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Differential conditions to verify
the Jacobian Conjecture

by Lubwik M. DruzkowskI and HALSZKA K. TuTAJ (Krakéw)

Abstract. Let F be a polynomial mapping of R?, F(0) = 0. In 1987 Meisters and
Olech proved that the solution y(-) = 0 of the autonomous system of differential equations
9y = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere
positive and the trace of the matrix of the differential of F is everywhere negative. In
particular, the mapping F is then injective. We give an n-dimensional generalization of
this result.

1. Introduction. The following problem was explicitly stated by Markus
and Yamabe (cf. [MY], [O]).

GLOBAL STABILITY PROBLEM IN R2. Let F = (Fy, F») be a C! trans-
formation of R%, F(0,0) = (0,0). Assume that the matriz of the differential
of F has, at any point © of R2, all eigenvalues with negative real parts; that
15, assume that

(J) Jac F(zy,22) >0  for every (z1,z2) € R?
and

OF; IF:
(T) TrF'(zy,22) = 6—2;(3;1,1-2) + a—zz(zl,zz) <0

for every (z1,2) € R2.

Does it then follow that the solution (x1,T3) = (0,0) of the autonomous
system of differential equations

(%) &1(t) = Fi(z1,22), @2(t) = F2(21,72)
is globally asymptotically stable? That is, does every solution curve of (x)
approach (0,0) as t — oo?
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It has been showed that the problem has an affirmative solution under
some additional conditions (cf. e.g. [H], [HO], [MO], [MY], [O], [P]). In
particular, Meisters and Olech proved in [MO] that the answer is positive
provided F is a polynomial mapping. As a consequence they showed that a
polynomial mapping F' is injective, which was a partial affirmative answer
to the Global Univalence Problem formulated by Olech (cf. [O]):

GLOBAL UNIVALENCE PROBLEM IN R2. Is a C! mapping F of R? glob-
ally univalent (i.e. injective) provided that the assumptions (J) and (T) are

satisfied?
Note that the Global Univalence Problem is equivalent to the Global

Stability Problem (cf. [O]) and it is still not settled. To show how delicate
the matter is we recall the following example presented in [P].

EXAMPLE 1.1. Define an analytic map F of R? by
F(z,y) = (—2¢" + 3y® — 1,ye” —3°).
Then Jac F(z,y) = —2¢® < 0 and Tr F'(z,y) = —e® — 3y? < 0 for every
(z,y) € R%, but F is not injective because F(0,1) = (0,0) = F(0,—1).

The Global Stability Problem in R? has a natural formulation in any
dimension:

GLOBAL STABILITY PROBLEM IN R". Let F = (Fy,...,F,) be a C*
transformation of R™, F(0) = 0 and assume that for any = in R™ all eigen-
values of the jacobian matriz F'(z) have negative real parts. Does it then
follow that the solution y(-) = 0 of the autonomous system of differential
equations

(*) y="F(y)
is globally asymptotically stable?

The negative answer to the Global Stability Problem in R™ for n > 4
was given in 1988 by N. E. Barabanov (cf. [B]); the problem is still open
when n = 2, 3.

In this paper we give an n-dimensional generalization of Meisters and

Olech’s just mentioned two-dimensional result (see Section 4 for the precise
lormulation).

2. Basic facts on stability. Let E be a subset of R* and F' : E — R" be
a C! mapping. Consider a real autonomous system of differential equations

(*) y=F(y)
whose solutions are uniquely determined by initial conditions. Let yo(-) de-
note the solution of () satisfying the initial condition y(0) = yo and defined



Jacobian Conjecture 255

for every ¢ > 0. In the sequel we shall assume that F(0) = 0 and yg = 0, so
yo(-) =0.

The symbol of matrix multiplication is omitted or denoted by “o”,
is the matrix tranposition and z is treated as one-column matrix, so z7 is a
one-row matrix. The norm || - || is the euclidean norm in R", and I denotes
the identity mapping or the identity matrix.

We start with a series of definitions.

«T»

DEFINITION 2.1. (i) We say that yo(-) is locally asymptotically stable
(for short: LAS) if for every € > 0 there exists § = 6. > 0 such that if
lyo — y1]| < & then the solution y;(-) of (x) with y;(0) = y; exists for every
t >0, |lyo(t) — va(t)|| < € for t > 0 and ||yo(t) — y1(¢)]] = 0 as t — oo.

(ii) The solution yo(-) is globally asymptotically stable (for short: GAS)
when it is a LAS solution and the following holds:

If y1(-) is any solution of () defined for small ¢ > 0, then y; (¢) exists for
allt > 0 and ||yo(t) —y1(t)|| = 0 as t — oo.

(iii) Let yo(-) = 0 be a LAS solution of (*). The domain of attraction
of yo(-) (or the domain of attraction of the set {0}) is the subset A of E
consisting of all a € E such that the solution y; () of (%) starting at a exists
for every t > 0 and y,(t) — 0 as t — oo. (Note that if E is open and yo(-)
is LAS, then the domain of attraction is also open.)

(iv) Assume that F is an open set containing 0 and F(0) = 0. Let V' be
a function satisfying the following conditions:

(a) V is defined in a neighbourhood U of 0,

(b) V is of class C! in U,

(c) V>0and V(y) > 0if |ly|| >0, .

(d) the trajectory derivative of V at a point y (i.e. V(y) := %V[y(t)] =
grad V(y) o F(y)) is negative if |jy|| > 0.

We call V a Lyapunov function of the equation (x).

Note that if all eigenvalues of F’(0) have negative real parts, then there
exists a Lyapunov function of (x).
Now we recall the following classical Lyapunov Theorem.

THEOREM 2.2. Let E be an open set containing 0, let F be a C' map
of R™ with F(0) = 0 and let V be a Lyapunov function of the equation (*)
defined in an open neighbourhood of 0. Then y(-) = 0 is a LAS solution
of (*).

Let E* be a connected set. Let G(y) = [g9jx(y) : 5,k =1,...,n] be a real,
symmetric, continuous and positive definite matrix on E*. We associate with
G an elemént of arc length

ds® = dy"G(y) dy,
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ie. if C:y=y(t),a <t<b isan arc of class C! in E*, then its length
L(C) is given by the formula

b
L(C) = [ TG0/ dt.

L(C) is independent of a chosen C! parametrization of the arc C (cf. [H]).
Take any y1,y2 € E* and define a metric associated with G by the
formula

7(y1,92) := inf{L(C) | C : [a,b] — E*,
y(a) = y1, y(b) = y2, C is of class C'}.
Now consider the equation (%) and the “possible” Lyapunov function
V(y):=Fu)T GW)F(y), yekE".
Note that

V(y) =2F(y)"B(y)F(y),
where

Bly) = CWF W) + 3 > B
j=1 I

We recall the following correct version of Theorem 14.2 in [H, Chap. 14]
(cf. also [HO, Theorem 2.4]).

THEOREM 2.3. Let F = (Fy,...,F,) be a mapping of class C!. defined
on an open connected subset E* of R", with F(y) # 0 for everyy € E*.

(i) Let a symmetric matriz G(y) be of class C! on E* and positive
definite for y € E*, and let B and r be defined as above.
(it) Assume that the following “Borg type” condition is satisfied:

(BC) e"B(y)r <0 if F(y)TG(y)z =0.

(iii) Further, let yo(-) be a solution of (*) defined on the right mazimal
interval of existence 0 < t < w < oo with the property that there ezists a > 0
such that

m(yo(t),0E* U{o0}) >a >0 for everyt € [0,w);
i.e. for any t € [0,w) and for any half-open C! arc C : z = ¢(t), #(0) =
yo(t), t €[0,1), if L(C) < a, then ¢(1) := lim,_,| ¢(t) ezists and ¢(t) € E*
fort e [0,1].
Then there exist positive constants 6 and k such that for any solution

y(-) of (x) satisfying r[yo(0),y(0)] < & there exists an increasing, positive
function s(-) : [0,w) — R such that s(0) = 0, [0, s(w)) is the right mazimal
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interval of existence of y(-) and

ry(s(t)), yo(t)] < kr(y(0),y0(0)] for 0<t<w.

3. Remarks on polynomial mappings. Let F = (Fy,...,F,) be a
polynomial map R® — R”, and let Jac F' denote the jacobian of F, i.e.
Jac F(z) = det F'(z) for z € R™. We begin with the following lemma.

LEMMA 3.1. Let F : R™ — R™ be a polynomial map such that det F'(y) #
0 for every y € R™. Then for every b € R™ the equation F(z) = b has only
wsolated solutions and

#{z€eR": F(z)=b} < degFy-...-degF,.

Moreover, {y € R™ : #F~}(y) = max{#F~1(b) : b € R"}} is a nonempty
open subset of R™.

Proof. Since Jac F' # 0 everywhere in R" the equation F(z) = b has
only isolated roots in R™. From now on we treat F' as a polynomial mapping
of C™.

(i) If F~Y(b) = {a',...,aP : @/ € C*, j = 1,...,p}, then the proof is
given in [L, Chap. 7.13].

(ii) First we recall an important theorem about polynomial mappings
(cf. [Md]):

If F has a nontrivial jacobian and d(F)=[C(X1,...,X,) : C(F1, ..., Fp)],
i.e. if d(F) is the so-called geometric (or generic) degree of F', then

d(F) = max {#F '(y):y € C", #F ' (y) < oo}
and the exceptional set E := {y € C" : #F~!(y) # d(F)} is an algebraic
proper subset of C™.

Assume that #F~1(b) = oo and let al,...,aP be the isolated points of
F~1(b). Choose closed balls U; = B(a’, R) such that

(1) UnF 1) ={a’}, j=1,...,p.

Put r := inf{||[F(z) - b| : [t —asll = R, 5 =1,...,p} > 0 and set
B = B(b,r). Choose c € B\ E, fix j and define holomorphic maps

(2) G:=b—¢, H:=F-%

in some neighbourhood of U;. Evidently

3) IG(@)] <7 < |H@)| when |z - o] = R.

By (1)-(3) we can apply the Rouché Theorem (cf. (L, Chap. 5]) to deduce
that the holomorphic map G + H = F — ¢ has at least one zero in U}, i.e.

(4) #{F Y )nU;}>1, j=1,...,p.
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From (4) we derive that
p<#F Y c)=d(F)<degF, ... -degF,.

Since #{a € R" : F(a) = b} < #{c € C* : F(c) = b}, we obtain the
inequality stated in Lemma 3.1.

(iii) Define ¢ := max{#F ~1(b) : b € R"}. Note that if a polynomial map
F of R™ has a nonvanishing jacobian, then by the local inverse function
theorem {y € R™ : #F~1(y) = q} is a nonempty open subset of R". =

Remark 3.2. From the Lefschetz Principle we derive that the estimate
given in Lemma 3.1 remains true for any field of characteristic 0 (cf. [E],
where the existence of some estimate for any field of characteristic 0 is
proved, and [BCR, Th. 11.5.2], where an estimate for the number of con-
nected components of a real algebraic set is given).

It is worth remembering that injectivity of a polynomial map implies its
bijectivity (cf. [BR, KR]).

4. Global stability of polynomial differential equations. We begin
with a proposition which is a consequence of [HO, Theorems 2.2 and 2.4] or
[H, Theorem 14.2 and Corollary 14.1].

PROPOSITION 4.1. Assume that:

1° F = (F,...,F,) is a C! map of R*, F(0) = 0.

2° If F(b) =0, then y(-) = b is a LAS solution of the equation
(%) v=F(y).

3 3p € CL(R™ \ F~1(0), (0,00)) such that p(y) + p(y)zT o F'(y) oz < 0
whenever T o F(y) = 0, ||z|| = 1 (here p(y) := p'(y)T o F(y)).

4° 3R > 0, 3d > 0 such that |F(y)|| > d if ||z| > R.
Then y(-) = 0 is a GAS solution of (x). In particular, F~1(0) = {0}.

Proof. (i) Evidently #F~!(0) < oo, so F~1(0) := {b; = 0,b2,...,b,}.
By 2° the domain of attraction D; of the solution y(-) = b; is nonempty for
j=1,...,q Evidently D, N D; = 0 for i # j. Put E* :=R" \ F~1(0).

(ii) Define

Gly) :=p’(y), yeE".
Evidently G(y) is a symmetric, positive definite matrix of class C! on E*
and, by 3°, z7 o B(y) oz < 0 whenever F(y)T oz = 0, ||z| = 1. Thus
assumptions (i) and (ii) of Theorem 2.3 are satisfied.

(iii) If ¢ > 1, then E* \ D; # 0. This means that there exists yg € E* N
OD;. Let yo(t) denote the solution of (*) satisfying yo(0) = yo and defined on
[0,w). Since D, is a domain of attraction, therefore, by the classical theorem
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on continuous dependence on initial values, yo(t) € 0D; for t € [0,w). Now
4° shows that

Ja >0 such that 7(yo(t),0E*U{0})>a for0<t<w,

which means that assumption (iii) of Theorem 2.3 is satisfied.

(iv) By Theorem 2.3 there exist positive numbers § and k such that if
y(0) € D, and r[yo(0),y(0)] < 6 and y(-) is the solution of (*) with initial
value y(0), then

rly(s(t)), yo(t)] < kr[y(0),y0(0)] for0<t<w

for a suitable increasing, positive function s(-) : [0,w) — (0,00) such that
s(0) = 0 and [0, s(w)) is the right maximal interval of existence of y(-). Since
y(t) — 0 as t — oo we get a contradiction, hence ¢ = 1 and yo(-) = 0is a
GAS solution in the whole R™.

Note that Proposition 4.1 remains true if instead of 4° we assume that

Vr>0 f o(s)ds = 00, where p(s):=min{p(y): ||yl = s},
but the proof is a little more complicated.
A typical candidate for p is p(y) = || F(y)||*¢, where c is a fixed nonneg-
ative number. Then p(y) is positive of class C!, and p satisfies 4° if
p(y) +p(y)z" o F'(y) o
= c|F@)I* F(y)7 o F'(y) o F(y) + [|IF(y)l|I**zT o F'(y) oz < 0.
This yields
COROLLARY 4.2. Proposition 4.1 remains true if 3° is replaced by
(C) 320 cF(y)ToF(y)oFy)+IIF®)|*a" o F'(y)oz <0
whenever 7 o F(y) =0, |jz|| = 1.

|2c

From Proposition 4.1, Theorem 2.2 and Corollary 4.2 we obtain at once
the following.

Remark 4.3. Let F = (F},...,F,) be a polynomial map of R® with
F(0) = 0 such that

(

(1) JacF(y) #0 for every y € R",

(2) gT o F'(b)oz <0 if|z|=1, F(b)=0,

3) 320 c[F@E) oF(y)oF(y)+IFI*z" o F'(y)oz <0
whenever zT o F(y) =0, ||z = 1.

Then y(-) = 0 is a GAS solution of (+) . In particular, F~(0) = {0}.

At this moment we want to show a connection between Borg type con-
dition (C) and the eigenvalues of the matrix H(y) which is the symmetric
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part of F'(y), i.e. H(y) = 3[F'(y) + F'(y)T]. Let A1(y),..., An(y) be those
eigenvalues. Define
a(y) == max{(A;(y) + Me(v)) :J # k, j,k=1,...,n}, yeR".
Remark 4.4. Inequality (2.5) in [HO] implies

F(y)T o F'(y) o F(y) + IF()*z7 o F'(y) oz < aly) IF(y)|?
whenever z7 o F(y) =0, |z} = 1.

Now we formulate and prove the main theorem of the paper.

THEOREM 4.5 (Main Theorem). Let F = (Fy,...,F,) be a polynomial
map of R™, F(0) = 0. Let H(y), M(y),...,An(y) and a(y) be as defined
above. Assume that

(a) Jac F(y) # 0 for every y € R™,

(b) all eigenvalues of F'(b) have negative real parts if F(b) =0,

(c) a(y) <0 for every y € R".
Then y(-) = 0 is a GAS solution of (%), y € R", and the mapping F is
bijective.

Proof. Case I. We assume additionally #F ~!(0)=max{#F~}(w) :
w € R™"}. Now it is sufficient to prove that yo(-) = 0 is a GAS solution of
(). By (b) and Theorem 2.2, y(-) = b is a LAS solution of (x) whenever
F(b)=0.

We check that the function

py) = IIFW)I°, yeR*\F(0),

satisfies the assumptions of Corollary 4.2. By Remark 4.4,

ply) +p(y)z" o F'(y) oz = F(y)T o F'(y) o F(y) + | F(y)lI’e” o F'(y) oz
< ay)|F)* <0

whenever z7 o F(y) = 0, ||z|| = 1. Therefore, assumption (C) of Corollary
4.2 is satisfied.

Since #F~1(0) = max{#F~1(w) : w € R"}, there exists d > 0 such
that 4 := {y € R" : | F(y)]| < d} is compact. Hence,

JR >0 suchthat |F(y)|| >dif|z|| > R,

i.e. 4° is also satisfied. Thus, by Corollary 4.2, yo(-) = 0 is a GAS solution
of (x) and F is bijective.

Case IL If #F~1(0) < max{#F~!(w) : w € R}, then, by Lemma 3.1,
we can choose b € R™ such that #F~!(b) = max{#F~!(w) : w € R*}. Put

Gly)=F(b+y)—F(), yeR".
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Obviously G satisfies all assumptions which F satisfied in Case I. Hence G
is bijective, so is F', and F has to satisfy the assumptions of Case I. m

Now we prove that Theorem 4.5 generalizes Meisters and Olech’s result
(cf. [MO]).

THEOREM 4.6. Let F = (F1, F;) be a polynomial mapping of R2. If
F(0) =0, Jac F(y) > 0 and

OF OF:
Tr F'(y) := —l(y) + —z(y) <0 for everyy € R?,
oy 0y2
then y(-) =0 is a GAS solution of the autonomous system
(*) n=F 1), ¥=Fl,¥n), @,1)eR.

In particular, F~1(0) = {0}.

Proof. We show that the assumptions of Theorem 4.6 imply those of
Theorem 4.5 for n = 2.

Since Jac F(y) > 0 and Tr F'(y) < 0, all eigenvalues of F’(y) have nega-
tive real parts. If H(y) := $[F'(y) + F'(y)7], y € R™, and A1(y), M2(y) are
the eigenvalues of H(y), then

a(y) = M(y) + da(y) = Tr H'(y) = Tr F'(y) < 0.
Thus all assumptions of Theorem 4.5 are satisfied. =

It is known that if a complex polynomial map of C? has nontrivial con-
stant jacobian and symmetric jacobian matrix, then the map is bijective
(cf. [D]). For the sake of comparison we present a real counterpart of this
fact.

Remark 4.7. If F is a polynomial mapping of R2, Jac F(y) > 0 and
F'(y) is symmetric for any y € R?, then F is bijective.

One can check this by applying Theorem 4.6. The result is also true for
any C! map and it is a consequence of Corollary 1 in [MO1].

Note that assumption (C) of Corollary 4.2 in fact concerns the symmetric
part H(y) of F'(y) because

B(z,y) :=c F(y)T o F'(y) o F(y) + ||F)IPz" o F'(y) oz
=c F(y)T o H'(y) o F(y) + |IF)|’zT o H'(y) 0 z;

thus, it can be very restrictive even in the case of a linear system of differen-
tial equations. The following simple example, presented to us by A. van den
Essen, shows this fact.

EXAMPLE 4.8. Define the linear mapping F of R3 by
F(y1,¥2,93) = (—y1 + 21y3, —y2 + 1293, —y3)-
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Then the zero solution of the equation y = F(y) is globally asymptotically
stable, but assumption (C) of Corollary 4.2 is not satisfied because if

1 -1
= —(1,1,0) and y=—=(22,11,1),
T \/5( ) and y \/5( )
then
-1
F(y) = %(——1, 1,-1), zT o F(y)=0, B(z,y)=2c-1,

while if

—~1,1) and y=\_/—%(1,1,0),

1
z=—=(1,
7
then

F(y)=\_/—%(—1,—1,0), T oF(y) =0, B(z,y)=2—c.
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