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On Lie algebras of vector fields
related to Riemannian foliations

by Tomasz Rybicki (Rzeszów)

Abstract. Riemannian foliations constitute an important type of foliated structures.
In this note we prove two theorems connecting the algebraic structure of Lie algebras of
foliated vector fields with the smooth structure of a Riemannian foliation.

1. Introduction. It is known that the differentiable structure of a
smooth manifold M is completely determined by its Lie algebra X(M)
of all vector fields on M (theorems of L. E. Pursell–M. E. Shanks [11]
and I. Amemiya [2]). More recently a very interesting fact was stated by
R. P. Filipkiewicz [4]: the group Diffr(M) of all Cr diffeomorphisms of M ,
1 ≤ r ≤ ∞, also determines the Cr structure of M . The latter result,
suggested in part by earlier papers of J. Whittaker and F. Takens, can be
regarded as a particularly important contribution to the Erlangen Program
of F. Klein.

In this context, also the theorem of Pursell-Shanks and a whole suite
of its generalizations may be viewed as an “infinitesimal” contribution to
the Program. On the other hand, the interpretation of such theorems in
Hamiltonian mechanics is the following. One can say that a generalized
phase space is “good” if the Lie algebra of its infinitesimal automorphisms
(i.e. the algebra of its symmetries) defines the structure of the phase space
itself. Thus numerous geometric structures are proper candidates for being
“good” phase spaces. However, this is not always the case even if the algebra
of symmetries is infinite-dimensional as some examples show (K. Fukui [5]).

The most general and interesting structure in such studies seems to be a
so-called Jacobi manifold or, equivalently, a local Lie algebra over the reals
(cf. [7]). In short, it is a nontransitive structure and it generalizes the notions
of symplectic and contact manifolds as well as a singular foliation. Therefore
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it is an important matter to know whether Pursell–Shanks type theorems
hold for foliations (see [2], [6], [12], [13] and also [1], [5], [15]).

In this note we present two results concerning Riemannian foliations.
These are foliations with a bundle-like metric (i.e. the leaves remain locally
at constant distance) and constitute “a good model for situations drawn
from mechanics and physics” (P. Molino [9]).

For simplicity we restrict ourselves to the C∞ smooth category.

2. Statement of main results. Let (V,F) be an arbitrary foliated
manifold. By I(V,F) we denote the Lie algebra of all vector fields tangent
to the leaves. A vector field X on V is called foliated if its flow transforms
each leaf of F into a leaf of F . This can also be defined by the property

[X,Y ] ∈ I(V,F) for any Y ∈ I(V,F) .

Let X(V,F) be the Lie algebra of foliated vector fields. Then X(V,F) stands
for the quotient X(V,F)/I(V,F) and its elements are called transversal
vector fields ([8]). These are sections of the normal bundle N(V,F).

Now let (Mi, Fi), i = 1, 2, be nontrivial (i.e. 0 < dimFi < dimMi)
Riemannian foliations with Mi compact and connected. Then the leaf clo-
sures constitute a new decomposition of Mi into imbedded submanifolds,
and moreover it is a singular Riemannian foliation denoted by F i. The leaf
space Mi/F i then admits a Satake manifold structure (cf. [9]).

Theorem 1. If there exists a Lie algebra isomorphism Φ of X(M1, F1)
onto X(M2, F2) then there exists a Satake diffeomorphism ϕ of M1/F 1 onto
M2/F 2 such that ϕ∗ = Φ.

Theorem 2. If there exists a Lie algebra isomorphism Φ of X(M1, F1)
onto X(M2, F2) then there exists a diffeomorphism ϕ of (M1, F1) onto
(M2, F2) such that ϕ∗ = Φ.

In the proof of Theorem 2 we shall show that Φ(I(M1, F1)) = I(M2, F2).
Hence the following

Corollary. Let (M,F ) be a nontrivial Riemannian foliation with M
compact and connected. Then the algebraic structure of X(M,F ) determines
completely a Satake structure of the leaf space M/F . Moreover , the algebraic
structure of X(M,F ) defines uniquely both M/F and the foliation (M,F )
itself.

3. Some properties of Riemannian foliations. We recall briefly
some preparatory results on the structure of Riemannian foliations due
mainly to Molino ([8], [9]).

Let M be an n-dimensional compact and connected manifold equipped
with a q-codimensional Riemannian foliation F . The “Riemannian” prop-
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erty is characterized as follows. Let (L̃(M,F ),M, p) be the GL(q)-principal
bundle of transversal frames, i.e. the bundle of linear frames of the nor-
mal bundle N(M,F ). Then L̃(M,F ) admits an O(q)-reduction, say
(L(M,F ),M, p). If (M,F ) is transversally oriented, then one can assume
L(M,F ) to be still connected by passing to the SO(q)-subbundle.

On the total space L(M,F ) one defines a lifted foliation F1 (dimF1 =
dimF ) as follows. Take a submersion fi : Ui → fi(Ui), f(Ui) ⊂ Rq, defining
F on Ui. Then we have the commutative diagram

p−1(Ui)
fi∗−→ L(fi(Ui))

↓ ↓
Ui

fi−→ fi(Ui)

where the vertical arrows are the projections of O(q)-bundles. The compati-
bility conditions are easily checked and F1 is defined by the submersions fi∗.
Thus one can say that a leaf of F1 is generated by “sliding” a transversal
frame along a leaf of F . Similarly we define a foliation F̃1 on L̃(M,F ).

Now denote by X̃ the natural lift of X ∈ X(M,F ) to L̃(M,F ). Then it
is easily seen that X̃ ∈ X(L̃(M,F ), F̃1). Unfortunately, there is no natural
lift of X to L(M,F ).

However, the following is true.

Proposition 3.1. If X ∈ I(M,F ) then X̃ ∈ I(L(M,F ), F1). Further-
more, if I(M,F ) denotes the Lie subalgebra of all foliated vector fields tan-
gent to the foliation F , then X ∈ I(M,F ) implies that X̃ ∈ I(L(M,F ), F1).

P r o o f. The first assertion follows immediately from the above diagram.
The second is a consequence of the fact that the compact set L(M,F ) is an
F -saturated subset of L̃(M,F ), and that any leaf of F1 projects to a leaf of
F (so that if p(L1) = L then p−1(L) ⊃ L1).

A decisive point is that (L(M,F ), F1) is a transversally parallelizable
foliation. In this situation we may apply the Structural Theorem [8]: the
closures of the leaves of F1 are the fibers of a locally trivial basic fibration

πT : L(M,F )→WT

where WT is called a basic manifold and its dimension is called the basic
dimension of F1 (and F ).

Next observe that if L1 ∈ F1 and p(L1) = L then p(L1) = L. In fact,
p(L1) is compact, so it contains L. By continuity, L1 ⊂ p−1(L). This leads
us to the following fundamental fact. The space of leaves of the singular
foliation F is homeomorphic to the orbit space of an O(q)-action on WT ,
i.e. M/F is homeomorphic to WT /O(q). In fact, the inverse image p−1(L)
is an O(q)-orbit in WT .
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Define M = M/F , W = WT /O(q), and let h : M → W be the above
homeomorphism.

Proposition 3.2. There is a commutative diagram

L(M,F ) πT−→ WT

p

y y%
M

π−→ M
h'W

and all arrows are Satake morphisms (with the Satake structure on W being
induced by h).

An important feature of (M,F ) consists in its stratification. First we
take as a stratum, ∆j , the union of leaves of F with the same dimension j,
j = q, . . . , n − r, where r is the basic dimension. Each ∆j is an imbedded
submanifold of M . Then we may refine {∆j} by taking the substratification
{Σα} such that Σα ⊂ ∆j and Σα is the union of all leaves in ∆j with
holonomy group of the same fixed cardinality. This possibility follows from
the observation that all the leaves of F |∆j have a finite holonomy.

The significance of the resulting stratification is revealed in the following.

Proposition 3.3. The strata Σα are imbedded submanifolds in M . The
leaf space Σα/F |Σα is an ordinary manifold.

The proof of the first part appeals to deep properties of Riemannian
foliations (see Lemma 5.3 of [9]). The second part is straightforward.

Proposition 3.4. There is a commutative diagram

L(Σα, Fα)
πTα−→ WT

α

pα

y y%α
Σα

πα−→ Wα

where Fα = F |Σα, Wα = Σα/Fα, WT
α = %−1(Wα), and all maps are re-

strictions of those in 3.2. Furthermore, all the maps are the projections of
locally trivial fibrations.

P r o o f. The only thing to check is that %α : WT
α → Wα is a locally

trivial fibration. This is so because the fibers of %α are compact and the
other maps in the diagram are locally trivial fibrations.

Proposition 3.5. Let X ∈ X(M,F ). Then X is tangent to each stra-
tum Σα.

In fact, the flow of X preserves the leaf closure dimension as well as the
cardinality of the holonomy group.



Lie algebras related to foliations 115

4. Proof of Theorem 1. The starting point of this section is a theorem
due to K. Abe [1] concerning a compact Lie group action on a manifold.
Some preparatory definitions are necessary.

Let G be a compact Lie group acting on a connected paracompact man-
ifold V . Setting V = V/G one has an induced smooth structure on V such
that f : V → R is smooth iff f ◦ % : V → R is smooth, where % is the
natural projection. As usual, a map ϕ : V → V ′, V ′ = V ′/G′, is smooth if
f ◦ ϕ ∈ C∞(V ) for any f ∈ C∞(V ′), and ϕ is a diffeomorphism if both ϕ
and ϕ−1 are smooth.

Next, proceeding by analogy to the case of a manifold, one defines D(V )
as the Lie algebra of all derivations of C∞(V ). However, our object of in-
terest is the Lie subalgebra X(V ) of compactly supported elements of D(V )
which preserve the stratification of V induced by the G-action. A theorem
of G. W. Schwarz [14] then says that X(V ) is the image under %∗ of XG(V ),
the Lie algebra of all G-invariant compactly supported vector fields on V .
For more details, see [3] and [14].

The proof of the following theorem is long and complicated.

Theorem 4.1 (Abe). Let G and G′ be compact Lie groups acting on
paracompact and connected manifolds V and V ′, respectively. If there exists
a Lie algebra isomorphism Φ : X(V ) → X(V ′) then there exists a strata
preserving diffeomorphism ϕ : V → V ′ such that ϕ∗ = Φ.

Let us return to the Riemannian foliation (M,F ). We want to establish
that the homeomorphism h : M →W is actually a Satake diffeomorphism.

Proposition 4.2. If C∞(M) is the set of all Satake morphisms of M
onto R, and C∞(W ) is defined as above (W = WT /O(q)), then h∗C∞(W )
= C∞(M). In particular , the smooth structure of the O(q)-orbit space W
is induced by a Satake manifold structure.

P r o o f. First, making use of Proposition 3.2, we reconstruct the explicit
definition of h∗. Let f ∈ C∞(W ). Then f ◦ % ◦ πT is a G-invariant, F1-
foliated function on L(M,F ) and there is a unique g : M → R such that
g ◦ π ◦ p = f ◦ % ◦ πT . Of course, h∗(f) = g.

Next, f ◦%◦πT ∈C∞(L(M,F )) so that g◦π∈C∞(M). Hence, by Lemma
4.3 below, g ∈ C∞(M). On the other hand, by the definition, (h−1)∗(f) ∈
C∞(W ) if f ∈ C∞(M).

Lemma 4.3. f ∈ C∞(M) iff f ◦ π ∈ C∞(M).

This follows easily from the fact that the Satake morphism π is (locally)
induced by a submersion. We leave the details to the reader.

Now we are in a position to conclude the proof of Theorem 1. In view
of Proposition 4.2, the proof reduces to an application of Theorem 4.1 if we
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show that X(M,F ) is isomorphic to X(W ), the latter being defined as at
the beginning of this section.

It follows from the commutative diagram

p−1N(M,F )
p∗−→ N(M,F )

↓ ↓
L(M,F )

p−→ M

that X(M,F ), the totality of global sections of N(M,F ), is pulled back
isomorphically to the set of O(q)-invariant sections of p−1N(M,F ). Equiva-
lently, this is the Lie algebra of all O(q)-invariant F1-transversal vector fields
on L(M,F ) modulo ker p∗. The latter in turn projects isomorphically under
πT∗ to the Lie algebra of all O(q)-invariant vector fields on WT modulo ker %∗,
XO(q)(WT )/ ker %∗. Finally, by the theorem of Schwarz, XO(q)(WT )/ ker %∗
is isomorphic to X(W ).

5. Proof of Theorem 2. We shall make use of the diagram in Proposi-
tion 3.4. Let us fix a stratum Σα from the stratification defined in §3. Define
a homomorphism

π̃α : X(M,F )→ X(Wα)
such that πα∗(X|Σα) = π̃α(X). Let Aα be the image of X(M,F ) under π̃α.

The proof of the next proposition follows a reasoning due to M. Pierrot
[10].

Proposition 5.1. Xc(Wα) ⊂ Aα, where Xc(Wα) is the Lie algebra of
compactly supported vector fields on the manifold Wα.

P r o o f. Let X ∈ Xc(Wα). Bearing in mind that %α : WT
α → Wα is a

locally trivial fibration, the compactly supported X lifts to some XT on WT
α ,

XT being also with compact support. This vector field, in turn, extends from
the imbedded submanifoldWT

α to the manifoldWT ; the resulting vector field
is still denoted by XT . Now (L(M,F ), F1) is transversally parallelizable, so
that one can lift XT to a foliated vector field Y T on L(M,F ). Next we
transform Y T to an SO(q)-invariant and still F1-foliated vector field Ỹ T ,
namely

Ỹ T =
∫

SO(q)

(R∗gY
T ) dµ ,

where µ is the normalized Haar measure on SO(q). It is evident that
%α∗π

T
∗ (Y T ) = X, so that π̃α(Y ) = X where Y = p∗(Ỹ T ).

This completes the proof.

Now we try to describe some maximal ideals in X(M,F ) by means of
the homomorphisms π̃α. We start with some generalities.
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Let V be a manifold and p ∈ V . We denote by Sp = Sp(X(V )) the Lie
subalgebra in X(V ) formed by all vector fields vanishing at p. If A is a Lie
subalgebra of X(V ), then we set Sp(A) = A ∩ Sp. Next

mp = mp(X(V )) = {X ∈ X(V ) : [Y1, . . . , [Yr, X] . . .] ∈ Sp,
∀r ≥ 0 ∀Y1, . . . , Yr ∈ X(V )} ,

and more generally for any Lie subalgebra A we set

mp(A) = {X ∈ A : [Y1, . . . , [Yr, X] . . .] ∈ Sp , ∀r ≥ 0 ∀Y1, . . . , Yr ∈ A} .
Then mp and mp(A) are ideals of X(V ) and A, respectively. Observe that
A∩mp ⊂ mp(A), but equality does not hold (e.g. for A = I(V,F), F being
a foliation with dim > 0).

The proof of the following is in [11], [12].

Proposition 5.2. Let (V,F) be an arbitrary foliation with dim > 0. The
ideals mp(I(V,F)), p ∈ V , are the unique maximal ideals in Ic(V,F). In
particular , mp(Xc(V )) are the unique maximal ideals in Xc(V ).

As usual “c” indicates compactly supported subalgebras.

Lemma 5.3. Let dimWα > 0 and x ∈ Wα. Then mx(Aα) is a maximal
ideal in Aα.

P r o o f. We make use of Proposition 5.1. Let I be an ideal inAα such that
mx(Aα)  I for some x. Then a standard argument shows that Xc(Wα) ⊂ I.
Furthermore, if X ∈ Aα then clearly X = X1 + X2 with X1 ∈ Xc(Wα),
X2∈mx(X(Wα)). Hence X2∈Aα. But Aα ∩mx ⊂ mx(Aα) so that X2 ∈ I
and X ∈ I. Thus I = Aα.

R e m a r k. Simple examples (modifying an example in [13]) show that
the mx(Aα) need not be unique maximal ideals.

We introduce the following notation: M=Σ0∪Σ1 where Σ0 is the union
of all singular strata, i.e. the strata Σα with dimWα = 0, and Σ1 the union
of all regular strata.

Definition. Let L∈F , L ⊂ Σ1. Set µL = π̃−1
α (mx) where πα(L) = {x}.

Then by Lemma 5.3, µL is a maximal ideal in X(M,F ).
Now our goal is to get rid of maximal ideals which do not contain

I(M,F ). The following observations show that these are ideals connected
with singular strata.

Proposition 5.4. Let I be a maximal ideal of X(M,F ). If I 6=
mp(X(M,F )) for any p ∈ Σ0 then I(M,F ) ⊂ I.

P r o o f. First observe that I 6⊂ mp(X(M,F )) for any p ∈ Σ1. In fact, if
I ⊂ mp(X(M,F )) for p ∈ L ∈ F then I  µL, contrary to the maximality
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of I. Thus, in view of the definition of mp(X(M,F )), for any p ∈ M there
is an X ∈ I such that X(p) 6= 0.

Fix for a moment p ∈ M and X ∈ I with X(p) 6= 0. One can take a
distinguished chart (U, x1, . . . , xn−q, y1, . . . , yq) at p (i.e. xi(p) = 0, yj(p) = 0
and for y1, . . . , yq fixed, x1, . . . , xn−q are local coordinates of a leaf) such that
either

(a) X = ∂/∂x1 +
∑
j gj(y1, . . . , yq)∂/∂yj with g(0) = 0 (if X is tangent

at p), or
(b) X = ∂/∂y1 (if X is not tangent at p),

on a neighborhood of p. This follows from the fact that any foliated vector
field can be locally written in a distinguished chart in the form∑

fi(x, y)∂/∂xi +
∑

gj(y)∂/∂yj ,

where x = (x1, . . . , xn−q), y = (y1, . . . , yq), and from the possibility of a
special choice of a distinguished chart (see e.g. [5], [6]).

We wish to modify the form of X in the case (a). As I(M,F ) is a
C∞(M)-module, a standard reasoning gives the existence of Z ∈ I(M,F )
such that Z = x1∂/∂x1 on a neighborhood of p. Define Y = [X,Z]. Then
Y = [∂/∂x1 +

∑
j gj(y)∂/∂yj , x1∂/∂x1] = ∂/∂x1 on a neighborhood of p.

Thus we may assume that for any p ∈ M there exists Y ∈ I such that
Y = ∂/∂x1 or ∂/∂y1 in some distinguished chart at p. Let M =

⋃r
i=1 Ui be

a finite open cover (M is compact) consisting of domains of charts satisfying
the above property (i.e. an extension to M of ∂/∂x1 or ∂/∂y1 belongs to I).

We wish to show that I(M,F ) ⊂ I. For X ∈ I we have a decompo-
sition X = X1 + . . . + Xr with Xi ∈ I(M,F ), suppXi ⊂ Ui (it suffices
to multiply X by a partition of unity subordinate to {Ui}). Hence we may
assume that suppX ⊂ U , U being a distinguished chart domain, and that
an extension Y of ∂/∂x1 belongs to I (for ∂/∂y1 the proof is the same).
Let X =

∑
fi(x, y)∂/∂xi on U . Choose a smooth function ϕ such that

suppϕ ⊂ U and ϕ = 1 on a neighborhood of suppX. Next let a smooth
function ψ satisfy suppψ ⊂ U , ψ = 1 on a neighborhood of suppϕ. Then
for i = 1, . . . , n− q we have[

Y,
(
ψ

x1∫
−∞

ϕdx1

)
∂/∂xi

]
= Z + ϕ∂/∂xi ,

where suppZ ⊂M \ suppϕ, and[
Z + ϕ∂/∂xi,

(
ϕ

xi∫
−∞

fi dxi

)
∂/∂xi

]
=
[
ϕ∂/∂xi,

(
ϕ

xi∫
−∞

fi dxi

)
∂/∂xi

]
= fi∂/∂xi .
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Therefore fi∂/∂xi ∈ I and X ∈ I, which completes the proof.

Corollary 5.5. The ideal mp(X(M,F )), p ∈ Σ0, is either maximal , or
contained in a maximal finite-codimensional ideal I such that I(M,F ) ⊂
I ⊂ I(M,F ).

In fact, if p ∈ L ∈ F , L closed, then by the above reasoning mp(X(M,F ))
is maximal. On the other hand, if p ∈ L 6= L then I = {X ∈ X(M,F ) : X is
tangent to F on L} satisfies the assertion.

Definition. A maximal ideal I of X(M,F ) is said to be distinguished
if I(M,F ) ⊂ I. E.g. the µL are distinguished ideals.

We are going to find an algebraic property which characterizes the dis-
tinguished ideals. For any Lie subalgebra A of X(M,F ) we denote by A∗
the set of all maximal ideals of A. Our characterization is based on the
topological properties of A∗.

We introduce the Stone topology on A∗ in the following way. Let Ω be
a subset of A∗. Then the closure of Ω is defined by

Ω =
{
µ ∈ A∗ :

⋂
{ω ∈ Ω} ⊂ µ

}
.

In particular, ∅ = ∅.
R e m a r k. Let (V,F) be any foliated manifold with dim > 0. It is

an easy consequence from Proposition 5.2 that the mapping V 3 p →
mp(Ic(V,F)) ∈ Ic(V,F)∗ is a homeomorphism. Specifically, V and Xc(V )∗

are homeomorphic.

Now we consider the decomposition of X(M,F )∗ into connected compo-
nents in the Stone topology. We wish to show that such a component either
contains distinguished ideals only, or contains no distinguished ideals at all.
This follows from

Proposition 5.6. Let D (respectively , N ) denote the set of all distin-
guished (respectively , nondistinguished) ideals of X(M,F ). Then D∩N = ∅
and D ∩N = ∅.

P r o o f. If I ∈ X(M,F )∗ and
⋂
D ⊂ I then I(M,F ) ⊂ I and I has to

be distinguished. Now let I ∈ X(M,F )∗ be such that
⋂
N ⊂ I, and I ∈ D.

Take a foliated vector field X 6∈ I. The F -orthogonal part X ′ of X satisfies
X ′ 6∈ I since I(M,F ) ⊂ I. Now, by definition, for any p ∈ Σ0,

X ′ ∈ mp(X(M,F ))⇔ [Y1, . . . , [Yr, X] . . .] ∈ Sp(X(M,F )),
∀r ≥ 0 ∀Y1, . . . , Yr ∈ X(M,F ) .

This condition is indeed satisfied as the tangent part of [Yi, . . . , [Yr, X] . . .]
vanishes, and the orthogonal part must be 0 on singular strata. Thus X ′ ∈⋂
N by Corollary 5.5 and X ′ 6∈ I, a contradiction.
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Now we are in a position to give the required characterization of distin-
guished ideals. We introduce the following notation. Letting A denote a Lie
subalgebra of X(M,F ), A# stands for the set of all ideals of A which are
maximal in the set of all infinite-codimensional ideals of A.

For any L ∈ F consider νL = {X ∈ I(M,F ) : X is tangent to F on L},
which is an ideal in I(M,F ). Then νL is finite-codimensional in I(M,F ),
since the foliation F |L has all its leaves dense. By contrast, mp(I(M,F )) is
infinite-codimensional in I(M,F ) as well as µL is infinite-codimensional in
X(M,F ).

Proposition 5.7. µ ∈ X(M,F )∗ is distinguished if and only if µ belongs
to an element of a unique minimal family R of connected components of
X(M,F )∗ characterized by the equality⋂{

% ∈
(⋂

R̃
)#}

= 0 ,

where R̃ =
⋃
R.

P r o o f. Suppose R̃ = D. Then
⋂
R̃ = I(M,F ). Next observe the fol-

lowing implication for any ideal I of I(M,F ):

mp(I(M,F ))  I ⇒ νL ⊂ I .

Hence mp(I(M,F )) ∈ (I(M,F ))# for any p. This gives⋂
{% ∈ (I(M,F ))#} = 0 .

Suppose now that R does not contain a distinguished component, say C.
It follows easily from the definition of the topology that {µL} is dense in D.
Hence µL ∈ C for some L. If L ⊂ Σα then again by the definition of the
topology, µL′ ∈ C for every L′ ⊂ Σα. Then bearing in mind the definition
of strata, π̃−1

α (Xc(Wα))|Σα ⊂
⋂
R̃|Σα (this makes sense in view of Propo-

sition 3.5). Now let J ∈ (
⋂
R̃)#. If I(M,F )|Σα 6⊂ J |Σα then

J |Σα ⊂ mp

(⋂
R̃
)
|Σα  µL ∩

⋂
R̃|Σα ,

which contradicts the definition of # as µL is infinite-codimensional in
⋂
R̃.

Consequently, I(M,F )|Σα ⊂ J |Σα and
⋂
{% ∈ (

⋂
R̃)#} is nonzero. This

and the minimality of R imply the proposition.

Corollary 5.8. I(M,F ) is the intersection of all distinguished ideals.

Corollary 5.9. I(M,F ) is the intersection,M, of all ideals of I(M,F )
with finite codimension.

P r o o f. By an argument from the proof of Proposition 5.4 any ideal I
of I(M,F ) which does not contain I(M,F ) must be contained in some
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mp(I(M,F )). This means that I(M,F ) ⊂ M. Conversely, νL is finite-
codimensional for all L∈F and I(M,F ) =

⋂
νL. This completes the proof.

Corollary 5.10. Under the assumptions formulated before the state-
ment of Theorem 2, Φ(I(M1, F1)) = I(M2, F2).

This follows from Corollaries 5.8 and 5.9.
Now to end the proof of Theorem 2 we just apply the Amemiya’s theo-

rem, which for our purposes can be reformulated as follows (cf. [12]):

Theorem 5.11 [2]. If Φ is a Lie algebra isomorphism of X(M1, F1) onto
X(M2, F2) such that Φ(I(M1, F1)) = I(M2, F2), then there is a foliation
preserving diffeomorphism ϕ of M1 onto M2 such that ϕ∗ = Φ on X(M1, F1).

Acknowledgements. The author is greatly indebted to the referee for
pointing out a gap in the proof of Theorem 2 and for other comments.

Added in proof (April 1993). Recently Janusz Grabowski sent me his paper (Lie
algebras of vector fields and generalized foliations, preprint) where he proved a much
stronger version of my Theorem 2. Namely, the theorem holds true for any generalized
foliation, also in the real-analytic and holomorphic categories. The proof is based on
algebraic properties of modular Lie algebras of vector fields.
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