (0, 1) equation (18c) has no solution
on the boundary ∂Ω of Ω.

Consider the equation (x, λ)−2L−1Kj(x, λ) = (0, 0) which is equivalent
to

(19) L(x, λ) = 2K(x, λ).

A pair (x, λ) ∈ Z0×R is a solution of (19) if and only if x and λ are solutions
of the system

x′′ = ε2x+ kλ,(20)
α(x′′) = α(kλ),

and, moreover, β(x) = γ(x) = 0. Since x(t) = c1e
εt+c2e

−εt−(k/ε2)λ is the
general solution of (20), where c1, c2 are integration constants, we see that
(x, λ) is a solution of (19) if and only if c1, c2, λ are solutions of the linear
system

c1α(eεt) + c2α(e−εt)− λα(k/ε2) = 0,
c1β(1− eεt) + c2β(1− e−εt) = 0,
c1γ(eε − eεt) + c2γ(e−ε − e−εt) = 0.

This linear system has only the trivial solution (c1, c2, λ) = (0, 0, 0) since its
determinant

−α(k/ε2)(β(1− eεt)γ(e−ε − e−εt)− β(1− e−εt)γ(eε − eεt))

is different from zero by Lemma 2; hence (x, λ) = (0, 0) is the unique solution
of (19).

Finally, we shall prove that for any c ∈ (0, 1) equation (18c) has no
solution on ∂Ω. To this purpose we study the differential equation

(21c) x′′ = cr(t, x, x′, λ) + (1− c)(ε2x+ kλ), c ∈ (0, 1).

Assume (xc, λc) is a solution of BVP (21c), (5). We have to show that
(xc, λc) 6∈ ∂Ω. Set pc(t, x, y, λ) = cr(t, x, y, λ)+(1−c)(ε2x+kλ) for (t, x, y, λ)
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∈ [0, 1]× R3 and c ∈ (0, 1). Then pc ∈ C0([0, 1]× R3) and (as c ∈ (0, 1))

pc(t, x, 0, λ2) = cr(t, x, 0, λ2) + (1− c)(ε2x+ kλ2) > 0
for (t, x) ∈ [0, 1]× [0,M ],

pc(t, x, 0, λ1) = cr(t, x, 0, λ1) + (1− c)(ε2x+ kλ1) < 0
for (t, x) ∈ [0, 1]× [−N, 0],

pc(t,−N, 0, λ) ≤ cr(t,−N, 0, λ) + (1− c)
(
− ε2N + ε2λ2

min{M,N}
2 max{λ2,−λ1}

)
≤ − (1− c)(ε2N/2) < 0 for (t, λ) ∈ [0, 1]× [λ1, λ2],

pc(t,M, 0, λ) ≥ cr(t,M, 0, λ) + (1− c)
(
ε2M + ε2λ1

min{M,N}
2 max{λ2,−λ1}

)
≥ (1− c)(ε2M/2) > 0 for (t, λ) ∈ [0, 1]× [λ1, λ2],

|pc(t, x, y, λ)| ≤ c|r(t, x, y, λ)|+ (1− c)
(

w(0)
2 max{M,N}

{
max{M,N}

+
min{M,N}

2 max{λ2,−λ1}
max{λ2,−λ1}

})
≤ cw(|y|) + (1− c)w(0) ≤ w(|y|)

for (t, x, y, λ) ∈ [0, 1]× [−N,M ]× R× [λ1, λ2].

We see that for any c ∈ (0, 1), the function pc satisfies the same assumptions
as h in Lemma 3 and since |x′′c (t)| ≤ w(|x′c(t)|) ≤ w(T ) on [0, 1], it follows
that (xc, λc) 6∈ ∂Ω for any solution (xc, λc) of BVP (21c), (5). The proof is
finished.

Lemma 5. Assume there are constants λ1 < 0, λ2 > 0, M > 0, N > 0,
0 < a < 1 and a nondecreasing function w(·;D0) : [0,∞) → (0,∞) for any
bounded subset D0 of R2 such that

(H1) f(t, x, 0, 0, λ2) ≥ 0 for all (t, x) ∈ [0, 1]× [0,M ],
f(t, x, 0, 0, λ1) ≤ 0 for all (t, x) ∈ [0, 1]× [−N, 0];

(H2) f(t,−N, 0, 0, λ) ≤ 0 ≤ f(t,M, 0, 0, λ)
for all (t, λ) ∈ [0, 1]× [λ1, λ2];

(H3) |f(t, x, y, z, λ)| ≤ w(|y|;D0) + a|z|
for all (t, x, λ) ∈ [0, 1]×D0, (y, z) ∈ R2;

(H4) the function p : R → R, p(z) = z − f(t, x, y, z, λ), is increasing on
R for each fixed (t, x, y, λ) ∈ [0, 1]× R3.

Then there exists a unique continuous function g : [0, 1]×R3 → R such that

(22) g(t, x, y, λ) = f(t, x, y, g(t, x, y, λ), λ)
for all (t, x, y, λ) ∈ [0, 1]× R3,
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(23′) g(t, x, 0, λ2) ≥ 0 for all (t, x) ∈ [0, 1]× [0,M ],
(23′′) g(t, x, 0, λ1) ≤ 0 for all (t, x) ∈ [0, 1]× [−N, 0],
(24) g(t,−N, 0, λ) ≤ 0 ≤ g(t,M, 0, λ) for all (t, λ) ∈ [0, 1]× [λ1, λ2],
(25) |g(t, x, y, λ)| ≤ (1/(1− a))w(|y|;D0)

for all (t, x, λ) ∈ [0, 1]×D0, y ∈ R.

If , moreover ,

(H5) f(t, ·, y, z, λ) is increasing on R for each (t, y, z, λ) ∈ [0, 1]× R3,

(H6) f(t, x, y, z, ·) is increasing on R for each (t, x, y, z) ∈ [0, 1]× R3,

then

(26) g(t, ·, y, λ) is increasing on R for each (t, y, λ) ∈ [0, 1]× R2,

(27) g(t, x, y, ·) is increasing on R for each (t, x, y) ∈ [0, 1]× R2.

P r o o f. Fix (t, x, y, λ) ∈ [0, 1] × R3. The function p : R → R, p(u) =
u− f(t, x, y, u, λ), is continuous increasing on R (by (H4)), limu→−∞ p(u) =
−∞, limu→∞ p(u) = ∞ (by (H3)), hence there exists a unique z ∈ R such
that p(z) = 0. If we put z = g(t, x, y, λ) we obtain the function g : [0, 1] ×
R3 → R satisfying (22).

Assume g is discontinuous at a point (t0, x0, y0, λ0) ∈ [0, 1] × R3. Then
there are a sequence {(tn, xn, yn, µn)} ⊂ [0, 1]× R3 and an ε > 0 such that

(tn, xn, yn, µn)→ (t0, x0, y0, µ0) as n→∞

and

(28) |g(tn, xn, yn, µn)− g(t0, x0, y0, µ0)| ≥ ε for all n ∈ N.

Since
|g(tn, xn, yn, µn)| = |f(tn, xn, yn, g(tn, xn, yn, µn), µn)|

≤ w(|yn|;D0) + a|g(tn, xn, yn, µn)|
≤ w(B;D0) + a|g(tn, xn, yn, µn)|

(by (H3)), where B = sup{|yn| : n ∈ N} (< ∞) and D0 ⊂ R2 is a bounded
set with {(xn, λn)} ⊂ D0, we have

|g(tn, xn, yn, µn)| ≤ w(B;D0)
1− a

, n ∈ N,

and consequently {g(tn, xn, yn, µn)} is bounded. Without loss of generality
we may assume that {g(tn, xn, yn, µn)} is convergent, say limn→∞ g(tn, xn,
yn, µn) = d. Then

d = lim
n→∞

f(tn, xn, yn, g(tn, xn, yn, µn), µn) = f(t0, x0, y0, d, µ0),

and therefore d = g(t0, x0, y0, µ0), which contradicts (28).
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Assume f(t, x, 0, 0, λ) ≥ 0 (resp. ≤ 0) for a point (t, x, λ) ∈ [0, 1] × R2.
The function r : R→ R, r(z) = z − f(t, x, 0, z, λ), is continuous increasing,
limz→−∞ r(z) = −∞, limz→∞ r(z) = ∞ (by (H3) and (H4)) and r(0) =
−f(t, x, 0, 0, λ) ≤ 0 (resp. ≥ 0), hence there is a unique z0 ∈ R, z0 ≥ 0
(resp. ≤ 0), such that r(z0) = 0, that is, z0 = f(t, x, 0, z0, λ). Then we have
(z0 =)g(t, x, 0, λ) ≥ 0 (resp. ≤ 0), which proves (23) and (24).

Now, using assumption (H3) we obtain

|g(t, x, y, λ)| = |f(t, x, y, g(t, x, y, λ), λ)| ≤ w(|y|;D0) + a|g(t, x, y, λ)|
and thus inequality (25) is true.

Assume that, moreover, (H5) and (H6) are satisfied and x1 < x2. Then
f(t, x1, y, z, λ)< f(t, x2, y, z, λ) and for qi : R→ R, qi(z) = z−f(t, xi, y, z, λ)
(i = 1, 2), we have q1(z) > q2(z) on R. Since q1, q2 are continuous increasing
and limz→−∞ qi(z) = −∞, limz→∞ qi(z) =∞, we have q1(z1) = 0 = q2(z2)
for unique z1, z2 ∈ R, z1 < z2, and consequently (z1 =) g(t, x1, y, λ) <
g(t, x2, y, λ) (= z2). This proves (26). The proof of (27) is similar.

4. Existence theorem

Theorem 2. Assume there exist constants λ1 < 0, λ2 > 0, M > 0,
N > 0, T > 0, 0 < a < 1 and a nondecreasing function w(·;D0) : [0,∞)→
(0,∞) for any bounded subset D0 of R2 such that assumptions (H1)–(H4)
are satisfied and

T∫
0

s ds

w(s;D∗)
> 2 max{−N,M} with D∗ = [−N,M ]× [λ1, λ2].

Then BVP (4), (5) has at least one solution.

P r o o f. By Lemma 5, there exists a continuous function g : [0, 1]×R3 →
R satisfying (22)–(25). Hence BVP (4), (5) has a solution (x, λ0) if and only
if (x, λ0) is a solution of BVP

(29) x′′ = g(t, x, x′, λ), (5).

The function g satisfies the same assumptions as r in Lemma 4, and therefore
BVP (29) has a solution by Lemma 4.

R e m a r k 2. Let the assumptions of Theorem 2 be satisfied. It follows
from Lemma 4 and its proof that there exists a solution (x, λ0) of BVP
(4), (5) such that −N ≤ x(t) ≤ M , −T ≤ x′(t) ≤ T for t ∈ [0, 1] and
λ0 ∈ [λ1, λ2].

Example 2. Let p, q ∈ C0([0, 1]), n ∈ N, b ∈ R, |b| < 1. Consider the
differential equation

(30) x′′ = x2n+1 − x+ q(t)x′2 + b sin(x′′) + λ.
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We can apply Theorem 2 to BVP (30), (5) (for example −λ1 = λ2 = ‖p‖+1,
M = N = max{2, (2‖p‖+ 1)1/(2n)}).

5. Uniqueness theorem

Theorem 3. Assume there exist constants λ1 < 0, λ2 > 0, M > 0,
N > 0, T > 0, 0 < a < 1 and a nondecreasing function w(·;D0) : [0,∞)→
(0,∞) for any bounded subset D0 of R2 such that assumptions (H1)–(H6)
are satisfied and

T∫
0

s ds

w(s;D∗)
> 2 max{−N,M} with D∗ = [−N,M ]× [λ1, λ2].

Then BVP (4), (5) has a unique solution.

P r o o f. By Theorem 2, there exists a solution (x1, µ1) of BVP (4),
(5). This solution as well as all solutions of BVP (4), (5) are solutions of
BVP (29), where g is defined in Lemma 5. The function g(t, ·, y, λ) (resp.
g(t, x, y, ·)) is increasing on R for each fixed (t, y, λ) ∈ [0, 1] × R2 (resp.
(t, x, y) ∈ [0, 1]×R2) (cf. Lemma 5). Assume (x2, µ2) is another solution of
BVP (29). We have to show that (x1, µ1) = (x2, µ2). Set u = x2 − x1 and
assume for example µ2 ≥ µ1. Then α(u) = β(u) = γ(u) = 0. Since u(ξ) = 0
for a ξ ∈ [0, 1] by Lemma 1, 0 ≤ max{u(t) : 0 ≤ t ≤ 1} = u(τ) for a τ ∈ [0, 1]
(cf. Corollary 1); thus u(τ) ≥ 0, u′(τ) = 0, u′′(τ) ≤ 0. On the other hand,

u′′(τ) = g(τ, x2(τ), x′2(τ), µ2)− g(τ, x1(τ), x′2(τ), µ1) ≥ 0,

which implies u(t) ≤ u(τ) = 0 on [0, 1] and µ1 = µ2. Let (0 ≥) min{u(t) :
0 ≤ t ≤ 1} = u(ε) for an ε ∈ (0, 1) (see Corollary 1). Then u(ε) ≤ 0, u′(ε) =
0, u′′(ε) ≥ 0 and since u′′(ε) = g(ε, x2(ε), x′2(ε), µ1) − g(ε, x1(ε), x′2(ε), µ1)
≤ 0 we obtain u(ε) = 0; hence u = 0. This completes the proof.

Example 3. Let p, q ∈ C0([0, 1]), n ∈ N, b ∈ R, |b| < 1. Consider the
differential equation

(31) x′′ = x2n+1 + q(t)x′2 + b sin(x′′) + p(t) + λ.

We can apply Theorem 3 to BVP (31), (5) (for example −λ1 = λ2 = ‖p‖,
N = M = (2‖p‖)1/(2n+1)).
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