Differential conditions to verify the Jacobian Conjecture

by Ludwik M. Drużkowski and Halszka K. Tutaj (Kraków)

Abstract. Let F be a polynomial mapping of \mathbb{R}^2 , F(0) = 0. In 1987 Meisters and Olech proved that the solution $y(\cdot) = 0$ of the autonomous system of differential equations y = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.

1. Introduction. The following problem was explicitly stated by Markus and Yamabe (cf. [MY], [O]).

GLOBAL STABILITY PROBLEM IN \mathbb{R}^2 . Let $F = (F_1, F_2)$ be a \mathcal{C}^1 transformation of \mathbb{R}^2 , F(0,0) = (0,0). Assume that the matrix of the differential of F has, at any point x of \mathbb{R}^2 , all eigenvalues with negative real parts; that is, assume that

(J)
$$\operatorname{Jac} F(x_1, x_2) > 0$$
 for every $(x_1, x_2) \in \mathbb{R}^2$

and

(T) Tr
$$F'(x_1, x_2) := \frac{\partial F_1}{\partial x_1}(x_1, x_2) + \frac{\partial F_2}{\partial x_2}(x_1, x_2) < 0$$
for every $(x_1, x_2) \in \mathbb{R}^2$.

Does it then follow that the solution $(x_1, x_2) = (0, 0)$ of the autonomous system of differential equations

$$\dot{x}_1(t) = F_1(x_1, x_2), \quad \dot{x}_2(t) = F_2(x_1, x_2)$$

is globally asymptotically stable? That is, does every solution curve of (*) approach (0,0) as $t \to \infty$?

¹⁹⁹¹ Mathematics Subject Classification: 26B10, 34D99,26C10.

Key words and phrases: jacobian conditions, global injectivity, global stability.

It has been showed that the problem has an affirmative solution under some additional conditions (cf. e.g. [H], [HO], [MO], [MY], [O], [P]). In particular, Meisters and Olech proved in [MO] that the answer is positive provided F is a polynomial mapping. As a consequence they showed that a polynomial mapping F is injective, which was a partial affirmative answer to the Global Univalence Problem formulated by Olech (cf. [O]):

GLOBAL UNIVALENCE PROBLEM IN \mathbb{R}^2 . Is a \mathcal{C}^1 mapping F of \mathbb{R}^2 globally univalent (i.e. injective) provided that the assumptions (J) and (T) are satisfied?

Note that the Global Univalence Problem is equivalent to the Global Stability Problem (cf. [O]) and it is still not settled. To show how delicate the matter is we recall the following example presented in [P].

EXAMPLE 1.1. Define an analytic map F of \mathbb{R}^2 by

$$F(x,y) = (-2e^x + 3y^2 - 1, ye^x - y^3).$$

Then $\operatorname{Jac} F(x,y) = -2e^x < 0$ and $\operatorname{Tr} F'(x,y) = -e^x - 3y^2 < 0$ for every $(x,y) \in \mathbb{R}^2$, but F is not injective because F(0,1) = (0,0) = F(0,-1).

The Global Stability Problem in \mathbb{R}^2 has a natural formulation in any dimension:

GLOBAL STABILITY PROBLEM IN \mathbb{R}^n . Let $F=(F_1,\ldots,F_n)$ be a \mathcal{C}^1 transformation of \mathbb{R}^n , F(0)=0 and assume that for any x in \mathbb{R}^n all eigenvalues of the jacobian matrix F'(x) have negative real parts. Does it then follow that the solution $y(\cdot)=0$ of the autonomous system of differential equations

$$\dot{y} = F(y)$$

is globally asymptotically stable?

The negative answer to the Global Stability Problem in \mathbb{R}^n for $n \geq 4$ was given in 1988 by N. E. Barabanov (cf. [B]); the problem is still open when n = 2, 3.

In this paper we give an *n*-dimensional generalization of Meisters and Olech's just mentioned two-dimensional result (see Section 4 for the precise formulation).

2. Basic facts on stability. Let E be a subset of \mathbb{R}^n and $F: E \to \mathbb{R}^n$ be a \mathcal{C}^1 mapping. Consider a real autonomous system of differential equations

$$\dot{y} = F(y)$$

whose solutions are uniquely determined by initial conditions. Let $y_0(\cdot)$ denote the solution of (*) satisfying the initial condition $y_0(0) = y_0$ and defined

for every $t \ge 0$. In the sequel we shall assume that F(0) = 0 and $y_0 = 0$, so $y_0(\cdot) = 0$.

The symbol of matrix multiplication is omitted or denoted by "o", "T" is the matrix transposition and x is treated as one-column matrix, so x^T is a one-row matrix. The norm $\|\cdot\|$ is the euclidean norm in \mathbb{R}^n , and I denotes the identity mapping or the identity matrix.

We start with a series of definitions.

DEFINITION 2.1. (i) We say that $y_0(\cdot)$ is locally asymptotically stable (for short: LAS) if for every $\varepsilon > 0$ there exists $\delta = \delta_{\varepsilon} > 0$ such that if $\|y_0 - y_1\| < \delta$ then the solution $y_1(\cdot)$ of (*) with $y_1(0) = y_1$ exists for every $t \geq 0$, $\|y_0(t) - y_1(t)\| < \varepsilon$ for $t \geq 0$ and $\|y_0(t) - y_1(t)\| \to 0$ as $t \to \infty$.

(ii) The solution $y_0(\cdot)$ is globally asymptotically stable (for short: GAS) when it is a LAS solution and the following holds:

If $y_1(\cdot)$ is any solution of (*) defined for small $t \geq 0$, then $y_1(t)$ exists for all $t \geq 0$ and $||y_0(t) - y_1(t)|| \to 0$ as $t \to \infty$.

- (iii) Let $y_0(\cdot) = 0$ be a LAS solution of (*). The domain of attraction of $y_0(\cdot)$ (or the domain of attraction of the set $\{0\}$) is the subset A of E consisting of all $a \in E$ such that the solution $y_1(\cdot)$ of (*) starting at a exists for every $t \geq 0$ and $y_1(t) \to 0$ as $t \to \infty$. (Note that if E is open and $y_0(\cdot)$ is LAS, then the domain of attraction is also open.)
- (iv) Assume that E is an open set containing 0 and F(0) = 0. Let V be a function satisfying the following conditions:
 - (a) V is defined in a neighbourhood U of 0,
 - (b) V is of class C^1 in U,
 - (c) $V \ge 0$ and V(y) > 0 if ||y|| > 0,
- (d) the trajectory derivative of V at a point y (i.e. $\dot{V}(y) := \frac{d}{dt}V[y(t)] = \operatorname{grad} V(y) \circ F(y)$) is negative if ||y|| > 0.

We call V a Lyapunov function of the equation (*).

Note that if all eigenvalues of F'(0) have negative real parts, then there exists a Lyapunov function of (*).

Now we recall the following classical Lyapunov Theorem.

THEOREM 2.2. Let E be an open set containing 0, let F be a C^1 map of \mathbb{R}^n with F(0) = 0 and let V be a Lyapunov function of the equation (*) defined in an open neighbourhood of 0. Then $y(\cdot) = 0$ is a LAS solution of (*).

Let E^* be a connected set. Let $G(y) = [g_{jk}(y) : j, k = 1, ..., n]$ be a real, symmetric, continuous and positive definite matrix on E^* . We associate with G an element of arc length

$$ds^2 = dy^T G(y) \, dy \,,$$

i.e. if C: y = y(t), $a \le t \le b$, is an arc of class C^1 in E^* , then its length L(C) is given by the formula

$$L(C) = \int_{a}^{b} [\dot{y}(t)^{T}G(y(t))\dot{y}(t)]^{1/2} dt.$$

L(C) is independent of a chosen C^1 parametrization of the arc C (cf. [H]).

Take any $y_1, y_2 \in E^*$ and define a metric associated with G by the formula

$$r(y_1, y_2) := \inf\{L(C) \mid C : [a, b] \to E^*,$$

 $y(a) = y_1, \ y(b) = y_2, \ C \text{ is of class } C^1\}.$

Now consider the equation (*) and the "possible" Lyapunov function

$$V(y) := F(y)^T G(y) F(y), \quad y \in E^*.$$

Note that

$$\dot{V}(y) = 2F(y)^T B(y) F(y) ,$$

where

$$B(y) := G(y)F'(y) + \frac{1}{2} \sum_{j=1}^{n} F_j \frac{\partial G}{\partial y_j}.$$

We recall the following correct version of Theorem 14.2 in [H, Chap. 14] (cf. also [HO, Theorem 2.4]).

THEOREM 2.3. Let $F = (F_1, \ldots, F_n)$ be a mapping of class C^1 defined on an open connected subset E^* of \mathbb{R}^n , with $F(y) \neq 0$ for every $y \in E^*$.

- (i) Let a symmetric matrix G(y) be of class C^1 on E^* and positive definite for $y \in E^*$, and let B and r be defined as above.
 - (ii) Assume that the following "Borg type" condition is satisfied:

(BC)
$$x^T B(y) x \le 0 \quad \text{if} \quad F(y)^T G(y) x = 0.$$

(iii) Further, let $y_0(\cdot)$ be a solution of (*) defined on the right maximal interval of existence $0 \le t < \omega \le \infty$ with the property that there exists $\alpha > 0$ such that

$$r(y_0(t), \partial E^* \cup \{\infty\}) > \alpha > 0$$
 for every $t \in [0, \omega)$;

i.e. for any $t \in [0,\omega)$ and for any half-open C^1 arc $C: x = \phi(t)$, $\phi(0) = y_0(t)$, $t \in [0,1)$, if $L(C) \leq \alpha$, then $\phi(1) := \lim_{t \to 1} \phi(t)$ exists and $\phi(t) \in E^*$ for $t \in [0,1]$.

Then there exist positive constants δ and k such that for any solution $y(\cdot)$ of (*) satisfying $r[y_0(0), y(0)] < \delta$ there exists an increasing, positive function $s(\cdot): [0, \omega) \to \mathbb{R}$ such that s(0) = 0, $[0, s(\omega))$ is the right maximal

interval of existence of $y(\cdot)$ and

$$r[y(s(t)), y_0(t)] \le kr[y(0), y_0(0)]$$
 for $0 \le t < \omega$.

3. Remarks on polynomial mappings. Let $F = (F_1, \ldots, F_n)$ be a polynomial map $\mathbb{R}^n \to \mathbb{R}^n$, and let Jac F denote the jacobian of F, i.e. Jac $F(x) = \det F'(x)$ for $x \in \mathbb{R}^n$. We begin with the following lemma.

LEMMA 3.1. Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a polynomial map such that $\det F'(y) \neq 0$ for every $y \in \mathbb{R}^n$. Then for every $b \in \mathbb{R}^n$ the equation F(x) = b has only isolated solutions and

$$\#\{x\in\mathbb{R}^n:F(x)=b\}\leq \deg F_1\cdot\ldots\cdot\deg F_n$$
.

Moreover, $\{y \in \mathbb{R}^n : \#F^{-1}(y) = \max\{\#F^{-1}(b) : b \in \mathbb{R}^n\}\}\$ is a nonempty open subset of \mathbb{R}^n .

Proof. Since $\operatorname{Jac} F \neq 0$ everywhere in \mathbb{R}^n the equation F(x) = b has only isolated roots in \mathbb{R}^n . From now on we treat F as a polynomial mapping of \mathbb{C}^n .

- (i) If $F^{-1}(b) = \{a^1, \ldots, a^p : a^j \in \mathbb{C}^n, j = 1, \ldots, p\}$, then the proof is given in [Ł, Chap. 7.13].
- (ii) First we recall an important theorem about polynomial mappings (cf. [Md]):

If F has a nontrivial jacobian and $d(F) = [\mathbb{C}(X_1, \ldots, X_n) : \mathbb{C}(F_1, \ldots, F_n)]$, i.e. if d(F) is the so-called geometric (or generic) degree of F, then

$$d(F) = \max \{ \#F^{-1}(y) : y \in \mathbb{C}^n, \ \#F^{-1}(y) < \infty \}$$

and the exceptional set $E:=\{y\in\mathbb{C}^n: \#F^{-1}(y)\neq d(F)\}$ is an algebraic proper subset of \mathbb{C}^n .

Assume that $\#F^{-1}(b) = \infty$ and let a^1, \ldots, a^p be the isolated points of $F^{-1}(b)$. Choose closed balls $U_j = \overline{B}(a^j, R)$ such that

(1)
$$U_j \cap F^{-1}(b) = \{a^j\}, \quad j = 1, \dots, p.$$

Put $r := \inf\{\|F(x) - b\| : \|x - a_j\| = R, \ j = 1, \dots, p\} > 0$ and set B = B(b, r). Choose $c \in B \setminus E$, fix j and define holomorphic maps

$$(2) G:=b-c, H:=F-b$$

in some neighbourhood of U_j . Evidently

(3)
$$||G(x)|| < r \le ||H(x)|| \text{ when } ||x - a^j|| = R.$$

By (1)-(3) we can apply the Rouché Theorem (cf. [L, Chap. 5]) to deduce that the holomorphic map G + H = F - c has at least one zero in U_j , i.e.

(4)
$$\#\{F^{-1}(c) \cap U_j\} \ge 1, \quad j = 1, \dots, p.$$

From (4) we derive that

$$p \leq \#F^{-1}(c) = d(F) \leq \deg F_1 \cdot \ldots \cdot \deg F_n.$$

Since $\#\{a \in \mathbb{R}^n : F(a) = b\} \le \#\{c \in \mathbb{C}^n : F(c) = b\}$, we obtain the inequality stated in Lemma 3.1.

(iii) Define $q := \max\{\#F^{-1}(b) : b \in \mathbb{R}^n\}$. Note that if a polynomial map F of \mathbb{R}^n has a nonvanishing jacobian, then by the local inverse function theorem $\{y \in \mathbb{R}^n : \#F^{-1}(y) = q\}$ is a nonempty open subset of \mathbb{R}^n .

Remark 3.2. From the Lefschetz Principle we derive that the estimate given in Lemma 3.1 remains true for any field of characteristic 0 (cf. [E], where the existence of some estimate for any field of characteristic 0 is proved, and [BCR, Th. 11.5.2], where an estimate for the number of connected components of a real algebraic set is given).

It is worth remembering that injectivity of a polynomial map implies its bijectivity (cf. [BR, KR]).

4. Global stability of polynomial differential equations. We begin with a proposition which is a consequence of [HO, Theorems 2.2 and 2.4] or [H, Theorem 14.2 and Corollary 14.1].

PROPOSITION 4.1. Assume that:

1°
$$F = (F_1, ..., F_n)$$
 is a C^1 map of \mathbb{R}^n , $F(0) = 0$.

2° If F(b) = 0, then $y(\cdot) = b$ is a LAS solution of the equation

$$\dot{y} = F(y).$$

3° $\exists p \in \mathcal{C}^1(\mathbb{R}^n \setminus F^{-1}(0), (0, \infty)) \text{ such that } \dot{p}(y) + p(y)x^T \circ F'(y) \circ x \leq 0$ whenever $x^T \circ F(y) = 0$, ||x|| = 1 (here $\dot{p}(y) := p'(y)^T \circ F(y)$).

$$4^{\circ} \exists R > 0, \exists d > 0 \text{ such that } ||F(y)|| > d \text{ if } ||x|| > R.$$

Then $y(\cdot) = 0$ is a GAS solution of (*). In particular, $F^{-1}(0) = \{0\}$.

Proof. (i) Evidently $\#F^{-1}(0) < \infty$, so $F^{-1}(0) := \{b_1 = 0, b_2, \dots, b_q\}$. By 2° the domain of attraction D_j of the solution $y(\cdot) = b_j$ is nonempty for $j = 1, \dots, q$. Evidently $D_i \cap D_j = \emptyset$ for $i \neq j$. Put $E^* := \mathbb{R}^n \setminus F^{-1}(0)$.

(ii) Define

$$G(y) := p^2(y)I, \quad y \in E^*.$$

Evidently G(y) is a symmetric, positive definite matrix of class C^1 on E^* and, by 3°, $x^T \circ B(y) \circ x \leq 0$ whenever $F(y)^T \circ x = 0$, ||x|| = 1. Thus assumptions (i) and (ii) of Theorem 2.3 are satisfied.

(iii) If q > 1, then $E^* \setminus D_1 \neq \emptyset$. This means that there exists $y_0 \in E^* \cap \partial D_1$. Let $y_0(t)$ denote the solution of (*) satisfying $y_0(0) = y_0$ and defined on $[0, \omega)$. Since D_1 is a domain of attraction, therefore, by the classical theorem

on continuous dependence on initial values, $y_0(t) \in \partial D_1$ for $t \in [0, \omega)$. Now 4° shows that

$$\exists \alpha > 0 \quad \text{such that} \quad \dot{r}(y_0(t), \partial E^* \cup \{\infty\}) > \alpha \quad \text{ for } 0 \leq t < \omega \,,$$

which means that assumption (iii) of Theorem 2.3 is satisfied.

(iv) By Theorem 2.3 there exist positive numbers δ and k such that if $y(0) \in D_1$ and $r[y_0(0), y(0)] < \delta$ and $y(\cdot)$ is the solution of (*) with initial value y(0), then

$$r[y(s(t)), y_0(t)] \le kr[y(0), y_0(0)]$$
 for $0 \le t < \omega$

for a suitable increasing, positive function $s(\cdot):[0,\omega)\to(0,\infty)$ such that s(0)=0 and $[0,s(\omega))$ is the right maximal interval of existence of $y(\cdot)$. Since $y(t)\to 0$ as $t\to\infty$ we get a contradiction, hence q=1 and $y_0(\cdot)=0$ is a GAS solution in the whole \mathbb{R}^n .

Note that Proposition 4.1 remains true if instead of 4° we assume that

$$orall r>0 \quad \int\limits_{r}^{\infty} arrho(s)\,ds=\infty, \quad ext{ where } \ arrho(s):=\min\{p(y):\|y\|=s\}\,,$$

but the proof is a little more complicated.

A typical candidate for p is $p(y) = ||F(y)||^{2c}$, where c is a fixed nonnegative number. Then p(y) is positive of class C^1 , and p satisfies 4° if

$$\dot{p}(y) + p(y)x^{T} \circ F'(y) \circ x
= c \|F(y)\|^{2c-2} F(y)^{T} \circ F'(y) \circ F(y) + \|F(y)\|^{2c} x^{T} \circ F'(y) \circ x \le 0.$$

This yields

COROLLARY 4.2. Proposition 4.1 remains true if 3° is replaced by

(C)
$$\exists c \geq 0 \quad cF(y)^T \circ F'(y) \circ F(y) + \|F(y)\|^2 x^T \circ F'(y) \circ x \leq 0$$

whenever $x^T \circ F(y) = 0, \|x\| = 1$.

From Proposition 4.1, Theorem 2.2 and Corollary 4.2 we obtain at once the following.

Remark 4.3. Let $F = (F_1, \ldots, F_n)$ be a polynomial map of \mathbb{R}^n with F(0) = 0 such that

(1)
$$\operatorname{Jac} F(y) \neq 0 \quad \text{for every } y \in \mathbb{R}^n,$$

(2)
$$x^T \circ F'(b) \circ x < 0$$
 if $||x|| = 1$, $F(b) = 0$,

(3)
$$\exists c \geq 0 \quad c \ [F(y)]^T \circ F'(y) \circ F(y) + ||F(y)||^2 x^T \circ F'(y) \circ x \leq 0$$

whenever $x^T \circ F(y) = 0, ||x|| = 1$.

Then $y(\cdot) = 0$ is a GAS solution of (*). In particular, $F^{-1}(0) = \{0\}$.

At this moment we want to show a connection between Borg type condition (C) and the eigenvalues of the matrix H(y) which is the symmetric

part of F'(y), i.e. $H(y) = \frac{1}{2}[F'(y) + F'(y)^T]$. Let $\lambda_1(y), \ldots, \lambda_n(y)$ be those eigenvalues. Define

$$\alpha(y) := \max\{(\lambda_j(y) + \lambda_k(y)) : j \neq k, \ j, k = 1, \dots, n\}, \quad y \in \mathbb{R}^n.$$

Remark 4.4. Inequality (2.5) in [HO] implies

$$F(y)^T \circ F'(y) \circ F(y) + ||F(y)||^2 x^T \circ F'(y) \circ x \le \alpha(y) ||F(y)||^2$$

whenever $x^T \circ F(y) = 0, ||x|| = 1$.

Now we formulate and prove the main theorem of the paper.

THEOREM 4.5 (Main Theorem). Let $F = (F_1, \ldots, F_n)$ be a polynomial map of \mathbb{R}^n , F(0) = 0. Let $H(y), \lambda_1(y), \ldots, \lambda_n(y)$ and $\alpha(y)$ be as defined above. Assume that

- (a) $\operatorname{Jac} F(y) \neq 0$ for every $y \in \mathbb{R}^n$,
- (b) all eigenvalues of F'(b) have negative real parts if F(b) = 0,
- (c) $\alpha(y) \leq 0$ for every $y \in \mathbb{R}^n$.

Then $y(\cdot) = 0$ is a GAS solution of (*), $y \in \mathbb{R}^n$, and the mapping F is bijective.

Proof. Case I. We assume additionally $\#F^{-1}(0) = \max\{\#F^{-1}(w) : w \in \mathbb{R}^n\}$. Now it is sufficient to prove that $y_0(\cdot) = 0$ is a GAS solution of (*). By (b) and Theorem 2.2, $y(\cdot) = b$ is a LAS solution of (*) whenever F(b) = 0.

We check that the function

$$p(y) := ||F(y)||^2, \quad y \in \mathbb{R}^n \setminus F^{-1}(0),$$

satisfies the assumptions of Corollary 4.2. By Remark 4.4,

$$\dot{p}(y) + p(y)x^{T} \circ F'(y) \circ x = F(y)^{T} \circ F'(y) \circ F(y) + ||F(y)||^{2}x^{T} \circ F'(y) \circ x$$

$$\leq \alpha(y)||F(y)||^{2} < 0$$

whenever $x^T \circ F(y) = 0$, ||x|| = 1. Therefore, assumption (C) of Corollary 4.2 is satisfied.

Since $\#F^{-1}(0) = \max\{\#F^{-1}(w) : w \in \mathbb{R}^n\}$, there exists d > 0 such that $A := \{y \in \mathbb{R}^n : \|F(y)\| \le d\}$ is compact. Hence,

$$\exists R>0 \quad ext{such that} \quad \|F(y)\|>d ext{ if } \|x\|>R\,,$$

i.e. 4° is also satisfied. Thus, by Corollary 4.2, $y_0(\cdot) = 0$ is a GAS solution of (*) and F is bijective.

Case II. If $\#F^{-1}(0) < \max\{\#F^{-1}(w) : w \in \mathbb{R}^n\}$, then, by Lemma 3.1, we can choose $b \in \mathbb{R}^n$ such that $\#F^{-1}(b) = \max\{\#F^{-1}(w) : w \in \mathbb{R}^n\}$. Put

$$G(y) := F(b+y) - F(b), \quad y \in \mathbb{R}^n.$$

Obviously G satisfies all assumptions which F satisfied in Case I. Hence G is bijective, so is F, and F has to satisfy the assumptions of Case I.

Now we prove that Theorem 4.5 generalizes Meisters and Olech's result (cf. [MO]).

THEOREM 4.6. Let $F=(F_1,F_2)$ be a polynomial mapping of \mathbb{R}^2 . If F(0)=0, Jac F(y)>0 and

$$\operatorname{Tr} F'(y) := \frac{\partial F_1}{\partial y_1}(y) + \frac{\partial F_2}{\partial y_2}(y) < 0 \quad \text{ for every } y \in \mathbb{R}^2,$$

then $y(\cdot) = 0$ is a GAS solution of the autonomous system

$$(*) \dot{y}_1 = F_1(y_1, y_2), \quad \dot{y}_2 = F_2(y_1, y_2), \quad (y_1, y_2) \in \mathbb{R}^2.$$

In particular, $F^{-1}(0) = \{0\}.$

Proof. We show that the assumptions of Theorem 4.6 imply those of Theorem 4.5 for n=2.

Since Jac F(y) > 0 and Tr F'(y) < 0, all eigenvalues of F'(y) have negative real parts. If $H(y) := \frac{1}{2}[F'(y) + F'(y)^T]$, $y \in \mathbb{R}^n$, and $\lambda_1(y), \lambda_2(y)$ are the eigenvalues of H(y), then

$$\alpha(y) = \lambda_1(y) + \lambda_2(y) = \operatorname{Tr} H'(y) = \operatorname{Tr} F'(y) < 0.$$

Thus all assumptions of Theorem 4.5 are satisfied.

It is known that if a complex polynomial map of \mathbb{C}^2 has nontrivial constant jacobian and symmetric jacobian matrix, then the map is bijective (cf. [D]). For the sake of comparison we present a real counterpart of this fact.

Remark 4.7. If F is a polynomial mapping of \mathbb{R}^2 , Jac F(y) > 0 and F'(y) is symmetric for any $y \in \mathbb{R}^2$, then F is bijective.

One can check this by applying Theorem 4.6. The result is also true for any C^1 map and it is a consequence of Corollary 1 in [MO1].

Note that assumption (C) of Corollary 4.2 in fact concerns the symmetric part H(y) of F'(y) because

$$B(x,y) := c \ F(y)^T \circ F'(y) \circ F(y) + \|F(y)\|^2 x^T \circ F'(y) \circ x$$

= $c \ F(y)^T \circ H'(y) \circ F(y) + \|F(y)\|^2 x^T \circ H'(y) \circ x$;

thus, it can be very restrictive even in the case of a linear system of differential equations. The following simple example, presented to us by A. van den Essen, shows this fact.

EXAMPLE 4.8. Define the linear mapping F of \mathbb{R}^3 by

$$F(y_1, y_2, y_3) = (-y_1 + 21y_3, -y_2 + 12y_3, -y_3).$$

Then the zero solution of the equation $\dot{y} = F(y)$ is globally asymptotically stable, but assumption (C) of Corollary 4.2 is not satisfied because if

$$x=rac{1}{\sqrt{2}}(1,1,0) \quad ext{and} \quad y=rac{-1}{\sqrt{3}}(22,11,1)\,,$$

then

$$F(y) = \frac{-1}{\sqrt{3}}(-1, 1, -1), \quad x^T \circ F(y) = 0, \quad B(x, y) = 2c - 1,$$

while if

$$x = \frac{1}{\sqrt{3}}(1, -1, 1)$$
 and $y = \frac{-1}{\sqrt{2}}(1, 1, 0)$,

then

$$F(y) = rac{-1}{\sqrt{2}}(-1,-1,0), \quad x^T \circ F(y) = 0, \quad B(x,y) = 2-c\,.$$

Acknowledgement. The authors wish to thank K. Holly for helpful discussions and the referee for valuable suggestions and remarks.

References

- [B] N. E. Barabanov, On Kalman's problem, Sibirsk. Mat. Zh. 29 (3) (1988), 2-11 (in Russian).
- [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
- [BCR] J. Bochnak, M. Coste et M.-F. Roy, Géométrie Algébrique Réelle, Springer, Berlin 1987.
 - [D] F. Dillen, Polynomials with constant Hessian determinant, J. Pure Appl. Algebra 71 (1991), 13-18.
 - [E] A. van den Essen, A note on Meisters and Olech's proof of the global asymptotic stability Jacobian conjecture, Pacific J. Math. 151 (1991), 351-356.
 - [H] P. Hartman, Ordinary Differential Equations, Wiley, New York 1964.
 - [HO] P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc. 104 (1962), 154-178.
 - [KR] K. Kurdyka and K. Rusek, Surjectivity of certain injective semialgebraic transformations of \mathbb{R}^n , Math. Z. 200 (1988), 141-148.
 - [L] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel 1991.
 - [MY] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305-317.
- [MO] G. H. Meisters and C. Olech, Solution of the global asymptotic stability Jacobian conjecture for the polynomial case, in: Analyse Mathématique et Applications, Gauthier-Villars, Paris 1988, 373-381.
- [MO1] —, —, A Jacobian condition for injectivity of differentiable plane maps, Ann. Polon. Math. 51 (1990), 249-254.
 - [Md] D. Mumford, Algebraic Geometry, I. Complex Projective Varieties, Springer, Berlin 1976.

- [O] C. Olech, On the global stability of an autonomous system on the plane, Contributions Differential Equations 1 (1963), 389-400.
- [P] T. Parthasarathy, On Global Univalence, Lecture Notes in Math. 977, Springer, Berlin 1983.

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND

E-mail: UMDRUZKO@PLKRCY11.BITNET and UMTUTAJ@PLKRCY11.BITNET

Reçu par la Rédaction le 30.10.1991 Révisé le 15.6.1992