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A saturation theorem for combinations
of Bernstein–Durrmeyer polynomials

by P. N. Agrawal and Vijay Gupta† (Roorkee)

Abstract. We prove a local saturation theorem in ordinary approximation for com-
binations of Durrmeyer’s integral modification of Bernstein polynomials.

Introduction. The Bernstein–Durrmeyer polynomial of order n is de-
fined by

Mn(f, x) =
1∫

0

W (n, x, t)f(t) dt , f ∈ L1[0, 1] ,

where

W (n, x, t) = (n+ 1)
n∑
ν=0

pnν(x)pnν(t) ,

pnν(x) being (nν )xν(1−x)n−ν , x ∈ [0, 1]. These operators were introduced by
Durrmeyer [5] by replacing f(ν/n) in Bn(f, x), the Bernstein polynomials,
by (n+1)

∫ 1

0
pnν(t)f(t) dt. Several authors (see [1]–[4], [6], [8], [9]) have stud-

ied the operators Mn and obtained direct and inverse results both in sup-
norm and Lp-norm. In this paper we study the saturation behaviour of the
linear combination Mn(f, k, x) [7]. It turns out that even though Bernstein–
Durrmeyer polynomials are not exponential type operators [7] yet their sat-
uration behaviour is similar to that of the operators of exponential type.

The linear combination Mn(f, k, x) of Mdjn(f, x), j = 0, 1, . . . , k, is de-
fined by

Mn(f, k, x) =
k∑
j=0

C(j, k)Mdjn(f, x) ,
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where

C(j, k) =
k∏
i=0
i 6=j

dj
dj − di

for k 6= 0 , C(0, 0) = 1 ,

and d0, d1, . . . , dk are k + 1 arbitrary but fixed distinct positive integers.

R e m a r k. The definition of C(j, k) can also be related to the formula

xk =
k∑
j=0

C(j, k)
k∏
i=0
i 6=j

(x− di) ,

which is a simple rephrasing of the interpolation formula

xk =
k∑
j=0

C(j, k)lj(x) ,

where l0, l1, . . . , lk are the Lagrange fundamental polynomials corresponding
to the knots d0, d1, . . . , dk. Therefore, by simple computation, we get the
relation

k∑
j=0

C(j, k) = 1 .

Throughout this paper, let C0 denote the set of continuous functions
on [0, 1] having a compact support and Ck0 the subset of C0 of k times
continuously differentiable functions. The spaces A.C.[a, b] and LB [0, 1] are
defined as the class of absolutely continuous functions on [a, b] for every a, b
satisfying 0 < a < b < 1 and the class of bounded and integrable functions
on [0, 1] respectively. 〈a, b〉 ⊂ [0, 1] stands for an open interval containing
the closed interval [a, b].

2. Preliminary results. In the following result we obtain an estimate
of the degree of approximation by Mn(·, k, x) for smooth functions.

Theorem 2.1. Let 0 ≤ p ≤ 2k+ 2, f ∈ LB [0, 1], and suppose f (p) exists
and is continuous on 〈a, b〉 ⊂ [0, 1]. Then for all n sufficiently large,

‖Mn(f, k, ·)− f(·)‖C[a,b] ≤ max{C1n
−p/2ω(f (p), n−1/2), C2n

−(k+1)}

where C1 = C1(k, p), C2 = C2(k, p, f) and ω(f (p), δ) denotes the modulus of
continuity of f (p) on 〈a, b〉.

P r o o f. For x ∈ [a, b], writing

F (t, x) = f(t)−
p∑
j=0

f (j)(x)
j!

(t− x)j ,
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we have

|F (t, x)| ≤ |t− x|
p

p!

(
1 +
|t− x|
n−1/2

)
ω(f (p), n−1/2)

for t ∈ 〈a, b〉. Thus if χ(t) denotes the characteristic function of 〈a, b〉, by
[3, Prop. II.3] and the Schwarz inequality,

Mn(|F (t, x)|χ(t), x) ≤ C3n
−p/2ω(f (p), n−1/2) ,

where C3 = C3(p). Similarly, for some constant C4 and all n sufficiently
large, we have

Mn(|F (t, x)|(1− χ(t)), x) ≤ C4[Mn((t− x)2(2k+2), x)]1/2 ≤ C5n
−(k+1) .

Hence,

|Mn(|F (t, x)|, x)| ≤ C3n
−p/2ω(f (p), n−1/2) + C5n

−(k+1) .

But by [6, Prop.]

Mn

( p∑
j=1

f (j)(x)
j!

(t− x)j , k, x
)

= O(n−(k+1))

uniformly in x ∈ [a, b]. Hence for all n sufficiently large

‖Mn(f, k, ·)− f(·)‖C[a,b] ≤ C6n
−p/2ω(f (p), n−1/2) + C7n

−(k+1) ,

where C6 does not depend on f , from which the required result is immediate.

In the following lemma, the inner product 〈h(·), g(·)〉 is defined as∫ 1

0
h(x)g(x) dx.

Lemma 2.2. Let 0 < a < b < 1. If f ∈ C[0, 1] and g ∈ C∞0 with
supp g ⊂ (a, b), then

|nk+1〈M2n(f, k, ·)−Mn(f, k, ·), g(·)〉| ≤ K‖f‖C[0,1] ,

where K is a constant independent of f and n.

P r o o f. We write

M2n(f, k, x)−Mn(f, k, x) =
2k+2∑
j=1

α(j, k)Mejn(f, x) ,

where ej ∈ {d0, d1, . . . , dk, 2d0, 2d1, . . . , 2dk}. By [7, Lemma 3.5] it follows
that

2k+2∑
j=1

α(j, k)e−mj = 0 , m = 0, 1, . . . , k .(2.1)
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Next, by using [3, Prop. II.3], we have

nk+1〈M2n(f, k, ·)−Mn(f, k, ·), g(·)〉

= nk+1
1∫

0

1∫
0

{ 2k+2∑
j=1

α(j, k)W (ejn, x, t)f(t)g(x)
}
dt dx

= nk+1
∫

supp g

1∫
0

{. . .} dt dx

= nk+1
∫

supp g

b∫
a

{. . .} dt dx+ o(1)‖f‖C[0,1]

= nk+1
1∫

0

b∫
a

{. . .} dt dx+ o(1)‖f‖C[0,1] .

Now, using Fubini’s theorem and expanding g(x) by Taylor’s theorem, we
get

(2.2) nk+1〈M2n(f, k, ·)−Mn(f, k, ·), g(·)〉

= nk+1
b∫
a

1∫
0

2k+2∑
i=0

2k+2∑
j=1

α(j, k)
i!

W (ejn, x, t)f(t)g(i)(t)(x− t)i dx dt

+ nk+1
b∫
a

1∫
0

2k+2∑
j=1

α(j, k)W (ejn, x, t)f(t)ε(x, t)(x− t)2k+2 dx dt

+ o(1)‖f‖C[0,1]

=
2k+2∑
i=0

nk+1
b∫
a

1∫
0

2k+2∑
j=1

α(j, k)
i!

W (ejn, x, t)f(t)g(i)(t)(x− t)i dx dt

+ nk+1
1∫

0

b∫
a

2k+2∑
j=1

α(j, k)W (ejn, x, t)f(t)ε(x, t)(x− t)2k+2 dt dx

+ o(1)‖f‖C[0,1]

= J1 + J2 + o(1)‖f‖C[0,1] , say ,

where ε(x, t)(x− t)2k+2 is the remainder term corresponding to the partial
Taylor expansion of g.

Since, for ξ lying between t and x,

|ε(x, t)| = |g
(2k+2)(ξ)− g(2k+2)(x)|

(2k + 2)!
≤ 2

(2k + 2)!
‖g(2k+2)‖C[a,b] <∞ ,
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using [3, Prop. II.3], it follows that J2 = O(1)‖f‖C[0,1].
To estimate J1, we proceed as follows: J1 may be rewritten as

J1 = nk+1
2k+2∑
i=0

1
i!

2k+2∑
j=1

α(j, k)
b∫
a

( 1∫
0

W (ejn, x, t)(x− t)i dx
)
f(t)g(i)(t) dt .

Now, we note that W (n, x, t) = W (n, t, x), therefore using [3, Prop. II.3],
after interchanging the variables t and x, together with equation (2.1) it fol-
lows that J1 = O(1)‖f‖C[0,1]. Combining the estimates for J1, J2 and (2.2),
we obtain the required result.

Theorem 2.3 [2]. Let f ∈ C[0, 1], 0 < a1 < a2 < a3 < b3 < b2 < b1 < 1
and 0 < α < 2. Then, in the following , the implications (i)⇒(ii)⇔(iii)⇒(iv)
hold :

(i) ‖Mn(f, k, ·)− f(·)‖C[a1,b1] = O(n−α(k+1)/2).

(ii) f ∈ Liz(α, k + 1, a2, b2).

(iii) (a) For m < α(k+1) < m+1, m = 0, 1 . . . , 2k+1, f (m) exists and is
is in Lip(α(k + 1)−m, a2, b2).

(b) For α(k + 1) = m + 1, m = 0, 1, . . . , 2k, f (m) exists and is in
Lip∗(1, a2, b2).

(iv) ‖Mn(f, k, ·)− f(·)‖C[a3,b3] = O(n−α(k+1)/2).

Here Liz(α, k, a, b) denotes the class of functions for which ω2k(f, h, a, b)
≤Mhαk; when k = 1, Liz(α, 1) reduces to the Zygmund class Lip∗ α.

3. The saturation result

Theorem 3.1. Let f ∈ C[0, 1] and 0 < a1 < a2 < a3 < b3 < b2 < b1 < 1.
Then, in the following statements, the implications (i)⇒(ii)⇒(iii) and
(iv)⇒(v)⇒(vi) hold true:

(i) nk+1‖Mn(f, k, ·)− f(·)‖C[a1,b1] = O(1);

(ii) f (2k+1) ∈ A.C.[a2, b2] and f (2k+2) ∈ L∞[a2, b2];

(iii) nk+1‖Mn(f, k, ·)− f(·)‖C[a3,b3] = O(1);

(iv) nk+1‖Mn(f, k, ·)− f(·)‖C[a1,b1] = o(1);

(v) f ∈ C2k+2[a2, b2] and
2k+2∑
j=1

Q(j, k, x)
j!

f (j)(x) = 0, x ∈ [a2, b2],

where Q(j, k, x) are the polynomials occurring in [6, Th. 2];

(vi) nk+1‖Mn(f, k, ·)− f(·)‖C[a3,b3] = o(1),

where all O(1) and o(1) terms are with respect to n, as n→∞.
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P r o o f. First assume (i); then in view of (i)⇒(iii) of Theorem 2.3, it
follows that f (2k+1) exists and is continuous on (a1, b1). Moreover, the
statement

(3.1) ‖Mn(f, k, ·)− f(·)‖C[a1,b1] = O(n−(k+1))

is equivalent to

(3.2) ‖M2n(f, k, ·)−Mn(f, k, ·)‖C[a1,b1] = O(n−(k+1)) .

Indeed, trivially (3.1)⇒(3.2). Also, assuming (3.2), since limn→∞Mn(f, k, x)
= f(x), we can write

f(x) = Mn(f, k, x) + [M2n(f, k, x)−Mn(f, k, x)]
+ [M4n(f, k, x)−M2n(f, k, x)] + . . .

+ [M2rn(f, k, x)−M2r−1n(f, k, x)] + . . .

Hence,

‖f(·)−Mn(f, k, ·)‖C[a1,b1]

≤ ‖M2n(f, k, ·)−Mn(f, k, ·)‖C[a1,b1]

+ ‖M4n(f, k, ·)−M2n(f, k, ·)‖C[a1,b1]

+ . . .+ ‖M2rn(f, k, ·)−M2r−1n(f, k, ·)‖C[a1,b1] + . . .

= K1

(
1

nk+1
+

1
2k+1nk+1

+ . . .+
1

(2r−1)k+1nk+1
+ . . .

)
=

K1

nk+1

1
1− 2−(k+1)

=
K2

nk+1
,

where K2 = K1/(1− 2−(k+1)), showing that (3.1) holds.
Thus, we may assume that {nk+1(M2n(f, k, ·)−Mn(f, k, ·))} is bounded

as a sequence in C[a1, b1] and hence in L∞[a1, b1]. Since L∞[a1, b1] is the
dual space of L1[a1, b1], it follows by Alaoglu’s theorem that there exists
h ∈ L∞[a1, b1] such that for some subsequence {ni}∞i=1 of natural numbers
and for every g ∈ C∞0 with supp g ⊂ (a1, b1)

(3.3) lim
ni→∞

nk+1
i 〈M2ni(f, k, ·)−Mni(f, k, ·), g(·)〉 = 〈h(·), g(·)〉 .

Now, since C2k+2[a1, b1]∩C[0, 1] is dense in C[0, 1] there exists a sequence
{fσ}∞σ=1 in C2k+2[a1, b1] ∩C[0, 1] converging to f in ‖ · ‖C[0,1]-norm. Then,
for any g ∈ C∞0 with supp g ⊂ (a1, b1) and each function fσ, by [6, Th. 2]
we have



Bernstein–Durrmeyer polynomials 163

(3.4) lim
ni→∞

nk+1
i 〈M2ni

(fσ, k, ·)−Mni
(fσ, k, ·), g(·)〉

=
〈
−(1− 2−(k+1))

2k+2∑
j=1

Q(j, k, ·)
j!

f (j)
σ (·), g(·)

〉
= 〈P2k+2(D)fσ(·), g(·)〉 = 〈fσ(·), P ∗2k+2(D)g(·)〉 ,

where P ∗2k+2(D) denotes the operator adjoint to P2k+2(D) (in this case, it
is simply a result of integration by parts). By Lemma 2.2, we conclude
that

(3.5) lim
ni→∞

nk+1
i |〈M2ni

(f − fσ, k, ·)−Mni
(f − fσ, k, ·), g(·)〉|

≤ K‖f − fσ‖C[0,1] .

Hence, by (3.5), (3.4) and (3.3) (in that order)

〈f(·), P ∗2k+2(D)g(·)〉 = lim
σ→∞

〈fσ(·), P ∗2k+2(D)g(·)〉

= lim
σ→∞

{ lim
ni→∞

nk+1
i 〈M2ni(f − fσ, k, ·)−Mni(f − fσ, k, ·), g(·)〉

+ 〈fσ(·), P ∗2k+2(D)g(·)〉}

= lim
ni→∞

nk+1
i 〈M2ni

(f, k, ·)−Mni
(f, k, ·), g(·)〉 = 〈h(·), g(·)〉 ,

for all g ∈ C∞0 with supp g ⊂ (a1, b1). Thus

(3.6) P2k+2(D)f(x) = h(x)

as generalized functions.
Note that Q(2k+2, k, x) 6= 0 by [6, Prop.]. Therefore, regarding (3.6) as

a first order linear differential equation for f (2k+1), we deduce that f (2k+1) ∈
A.C.[a2, b2] and hence f (2k+2) ∈ L∞[a2, b2]. This completes the proof of the
implication (i)⇒(ii).

Now assuming (ii), it follows that f (2k+1) ∈ LipM (1, a2, b2) with M =
‖f (2k+2)‖L∞[a2,b2]. Hence (iii) follows by Theorem 2.1.

To prove (iv)⇒(v), assuming (iv) and proceeding in the manner of the
proof of (i)⇒(ii), we get P2k+2(D)f(x) = 0, from which in view of the
non-vanishing of Q(2k + 2, k, x), (v) is clear.

The proof of (v)⇒(vi) follows from [6, Th. 2]. This completes the proof
of the theorem.
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