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Most random walks on nilpotent groups are mixing

by R. REBowsKI (Wroctaw)

Abstract. Let G be a second countable locally compact nilpotent group. It is shown
that for every norm completely mixing (n.c.m.) random walk g, ap + (1 — a)v is n.c.m.
for 0 < a <1, v € P(G). In particular, a generic stochastic convolution operator on G is
n.c.m.

1. Introduction. Let G be a locally compact group with a left Haar
measure m. We denote by M(G) the convolution Banach algebra of finite
Radon measures on G. The convex closed subset of (Radon) probabilities on
G will be denoted by P(G). For a Banach space X, £(X ) denotes the Banach
algebra of bounded linear operators on X. An operator T € L{M(G)) is
called a convolution operator if for some p € M(G) it is equal to T, or T,
where T,v = v * p and ,Tv = p*v, v € M(G). Thus the mapping y — T,
(uT) is a representation of M(G) by a semigroup of right (left) convolution
operators on M(G). We let L!(m) be the Banach space of real-valued m-
integrable functions on G. Then for each x € P(G), T,, and ,T are stochastic
operators on L!(m), i.e. they take P(G) N L}(m) into itself.

It is well known that there is a 1-1 correspondence between the stochas-
tic convolution operators on L!(m) and the random walks on G. This
means that for a given random walk with law g € P(G), the right tran-
sition probability p,(g,-) = 64 * p defines a stochastic convolution operator
T.(v) = [pulg,')dv(g), v € M(G). We say that T, is induced by the
random walk p. Analogously ,T is induced by the left transition probabil-
ity uD-

Consider a right random walk with law xz. A bounded Borel function f on
G is called p-harmonicif it is p,-invariant, or equivalently, if [ f(gh)du(h) =
f(g) for every ¢ € G (for the left random walk ,p the definition is sim-
ilar). If all the p-harmonic functions are constant, we say that the ran-
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dom walk is ergodic. It is easy to check that the random walk is ergodic iff
the induced stochastic convolution operator is ergodic, i.e. constant func-
tions are the only fixed points for the adjoint to T, (resp. to ,T') acting on
Lo>°(m).

We say that a random walk is norm completely miring (n.c.m.) if the
corresponding stochastic convolution operator is norm completely mixing,
i.e. if for every pair v1,1, € P(G) N L'(m) we have lim || T} (v, — v2)|| = 0
(resp. for ,T).

Rosenblatt proved that there exists at least one n.c.m. random walk iff
G is o-compact and amenable ([9], Thm. 1.10 and Prop.). As was observed
in [6], if G is second countable and abelian, the set of n.c.m. random walks
forms a dense G'g subset of the set of all stochastic convolution operators on
L(m) for both strong operator topology (s.o.t.) and norm operator topology
(n.o.t.) ([6], Thm. 5).

We shall extend the above result to second countable nilpotent groups.

2. Generic stochastic convolution operator on a nilpotent group
is n.c.m. Let G be a second countable l.c. group with a left Haar measure
m. The proof of Thm. 5 in [6] was based on the classical Choquet-Deny
theorem, which says that in abelian groups, a random walk u is ergodic iff
the closed subgroup generated by the support of u is the whole group G
(see e.g. [8], Ch. 5). Unfortunately, this is not true in general l.c. groups.
As follows from the theory of Poisson spaces, for some random walks on nil-
potent groups the Choquet—Deny theorem does hold (see [1], Prop. IV.10).
For the reader’s convenience we present some of the relevant facts of this
theory. For the proofs see [1].

Take a random walk with law p € P(G). Then the space of all uniformly
continuous p-harmonic functions is isometrically isomorphic to a certain
C* commutative algebra with unit. Its spectrum II,,, which is a compact
G-space, is called the Poisson space of G corresponding to the random walk
. The Gelfand transform of this algebra is called the Poisson formula.
The Poisson formula determines all y-harmonic functions if u is spread-out,
i.e. u*™ is not singular with respect to m for some positive integer n ([1],
Thm. 1.3).

Now assume G is amenable. By combining Thm. 1.3, Prop. IV.7 and
Prop. IV.8 of [1], the following conditions are seen to be equivalent for a
(right) random walk with a spread-out law pu:

(i) The space of u-harmonic functions is finite-dimensional;
(ii) I, is finite;
(iii) I, is isomorphic to G/H as a G-space, where H is the closed sub-
group generated by the support of p;
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(iv) II, is a homogeneous G-space.

Now, we see that the stochastic convolution operator T, is ergodic iff
G = H and II, is homogeneous. Since in the case of nilpotent groups
and p spread-out, II, is homogeneous iff H has a finite index in G ([1],
Prop. IV.10), the above remark shows that for nilpotent groups with spread-
out measures the classical Choquet-Deny theorem holds.

THEOREM. Let G be a second countable nilpotent l.c. group. For every
n.c.m. random walk with spread-out law u the random walk p, = ap +
(1 - a)v is n.c.m. for every v € P(G) and a € (0,1].

Proof. From §5, Ch. 2 of [5], the assumption that p is spread-out and
n.c.m. is equivalent to ||(v1 —v2)*u*"|| — 0 (v, 2 € P(G)). This means that
the random walk induces an ergodic “space-time” random walk on G x Z,
where Z is the group of integers (see Lemma 3 of [7}). Now it is clear that
the support of y is not contained in a coset of a proper closed subgroup of
G. Therefore, the same holds for the support of p,. To complete the proof
apply the Choquet-Deny theorem and Thm. 2 of [3]. =

It is worth pointing out that the above theorem also follows from Proposi-
tion 2.5 of [9] and from the fact that for nilpotent groups the Choquet-Deny
theorem holds.

COROLLARY 1. The set of n.c.m. random walks on a nilpotent group G
is dense in the norm topology of P(G).

Proof. We only need to show that on a nilpotent group there is at least
one n.c.m. random walk with a spread-out law. Since nilpotent groups are
amenable, this follows from the Rosenblatt theorem [9] (alternatively we can
use the Choquet-Deny theorem). w

COROLLARY 2. If G is nilpotent, then the set of n.c.m. stochastic con-
volution operators is a dense Gg set in the set of all stochastic convolution
operators for both s.o.t. and n.o.t.

Proof. First note that the representation p — T, (,T) is norm con-
tinuous. Now the set of n.c.m. stochastic convolution operators, being the
intersection of the sets of n.c.m. stochastic operators and the stochastic
convolution operators, is a G in s.o.t. (see Thm. 3 of [6] and the Wendel
Theorem of [4]). Therefore, Corollary 2 follows from Corollary 1. m

Recently, the author was informed by W. Bartoszek that Corollary 1
holds for arbitrary amenable o-compact l.c. groups [2]. It is not known
whether our Theorem is also true in that case.
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