On Cauchy–Riemann submanifolds whose local geodesic symmetries preserve the fundamental form

by Sorin Dragomir (Stony Brook, N.Y.) and Mauro Capursi (Bari)

Abstract. We classify generic Cauchy–Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.

Introduction. Let (M^{2m}, g, J) be a Hermitian manifold of complex dimension m, where g denotes the Hermitian metric, while J stands for the complex structure. Let $\Psi : M^n \to M^{2m}$ be an isometric immersion of a real n-dimensional Riemannian manifold (M^n, g) in M^{2m}. Let $E \to M^n$ be the normal bundle of Ψ. Then M^n is a Cauchy–Riemann (C.R.) submanifold of M^{2m} if it carries a pair of complementary distributions (D, D^\perp) such that D is holomorphic (i.e. $J_x(D_x) = D_x$, $x \in M^n$) and D^\perp is totally real (i.e. $J_x(D^\perp_x) \subseteq E_x$, $x \in M^n$). Let \tan_x, \nor_x be the natural projections associated with the direct sum decomposition $T_x(M^{2m}) = T_x(M^n) \oplus E_x$, $x \in M^n$.

Each C.R. submanifold M^n of an (almost) Hermitian manifold M^{2m} is known to possess a natural f-structure P (in the sense of K. Yano [7]) given by $PX = \tan(JX)$. The fundamental 2-form Ω of M^n is given by $\Omega(X,Y) = g(X,PY)$, for any tangent vector fields X, Y on M^n. In the present note we are concerned with the following:

Problem. Let M^{2m} be an (almost) Hermitian manifold. Classify its C.R. submanifolds M^n all of whose local geodesic symmetries preserve the fundamental form.

Let M^n be such a C.R. submanifold. Set $q = \dim \ker D^\perp_x$, $x \in M^n$. By a result of K. Sekigawa–L. Vanhecke [5], if M^n is invariant (i.e. $q = 0$) then...
M^n is a locally symmetric Kaehler manifold. Our contribution regards the generic case (i.e. $q = \text{codim} M^n$) and consists in the following:

Theorem. Let M^n be an n-dimensional generic C.R. submanifold of the Kaehlerian manifold M^{2m}. If all local geodesic symmetries of M^n preserve the fundamental form, then M^n is locally a Riemannian product $M^{2(n-m)} \times M^{2m-n}$, where $M^{2(n-m)}$ is a totally geodesic complex submanifold of M^{2m}, while M^{2m-n} is a totally real submanifold of M^{2m}.

The key ingredient in the proof is a result by A. Gray [4], which provides power series expansions for analytic covariant tensor fields in normal coordinates.

2. Proof of the Theorem. Let (M^n, D, D^\perp) be a C.R. submanifold of the Kaehlerian manifold (M^{2m}, g, J). Let $x \in M^n$ and (U_x, x^i) a local system of normal coordinates at x, $x_i(x) = 0$, $1 \leq i \leq n$. Let R_{ijkl} denote the Riemann–Christoffel tensor field of (M^n, g) and ∇_i covariant differentiation. Let $W_{\alpha_1...\alpha_s}$ be an analytic covariant tensor field of type $(0,s)$ on M^n. By a result of A. Gray [4], if $p \in U_x$ then

(2.1) $W_{\alpha_1...\alpha_s}(p) = W_{\alpha_1...\alpha_s}(x) + \sum_{i=1}^n (\nabla_i W_{\alpha_1...\alpha_s})(x)x^i$

$$+ \frac{1}{2} \sum_{i,j=1}^n \left\{ \nabla_{ij}^2 W_{\alpha_1...\alpha_s} - \frac{1}{3} \sum_{t=1}^n \sum_{h=1}^s R_{ijhkt} W_{\alpha_1...\alpha_{h-1}t\alpha_{h+1}...\alpha_s} \right\}(x)x^i x^j$$

$$+ \frac{1}{6} \sum_{i,j,k=1}^n \left\{ \nabla_{ijk}^3 W_{\alpha_1...\alpha_s} - \sum_{t=1}^n \sum_{h=1}^s R_{ijhkt}(\nabla_k W_{\alpha_1...\alpha_{h-1}t\alpha_{h+1}...\alpha_s}) \right\}(x)x^i x^j x^k + \theta(x^4)$$

where $x^i = x^i(p)$ (cf. also B. Y. Chen–L. Vanhecke [1], p. 31).

Let $\gamma: r \rightarrow \exp_x(rX) \in U_x$ be a geodesic (parametrized by arc length) of (M^n, g), where $X \in T_x(M^n)$, $\|X\| = 1$. Let Ω be the fundamental 2-form of M^n. We work under the basic assumption that each local geodesic symmetry $f : \exp_x(rX) \rightarrow \exp_x(\rho rX)$ preserves Ω, i.e. $f^* \Omega = \Omega$, or

(2.2) $\Omega_{ij}(\exp_x(rX)) = \Omega_{ij}(\exp_x(\rho rX))$.

The local parametric equations (in normal coordinates) of γ are $x^i(r) = rX^i$, $1 \leq i \leq n$. Thus the power series expansion formula (2.1) leads
to the expansion

\[(2.3)\quad \Omega_{\alpha_1\alpha_2}(\gamma(r)) = \Omega_{\alpha_1\alpha_2}(x) + \sum_{i=1}^{n} X^i(\nabla_i \Omega_{\alpha_1\alpha_2})(x)r^i + \frac{1}{2} \sum_{i,j=1}^{n} X^i X^j \{ \nabla_{\alpha_1}^2 \Omega_{\alpha_1\alpha_2} - \frac{1}{3} \sum_{i=1}^{n} (R_{\alpha_1\alpha_2} \Omega_{\alpha_1\alpha_2} + R_{\alpha_2\alpha_1} \Omega_{\alpha_1\alpha_2}) \} (x)r^i r^j \]

\[+ \frac{1}{6} \sum_{i,j,k=1}^{n} X^i X^j X^k \{ \nabla_{\alpha_1}^3 \Omega_{\alpha_1\alpha_2} - \sum_{i=1}^{n} (R_{\alpha_1\alpha_2} \nabla_k \Omega_{\alpha_1\alpha_2} + R_{\alpha_2\alpha_1} \nabla_k \Omega_{\alpha_1\alpha_2}) \} (x)r^i r^j r^k \]

\[\quad - \frac{1}{2} \sum_{i=1}^{n} (\nabla_{\alpha_1} \nabla_i R_{j\alpha_2 \beta \kappa} + \nabla_{\alpha_2} \nabla_i R_{j\alpha_1 \beta \kappa}) (x)r^i r^j \Omega_{\alpha_1\alpha_2} = 0, \text{ i.e. the canonical}\]

\[\text{f-structure of } M^n \text{ is parallel and} \]

\[\nabla X R(PY, X)X + P(\nabla X R)(Y, X)X = 0 \]

for any \(Y \in T_x(M^n) \). Set \(FZ = \text{nor}(JZ) \) for any tangent vector field \(Z \) on \(M^n \). Then \(F \) is a normal bundle valued 1-form on \(M^n \) vanishing on the holomorphic distribution. Set \(t\xi = \tan(J\xi) \), \(f\xi = \text{nor}(J\xi) \), for any cross-section \(\xi \) in \(E \rightarrow M^n \). Clearly, if \(M^n \) is generic (\(q = 2m - n \)) then \(f = 0 \). Let \(\sigma \) be the second fundamentanl form of \(\Psi \) and \(\alpha \xi \) the Weingarten operator (associated with the normal section \(\xi \)). Let \(\nabla_{\xi} \) be the Levi-Civita connection of \((M^{2m}, \tilde{g})\). Yet \(\tilde{g} \) is Kaehlerian, i.e. \(\nabla J = 0 \); by the Gauss and Weingarten formulae (see e.g. eqs. (1.1)–(1.2) of [9], p. 19) and identification of tangential, respectively normal, components, one obtains

\[(2.6)\quad (\nabla X P)Y = a_{PY}X + t\sigma(X, Y), \]

\[(2.7)\quad (\nabla X F)Y = -\sigma(X, PY) \]

for any tangent vector fields \(X, Y \) on \(M^n \). As \(P \) is parallel, \(FP = 0 \) and
\(t = J \), formula (2.6) gives

\[
(2.8) \quad \sigma(X, PY) = 0
\]

and by (2.7), \(F \) is parallel, too. As a consequence both the holomorphic and totally real distributions are parallel and thus \(M^n \) is locally a Riemannian product. It is easily seen that (2.8) also yields that \(M^{2(n-m)} \) is totally geodesic.

Remarks. (i) Let \(M^{2m} \) be a complete simply connected complex space-form (of constant holomorphic curvature \(c \)). Combining our Theorem with a result by K. Yano–M. Kon [8], one shows that if \(M^n \) is a complete generic submanifold obeying (2.2) then either \(M^n \) is an \(m \)-dimensional totally real (i.e. \(P = 0 \)) submanifold of \(M^{2m} \), or \(c = 0 \) and\(M^n \) is congruent to \(\mathbb{C}^{n-m} \times M^{2m-n} \), where \(M^{2m-n} \) is a totally real submanifold of \(\mathbb{C}^m \).

(ii) The curvature identity (2.5) does not contribute further to the classification of generic submanifolds (subject to (2.2)) of complex space-forms. Indeed, by remark (i), either \(P = 0 \) and thus (2.5) is identically satisfied, or \(c = 0 \) and then (by the Gauss eq. (1.10) of [9], p. 78),

\[
R(Y, Z)W = a_\sigma(Z, W)Y - a_\sigma(Y, W)Z
\]

for any tangent vector fields \(Y, Z, W \) on \(M^n \). As \(M^n \) is generic, any normal field \(\xi \) may be written as \(\xi = FY \) for some \(Y \) tangent to \(M^n \). Thus (2.6) and (2.8) yield \(a_\xi PY = 0 \) for any \(Y, \xi \). Consequently, \(R(PY, Z)W = R(Y, PZ)W = R(Y, Z)PW = 0 \) and (2.5) turns into \(P\nabla_X(R(Y, X)i_\perp X) = 0 \), where \(i_\perp = -tF \); now this is identically satisfied, as \(D_\perp \) is parallel.

(iii) Let \(M^{2m} \) be a locally conformal Kaehler manifold (see e.g. I. Vaisman [6]). Let \(M^n \) be a generic C.R. submanifold subject to (2.2). Repeating the arguments in the proof of our Theorem, we obtain \(\nabla P = 0 \). Then, by a result of [2; II, Th. 1, p. 2], if the 1-form \(\omega \) induced by the Lee form of \(M^{2m} \) has no singular points (i.e. \(\omega_x \neq 0 \), for any \(x \in M^n \)) then \(M^n \) is a totally real submanifold of \(M^{2m} \) (see also [3]).

References

\textit{Cauchy–Riemann submanifolds}