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On the uniqueness of viscosity solutions for first order
partial differential-functional equations

by KrzyszToF ToPOLSKI (Gdarisk)

Abstract. We consider viscosity solutions for first order differential-functional equa-
tions. Uniqueness theorems for initial, mixed, and boundary value problems are presented.
Our theorems include some results for generalized (“almost everywhere”) solutions.

1. Introduction. Let T > 0, 70 € Ry and 7 € R} (R4 = [0,00)) be
given constants, and 2 C R™ any open domain. Define 2, = {x € R" :
diSt(I‘,.Q) < T}, Opf2 = (2, \ (2,60 = (O,T) X (2, Oy = (—T(),O] X 97—780@ =
(0,T) x 0pf2 and E = OU Oy U 9pO. Let B = {x € R" : ||z|| < 7} and
D = [—7,0] x B. For every z : E — R and (t,z) € © we define a function
2ty - D — R by 24.2y(s,y) = 2(t+s,2+y), (s,y) € D. If z: 2, — R and
x € §2, we define z(;y : B — R by 2(,)(y) = z(z +y), y € B.

For every metric space X we denote by C'(X) the class of all continuous
functions from X into R and by BUC(X) the class of all uniformly contin-
uous and bounded functions from X into R. Let W*°(X) and Wl (X) be
the classes of all Lipschitz and locally Lipschitz functions from X into R.
Recall that u € W' (X)) (resp. W|L°(X)) & Du exists a.e. and is bounded
(resp. locally bounded). For f,,, f € C(X), m € N, f,, — f means uniform
convergence on compact subsets of X.

Let H: O x C(D) xR" - R (resp. H: 2 xR xC(B)xR" — R) be
a continuous function of the variables (¢, z,w,p) (resp. (x,r,w,p)), and let
g € C(OgUGO) and f € C(9pf?2) be given functions.

We consider two classes of differential-functional equations: the initial-
boundary value problem

© Diz(t, ) + H(t, 2, 24 2), De2(t, 7)) =0 in O,
z(t,z) = g(t, =) in ©y U 0y0,
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and the boundary value problem
H(z,2(x), 22y, Dz(z)) =0 in £,
z(z) = g(x) in 0pf2.

Even though we called (C) “the initial-boundary value problem”, it is
an initial value problem for © = (0,7 x R".

(D)

DEFINITION 1. A function v € C(FE) is a wviscosity subsolution (resp.
supersolution) of (C) provided for all ¢ € C1(O) if u — ¢ attains a local
maximum (resp. minimum) at (tg,zo) € © then

(1) Dyo(to, z0) + H(to, 2o, Uty,z0)» Datp(to, o)) <0
(resp. Dyp(to, o) + H(to, o, Uity o) Dap(to, o)) > 0)
and
(2) u(t,x) < g(t,x) in 9pO
(resp. u(t,z) > g(t,x) in 0yO) .

A function u € C(E) is a viscosity solution of (1) if u is both a viscosity
subsolution and supersolution of (1).

Since for the problem (D) the definition is parallel, we will not write it
out.

We denote by SUB(X,g), SUP(X,g) (or SUB(X, H,g), SUP(X,H,g)
when H is not clear) the sets of all viscosity subsolutions and supersolutions
of the problem (C) and (D), with X = F or resp. X = (2.

This notion of solution was first introduced by M. G. Crandall and
P. L. Lions in [3] and developed in [2], [9].

As it is well known that classical solutions exist only locally, new no-
tions of solutions (weak solutions, “almost everywhere” solutions, viscosity
solutions) are introduced in order to obtain global existence results. The
problem which naturally arises here is their uniqueness. The literature on
this subject is extensive. We only mention some review papers.

The uniqueness of classical solutions for first order partial differential
equations was considered by V. Lakshmikantham and S. Leela [7] and by
J. Szarski [10]. The same problem for functional-differential equations was
investigated by Z. Kamont [4] and by A. Augustynowicz and Z. Kamont
[1]. The uniqueness of “almost everywhere” solutions was studied by
S. N. Kruzhkov [5], [6]. The functional case was treated by H. Leszczyniski [8].

For g = (q1,...,qn) €R™ we write ||¢|| for the Euclidean norm. Let |Jw|| x
denote the supremum norm of w € C(X), wy(e) the modulus of continuity
and w = max(w,0).

2. The initial-boundary value problem. In this section we consider
the problem (C).
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We will need the following

AssuMPTION H;j. (i) The function H : © x K; x Ko — R is uniformly
continuous for any bounded sets K; C C(D), Ko C R™.
(i) For every R > 0,

lim sup{|H (¢, z,w,p) — H(s,y,w,p)|

[z -yl <a, [t—s] <a, |z —yllp| <a, [lwlp <R} =0.
(iii) There exists a constant C' > 0 such that

H(t,x,w,p) - H(t7wiap) > —CH('IU - @)4_”[) :
The following is easy to check:

Remark 1. The condition (iii) holds if and only if H is nondecreasing
and satisfies the Lipschitz condition with respect to w.

THEOREM 1. Suppose that Assumption Hi is satisfied and u,v €
BUC(FE), u € SUB(E, f), v € SUP(E, g), where f,g are continuous. Then

(3) I(w =)z < exp(CT)|I(f — 9) " lloguase -
(x) Moreover, if u,v € W'(E) then the condition (ii) of Hy is not
necessary.

The proof of the theorem is based on the following

PROPOSITION 1. Let a > 0 and h, F € C([0,a]). Assume that h is a
viscosity solution of h' < F (i.e. h is a viscosity subsolution of h' = F) in
(0,a). Then

h(t) < h(s) + fF(V)dV for0<s<t<a.

The proof can be found in [3], p. 12.
Proof of Theorem 1. Define
M(t) = sup{u(s,x) —v(s,z) : (s,x) € O[t]},
(4) My(t) = sup{u(s,x) —v(s,z) : (s,z) € (Og U BO)[t]},
M(t) = sup{u(s,z) — v(s,x) : (s,2) € E[t]},

where Gt] = {(57:1:) €G:—19<s<t}for GCR.

If M(T) < My(T) the proof is complete. Suppose that M (T") > My(T).
Since M (0) < My(0) there exists 0 < ¢, < T such that
(5)  M(t) > My(t) forte (t.,T] and M(t.)= My(t.) = M(t.).

Let n € CY((t,T)), and suppose M — 7 attains its local maximum at
some point to € (t,T"). Since M is nondecreasing it is clear that n’(to) > 0.
We need to consider two cases: 7'(tg) > 0 and 7(t9) = 0.
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Let n'(tgp) > 0. It follows from Lemma 1.4 of [3] that we can find
a nondecreasing function 17 € C!([t.,T]) such that 7' (to) = n'(to) and
(M —7)(to) > (M —7)(t) for t # to. To simplify the notation write n = 7.

Let (t,5,2,y) € [te,T] X [ts, T] x 2 x 2, M = max(||u| g, ||v]|z) and
N =supn. Put

t

© lts,0) =) — o(s.9) = 0 5 ) + Kont - )l )
where K = 5M + 2N, ¢o() = ¢(-/@), Ya(-) = ¥(-/a) and ¢ € C'(R), ¢ €
C*(R™), 0 < ¢,9 < 1, $(0) = 1(0) = 1, supp ¢ C [~1,1], supps C B(0,1),
¢, are radial decreasing and for r2 < 1/2, [|z|* < 1/2, ¢(r) = 1 — r?
P(z) =1— ||z

Let 6 > 0 and let (¢/,s',2’,y") be such that ¥(t',s",2',y') > sup¥ — 4.
Put

(7) D(t,s,x,y) =V(t, s, x,y) + 20&(x,y)

where £ € CHR™ x R"), 0 < £ < 1, £(2/,9') = 1, supp& C B((2/,y'),1)
and || D¢|| < k for k > 0 independent of a,d. Since &(t,s,x,y) < sup¥ for
lz —2']? + |y — ¢|> > 1 and ®(t',s',2",y') > sup¥ + § it follows that &
attains its global maximum at some point (tas, Sas, Tas, Yas). This yields
@(taéasa&xa&»yaé) > ¢(ta vavy) and by (6)7 (7)a

¢)a(ta6 - Saﬁ)wa(xcus - yad) > M/(5M + 2N) —26>0

for § small, which implies |tos — Sas| < @ and ||zas — Yas|| < a. Moreover,
since

@(tozéy Sads LTads yaé) > ¢(to¢5a taéa Tad, :L'ozé)
we obtain by (6), (7),
gf)a(tms — Sa[s)’(ﬁa(‘ra(; — ym;) >1- (wy(oz) + wn(a/2) + 25)/K .

Recalling the definitions of ¢, 1%, we get |tas — Sas| < ar(a) and
|Zas — Yas| < ar(a) for 6 < a small enough where r(a) — 0 as a — 0.

We can assume, taking a subsequence if necessary, that tos — ¢ € [ts, T
as a — 0 uniformly with respect to § < a. We claim that ¢ = ¢;. Indeed,
since

(8) D(tass Sas, Tass Yas) = P(t,t,x,x)  for t € [ty, to], = € 12,

and ¢as(tas — Sas) — L, a(Tas — Yas) — 1 as a — 0, letting o — 0 we
obtain, by (6), (7), (8) and uniform continuity of v,

9) M) = n(t) > ult,z) — vt z) —n(t) = u(t,z) — o(t, z) —n(to)
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(the last inequality is a consequence of monotonicity of n). Because M (to) >
M (t,) this yields
M(t) —n(t) = M(to) — n(to) ,
which by the definition of n means that ¢ = tg € (t.,T).
Observe now that we may assume that z.s5,y.s € 2. Indeed, if z.5, Yas
— ¢ € 02 then letting & — 0 in (8) we obtain

u(to, xo) — v(to, xo) — n(te) = u(t,x) — v(t,x) — n(t)
for t, <t <tg, xg € 0f2, x € 2, and as a consequence
u(to, xo) — v(to, xo) > ult,z) —v(t,x),
which yields My(to) > M(to) and contradicts (5) since tg € (t«, .
Define
At z) = v(5as8,Yas) + 1((t + 5a5)/2)
— Kdo(t = 8a6)0a(T — Yas) — 20£(2, Yas) ,
v(8,y) = u(tas, Tas) — N((tas +5)/2)
+ K¢a(tas — $)a(Tas — y) + 20&(Tas, y) -
Notice that
u — A has a local maximum at (tns, Zas) € (t«,T) X 2,

v — v has a local minimum at (Sas, Yas) € (£, 1) X 2.

Since
tA(tass Tas) = (( a6 1 5a5)/2) = KDi¢o(tas — $a5)Va(Tas — Yas) ,
Dt’Y(Saéa Yas) = — §77 "((tas + 805)/2) = KDiba(tas — 5a6)Va(Tas — Yas) »
2A(tas: Tas) = — Kba(tas — $as)DeVa(Tas — Yas) — 20D28(Tas, Yas) »

DzV(Sa(S, ya6) = - K¢o¢( ad 3(15)wa&($(15 - yaé) + 25Dy£($a57 ya5) 5

and u,v are resp. a subsolution and supersolution of (1) in O\O[t.], we
obtain the inequalities

DiXtas, Tas) + H(tas, Tas, Uit s,00s) Pas — 20D2&(Tas, Yas))
Di¥(Sas:Yas) + H(Sas, Yas: Visas,yas)> Pas + 20DyE(Tas, Yas))
(where pos = =Ko (tas — Sas)Deta(Tas — Yas)), which imply
10 ((tas + 5as)/2) + Aas + Bas + Cas <0

<0
>0

where

Aas = H(tos, Tas, Uit 5,205)> Pas — 20D28(Tas, Yas))

— H (506, Yas, Uit s,00s) Pas — 20D28(Tas, Yas)) ,
Bas = H(5a6, Yas, Uitos,was)s Pas — 20D2&(Tas, Yas))

— H(Sa6, Yass Uisas,yas) Pas — 20D2&(Zas, Yas)) »
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Ca5 - H(3a57 Yas, U(sa(s,yag)vpaé - 25Daz£($a6a yaé))
- H(3a6> Yas) Visas,yas)s Pas + 25Dy§(xa67 yaé)) .

It follows from Assumption Hy(ii) and from ||apas| < Kr(a) — 0 that
Aqs — 0 uniformly with respect to § < a. From H; (i) we have Cps5 — 0 as
0 — 0 for each a.

Bys needs special consideration. It follows from H; (iii) that

Bas > _C”(u(taa,ww) - U<5a57ya6>)+HD
since for (r,2) € D,
(u(tas + 7, Zas + 2) = V(Sas + T Yas + 2)) T < M (tas) + wola).
Thus Bas > —CM ™ (tas) — Cw, ().

Letting o, 8 — 0 we finally obtain

(10) 1 (to) < CIT* (1)

Since in case 1'(tp) = 0 the inequality (10) is obvious, we can apply
Proposition 1 to obtain

t
M(t) < M(t.)+ [ CM*(s)ds fort, <t<T
ty

and in view of (4), (5),

¢
M*(t) < M (t) + [ CM*(s)ds.
te
Hence Gronwall’s inequality yields
M (1) < M (t.) exp(CH)
and putting ¢t = T, My (t.) < M (T) shows MT(T) < M (T)exp(CT),
which completes the proof.

For the case (x) we will use the following lemma.

LEMMA 1. Let f € BUC(G) where G C R™ is an open domain, pu €

CY Q) and suppose f — u attains a local mazimum at some point g € G.
Then

(11) | Dp(z0)]| < lir;:sgpo.)f()\)/)\.

Proof. Suppose that Du(zg) # 0. Put h = —||Dp(xo)|| " Du(zo). Let
Ao > A > 0 be such that

f(xo+ Ah) = p(xo 4+ Ah) < f(zo) — p(wo) -
Define
o) = [u(wo + Ah) = p(wo) — ADp(wo)h]A™"
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Since p(xg + Ah) — p(zo) > f(xo + Ah) — f(xo) we have
Ao(A) = f(zo + Ah) — f(xo) — ADp(zo)h.
As Dp(zo)h = —|[Dp(zo)|| and [|h] =1 we get
IDp(o)ll < o(A) + [f(20) — f(wo + ARAT! < 0(N) + wu(A)/A.
Letting A — 0 we obtain (11).

Proof of Theorem 1(x). According to Lemma 1, D, A(tas, Tas) < L
where L is a Lipschitz constant for u. Thus to deduce that A,s — 0 the
condition Hj (i) is sufficient.

3. The boundary value problem. In this section we investigate the
problem (D). The following assumption will be needed.

AssUMPTION Hy. (i) The function H : 2 x Ky x Ky x K3 — R is
uniformly continuous for any bounded sets K1 C R, Ky C C(B), K3 C R™.
(ii) For every R > 0,

hrno Sup{]H(:c, 7¢7,w7p) - H(y, r,w,p)‘ :
|z —yl <o, |z —yllp| < o, |lw|lp < R} =0.
(iii) There exist constants Ly > L1 > 0 such that
H(z,r,w,p) — H(z,r,w,p) > — L1 (w—w)"|5,
H(z,r,w,p) — H(x,7,w,p) > La(r —7) forr>7.

THEOREM 2. Suppose that Assumption Hy holds. Let u,v € BUC(S2,),
u € SUB(£2;, f), v € SUP(£2,,9) and f,g € C(0pf2). Then

(12) 1w —v) e, <I(f—9) oo

(x) If u,v € W°(£2,) then the condition (ii) of Assumption Hy is not
necessary.

Proof. Since the proof is similar to that in Section 2 we will not repeat
the details. Moreover, we will only consider the case when (2 is bounded.
Let M > 0, and let ¢, be defined as in the proof of Theorem 1. Put

(13) U(z,y) =u(x) —v(y) + 5Mipo(x —y) for x,y € 2.

Let (4, Ya) € £2 X 2 be such that sup ¥ =¥ (x4, y,). Arguing as in Section 2

we obtain ||z, — yo|| < @ and ||24 — Ya|| < ar(a) where r(a) — 0.
Suppose that (24, ya) € 2 % £2 for some subsequence of a. We can assume

that z, € 012 (or y, € 012) and since ¥(z,x) < ¥(xq,yq) for every x € 2,
in view of (13) we obtain

(14) u(a;) - U(:C) < u(xa) - U(ya)
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and

u(@) —v(z) < w(@a) = v(2a) +0(2a) = v(ya) < I(f —9) oo +wu(@),
which, letting o — 0, implies (12).
Suppose now that (2, ys) € 2 x 2. Let
7(‘73) = U(ya) - 5M1/1a(33 - ya) and )‘(y) = U(Jfa) + 5M¢o¢(xa - y) .

Then u—~ attains a local maximum at z, and v— A attains a local minimum
at yq.
As in the proof of Theorem 1 we obtain

(15) Ay +Bo+Cy <0

where

b
Q

I
—

8
2

£
—~

xa)u u<$a>7p0¢) - H(yaa u(a:a), u(z(,>7pa) 9
Ba = (you U(l’a), u(aza)vpa) - H(yom 'U(Z/a)a u<1:a>7p04) 9
(ya); u(aro,)vpa) - H(yom U(Z/a)a v<y0(>7pa)

and p, = D’Y(l‘a) = D)‘(ya)

Arguing as in Section 2 we find A, — 0.

We can assume that u(z4) — v(ya) > 0. (Otherwise (14) implies (12).)
Notice that in view of Ha(iii) and (14),

Bo = Lo[u(za) — v(ya)] = Loll(u —v) "o
and
Ca < Li[(u(eyy = viya)) 5 < Lill(ugen) = vi@a)) "l + Liws(a) — Ao

which gives
(16) Lofl(u=v)"le < Lill(u—v)"lle, + Liwy(a) — Aa.
If |(uw—v)"e < |(u—v)"|e, (16) gives a contradiction (v — 0) since
L1 > Ls. Hence ||(u—v)"||n, > ||(u—v)"|q, which implies (12). The proof
is complete.

The case (x) is treated in the same way as in Theorem 1.

4. “Almost everywhere” solutions. To end our considerations, we
present an application of our results to the theory of a.e. solutions.

We will treat the problem (D) ((C) can be treated in the same way).
Moreover, without loss of generality we can assume that H does not depend
on r.

Let G C R™ be an open domain. Define

G(o) = {zx € G : dist(z,0G) > p} for p>0.
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DEFINITION 2. A function u € C(G) is said to be semiconcave if for
every o > 0 there exists a constant C, € R such that u(z) — C,||z||*/2 is
concave on every convex subset of G(p) N B(0,1/0).

THEOREM 3. Let H(x,w,p) be continuous, u € WiL°(£2;), and g €
C(0p12).

(i) If H(z,w,p) is convex in p, satisfies H(x,uy, Du(x)) <0 a.e. in
2, and u < g in Opf2 then u € SUB(£2,, g).
(ii) If u is semiconcave, satisfies H(x,uyy, Du(z)) > 0 a.e. in §2, and

u > g in g2 then u € SUP(£2,,9).

The proof presented below is a generalization of the proof of Proposi-
tion IIL.3 in [3].
In the proof of (i) we will use the following lemma.

LEMMA 2. Let Fy,, F' € C(2xC(B)xR"), g, g € C(0012), and F, — F,
gk — g. Suppose that u, € SUB(£2;, Fy, gr) (resp. ux € SUP(£2,, Fi, gx))
and up, — uw in C(§2;). Then v € SUB(§2, F,g) (resp. w € SUP(£2,F,q)).

Proof. Suppose that u — ¢ attains a local maximum at zg € 2. We can
assume (see [3], Lemma 1.4) that (u—¢)(z) < (u—¢)(z0) for z € 2, x # .
Let 6 > 0 be such that zg € £2(9). Put zp = sup{(ur — ¢)(x) : x € 2(0)}.
Without loss of generality we can assume that z; — T € 2(5). We claim
that o = Z. Indeed, since (ur — ¢)(zg) < (ux — ¢)(xg), letting k& — oo
we obtain (u — ¢)(zo) < (u— ¢)(Z) and thus g = T € 2(5). We can
assume (taking subsequences if necessary) that xj € (2(J), which implies
that u, — ¢ attains a local maximum at xy € §2(6). Then by assumption
Fy(wp, gy, Do(zr)) < 0 and letting xx — x0, F(20, U(zy), Do(x0)) <0,
which completes the proof, since the boundary inequality is obvious.

Now we will prove the theorem.

and u: — u in §2,(0) for e < §. Notice that, since
H(x, ul,y, Du®(z)) < H(z,u,, Du(z)) — H(z,u(), Du(z)) in £2(5),
we have
(17) H(z,uf,, Du®(z)) < Ac(z) + Be(x)  in £2(0)
where

A (z) = H(x, u?m,Due(:L')) — H(x,uy, Du®(x)),
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B.(x) = H(:U,u<$>,Du(:v)) * pe(z) — H(m,u<x>,Du($)) .
In the last inequality we based on the fact that for H convex in p, H(z, Uzy,
Duf(x)) < H(x,u(y), Du(z)) * p-(z). Notice that A, B. — 0 in £2(6).
Since u® is a viscosity subsolution of (16) with boundary function g. = u®

in £2,(0)\$2(9), in view of Lemma 2 (taking £2(9) instead of £2) letting 6 — 0
we conclude that u € SUB(f2,, g), which completes the proof of (i).

Proof of (ii). Let ¢ € C'(£2). Assume that u — ¢ attains a local
minimum at some point xy € 2. Let 6 > 0 be such that xy € £2(4). Without

loss of generality we can assume that u is concave in (2(5) (otherwise we
consider H (z,w,p) = H(x,w + (Cs/2)| - %I>,p + Cslz|)).

Since u(z) > u(xg) — p(x0) + ¢(x) in some ball B(xg, o),
(18) u(z) — u(zo) — Dp(x0)(x — m0) = B(z)lz — 0|

where 3(z) — 0 as © — xg.

Put 1 = 229 — x. Since u is concave, u(z) < 2u(zg) — u(x;) and

u(z) — u(wo) — Dp(xo)(x — wo) < u(@o) — u(z1) — Dp(xo)(z0 — 21)
< ¢(x0) — p(z1) — Dp(zo)(x0 — 21)
< B(x)|lz — @ol|

where 3(x) — 0 as x — zo. This inequality and (18) imply that u is differ-
entiable at xg and Du(zg) = Dp(zo).

Since, by assumption, there exist {x,,} € 2(9), z, — o, u is dif-
ferentiable at x,, and H(zm,u,,), Du(z,)) > 0. We claim that for
every sequence T,, — To, Du(z,;,) — Du(zg). Indeed, suppose that p =
limg oo Du(Zpxy) and (p — Du(zg)); # 0 for some i € {1,...,n}. Put
T = xo + hsgn(p — Du(zo)):ei, e; € R™, (e;); = 65, 5 =1,...,n, h > 0.
Since Du(zyy,) is uniformly bounded and w is concave we have

[u(®@) — u(zo) — p(T — 20)]/[|T — z0l| <0,
which implies
[u(Z) — w(zo) — Du(wo)]/ || — ol + [(Du(zo) — p)il <0.

Letting h — 0 we obtain (Du(xzg) — p); = 0, which contradicts our as-
sumption. Since Du(z,,) is uniformly bounded, this means that Du(x,,) —
DU([I}())

As g,y — U,y in C(B) and Du(xg) = Dy(xg) we conclude letting
n — oo that H(zo, U(zy), Du(zo)) > 0 and thus v € SUP(§2;, g). The proof
is complete.
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