ANNALES POLONICI MATHEMATICI LVII.2 (1992)

On Cauchy–Riemann submanifolds whose local geodesic symmetries preserve the fundamental form

by SORIN DRAGOMIR (Stony Brook, N.Y.) and MAURO CAPURSI (Bari)

Abstract. We classify generic Cauchy–Riemann submanifolds (of a Kaehlerian manifold) whose fundamental form is preserved by any local geodesic symmetry.

Introduction. Let $(M^{2m}, \overline{g}, J)$ be a Hermitian manifold of complex dimension m, where \overline{g} denotes the Hermitian metric, while J stands for the complex structure. Let $\Psi: M^n \to M^{2m}$ be an isometric immersion of a real n-dimensional Riemannian manifold (M^n, g) in M^{2m} . Let $E \to M^n$ be the normal bundle of Ψ . Then M^n is a *Cauchy–Riemann* (C.R.) submanifold of M^{2m} if it carries a pair of complementary distributions (D, D^{\perp}) such that D is holomorphic (i.e. $J_x(D_x) = D_x, x \in M^n$) and D^{\perp} is totally real (i.e. $J_x(D_x^{\perp}) \subseteq E_x, x \in M^n$). Let \tan_x , nor $_x$ be the natural projections associated with the direct sum decomposition

$$T_x(M^{2m}) = T_x(M^n) \oplus E_x, \quad x \in M^n.$$

Each C.R. submanifold M^n of an (almost) Hermitian manifold M^{2m} is known to possess a natural *f*-structure *P* (in the sense of K. Yano [7]) given by $PX = \tan(JX)$. The fundamental 2-form Ω of M^n is given by

$$\Omega(X,Y) = g(X,PY)\,,$$

for any tangent vector fields X, Y on M^n . In the present note we are concerned with the following:

PROBLEM. Let M^{2m} be an (almost) Hermitian manifold. Classify its C.R. submanifolds M^n all of whose local geodesic symmetries preserve the fundamental form.

Let M^n be such a C.R. submanifold. Set $q = \dim_{\mathbb{R}} D_x^{\perp}$, $x \in M^n$. By a result of K. Sekigawa–L. Vanhecke [5], if M^n is invariant (i.e. q = 0) then

 $^{1991\} Mathematics\ Subject\ Classification:\ 53C40,\ 53C55.$

Key words and phrases: Cauchy–Riemann submanifolds.

 M^n is a locally symmetric Kaehler manifold. Our contribution regards the generic case (i.e. $q = \operatorname{codim} M^n$) and consists in the following:

THEOREM. Let M^n be an n-dimensional generic C.R. submanifold of the Kaehlerian manifold M^{2m} . If all local geodesic symmetries of M^n preserve the fundamental form, then M^n is locally a Riemannian product $M^{2(n-m)} \times M^{2m-n}$, where $M^{2(n-m)}$ is a totally geodesic complex submanifold of M^{2m} , while M^{2m-n} is a totally real submanifold of M^{2m} .

The key ingredient in the proof is a result by A. Gray [4], which provides power series expansions for analytic covariant tensor fields in normal coordinates.

2. Proof of the Theorem. Let (M^n, D, D^{\perp}) be a C.R. submanifold of the Kaehlerian manifold $(M^{2m}, \overline{g}, J)$. Let $x \in M^n$ and (U_x, x^i) a local system of normal coordinates at $x, x^i(x) = 0, 1 \leq i \leq n$. Let R_{ijkl} denote the Riemann–Christoffel tensor field of (M^n, g) and ∇_i covariant differentiation. Let $W_{\alpha_1...\alpha_s}$ be an analytic covariant tensor field of type (0, s) on M^n . By a result of A. Gray [4], if $p \in U$ then

$$(2.1) \quad W_{\alpha_{1}...\alpha_{s}}(p) = W_{\alpha_{1}...\alpha_{s}}(x) + \sum_{i=1}^{n} (\nabla_{i}W_{\alpha_{1}...\alpha_{s}})(x)x^{i} \\ + \frac{1}{2}\sum_{i,j=1}^{n} \left\{ \nabla_{ij}^{2}W_{\alpha_{1}...\alpha_{s}} - \frac{1}{3}\sum_{t=1}^{n}\sum_{h=1}^{s} R_{i\alpha_{h}jt}W_{\alpha_{1}...\alpha_{h-1}t\alpha_{h+1}...\alpha_{s}} \right\}(x)x^{i}x^{j} \\ + \frac{1}{6}\sum_{i,j,k=1}^{n} \left\{ \nabla_{ijk}^{3}W_{\alpha_{1}...\alpha_{s}} - \sum_{t=1}^{n}\sum_{h=1}^{s} R_{i\alpha_{h}jt}(\nabla_{k}W_{\alpha_{1}...\alpha_{h-1}t\alpha_{h+1}...\alpha_{s}}) \\ - \frac{1}{2}\sum_{t=1}^{n}\sum_{h=1}^{s} (\nabla_{i}R_{j\alpha_{h}kt})W_{\alpha_{1}...\alpha_{h-1}t\alpha_{h+1}...\alpha_{s}} \right\}(x)x^{i}x^{j}x^{k} + \theta(x^{4})$$

where $x^i = x^i(p)$ (cf. also B. Y. Chen–L. Vanhecke [1], p. 31).

Let $\gamma: r \to \exp_x(rX) \in U_x$ be a geodesic (parametrized by arc length) of (M^n, g) , where $X \in T_x(M^n)$, ||X|| = 1. Let Ω be the fundamental 2-form of M^n . We work under the basic assumption that each local geodesic symmetry $f: \exp_x(rX) \to \exp_x(-rX)$ preserves Ω , i.e. $f^*\Omega = \Omega$, or

(2.2)
$$\Omega_{ij}(\exp_x(rX)) = \Omega_{ij}(\exp_x(-rX)).$$

The local parametric equations (in normal coordinates) of γ are $x^i(r) = rX^i$, $1 \leq i \leq n$. Thus the power series expansion formula (2.1) leads

to the expansion

$$(2.3) \qquad \mathcal{\Omega}_{\alpha_{1}\alpha_{2}}(\gamma(r)) = \mathcal{\Omega}_{\alpha_{1}\alpha_{2}}(x) + \sum_{i=1}^{n} X^{i} (\nabla_{i} \mathcal{\Omega}_{\alpha_{1}\alpha_{2}})(x)r$$

$$+ \frac{1}{2} \sum_{i,j=1}^{n} X^{i} X^{j} \left\{ \nabla_{ij}^{2} \mathcal{\Omega}_{\alpha_{1}\alpha_{2}} - \frac{1}{3} \sum_{t=1}^{n} (R_{i\alpha_{1}jt} \mathcal{\Omega}_{t\alpha_{2}} + R_{i\alpha_{2}jt} \mathcal{\Omega}_{\alpha_{1}t}) \right\} (x)r^{2}$$

$$+ \frac{1}{6} \sum_{i,j=1}^{n} X^{i} X^{j} X^{k} \left\{ \nabla_{ijk}^{3} \mathcal{\Omega}_{\alpha_{1}\alpha_{2}} - \sum_{t=1}^{n} (R_{i\alpha_{1}jt} \nabla_{k} \mathcal{\Omega}_{t\alpha_{2}} + R_{i\alpha_{2}jt} \nabla_{k} \mathcal{\Omega}_{\alpha_{1}t}) - \frac{1}{2} \sum_{t=1}^{n} (\mathcal{\Omega}_{t\alpha_{2}} \nabla_{i} R_{j\alpha_{1}kt} + \mathcal{\Omega}_{\alpha_{1}t} \nabla_{i} R_{j\alpha_{2}kt}) \right\} (x)r^{3} + \theta(r^{4}).$$

Let $\{e_i\}_{1 \le i \le n}$ be an orthonormal basis of $T_x(M^n)$ such that $e_1 = X$. We suppose the normal coordinates at x have been chosen such that $\partial/\partial x^i|_x = e_i$, $1 \le i \le n$. By straightforward computation our (2.3) turns into

$$(2.4) \quad \Omega_{ij}(\gamma(r)) = \langle e_i, P_x e_j \rangle + \langle e_i, (\nabla P)_x(X, e_j) \rangle r + \frac{1}{2} \langle e_i, (\nabla^2 P)_x(X, X, e_j) - \frac{1}{3} (RP + PR)_x e_j \rangle r^2 + \frac{1}{6} \langle e_i, (\nabla^3 P)_x(X, X, X, e_j) - R_x (\nabla P)_x (X, e_j) - (\nabla P)_x (X, R_x e_j) - \frac{1}{2} \{ (\nabla_X R) (P_x e_j, X) X + P_x (\nabla_X R) (e_j, X) X \} \rangle r^3 + \theta(r^4)$$

where $\langle , \rangle = g_x$ and R_x denotes the transformation $R_x v = R(v, X)X$, $v \in T_x(M^n)$. Next (2.2) and (2.4) furnish $\nabla P = 0$, i.e. the canonical *f*-structure of M^n is parallel and

(2.5)
$$(\nabla_X R)(PY, X)X + P(\nabla_X R)(Y, X)X = 0$$

for any $Y \in T_x(M^n)$. Set $FZ = \operatorname{nor}(JZ)$ for any tangent vector field Zon M^n . Then F is a normal bundle valued 1-form on M^n vanishing on the holomorphic distribution. Set $t\xi = \tan(J\xi)$, $f\xi = \operatorname{nor}(J\xi)$, for any cross-section ξ in $E \to M^n$. Clearly, if M^n is generic (q = 2m - n) then f = 0. Let σ be the second fundamental form of Ψ and a_{ξ} the Weingarten operator (associated with the normal section ξ). Let $\overline{\nabla}$ be the Levi-Civita connection of (M^{2m}, \overline{g}) . Yet \overline{g} is Kaehlerian, i.e. $\overline{\nabla}J = 0$; by the Gauss and Weingarten formulae (see e.g. eqs. (1.1)–(1.2) of [9], p. 19) and identification of tangential, respectively normal, components, one obtains

(2.6)
$$(\nabla_X P)Y = a_{FY}X + t\sigma(X,Y),$$

(2.7)
$$(\nabla_X F)Y = -\sigma(X, PY)$$

for any tangent vector fields X, Y on M^n . As P is parallel, FP = 0 and

t = J, formula (2.6) gives

(2.8)
$$\sigma(X, PY) = 0$$

and by (2.7), F is parallel, too. As a consequence both the holomorphic and totally real distributions are parallel and thus M^n is locally a Riemannian product. It is easily seen that (2.8) also yields that $M^{2(n-m)}$ is totally geodesic.

Remarks. (i) Let M^{2m} be a complete simply connected complex space-form (of constant holomorphic curvature c). Combining our Theorem with a result by K. Yano–M. Kon [8], one shows that if M^n is a complete generic submanifold obeying (2.2) then either M^n is an m-dimensional totally real (i.e. P = 0) submanifold of M^{2m} , or c = 0 and M^n is congruent to $\mathbb{C}^{n-m} \times M^{2m-n}$, where M^{2m-n} is a totally real submanifold of \mathbb{C}^m .

(ii) The curvature identity (2.5) does not contribute further to the classification of generic submanifolds (subject to (2.2)) of complex space-forms. Indeed, by remark (i), either P = 0 and thus (2.5) is identically satisfied, or c = 0 and then (by the Gauss eq. (1.10) of [9], p. 78), $R(Y,Z)W = a_{\sigma(Z,W)}Y - a_{\sigma(Y,W)}Z$ for any tangent vector fields Y, Z, W on M^n . As M^n is generic, any normal field ξ may be written as $\xi = FY$ for some Y tangent to M^n . Thus (2.6) and (2.8) yield $a_{\xi}PY = 0$ for any Y, ξ . Consequently, R(PY,Z)W = R(Y,PZ)W = R(Y,Z)PW = 0 and (2.5) turns into $P\nabla_X(R(Y,X)i^{\perp}X) = 0$, where $i^{\perp} = -tF$; now this is identically satisfied, as D^{\perp} is parallel.

(iii) Let M^{2m} be a locally conformal Kaehler manifold (see e.g. I. Vaisman [6]). Let M^n be a generic C.R. submanifold subject to (2.2). Repeating the arguments in the proof of our Theorem, we obtain $\nabla P = 0$. Then, by a result of [2; II, Th. 1, p. 2], if the 1-form ω induced by the Lee form of M^{2m} has no singular points (i.e. $\omega_x \neq 0$, for any $x \in M^n$) then M^n is a totally real submanifold of M^{2m} (see also [3]).

References

- B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Agnew. Math. 325 (1981), 28–67.
- [2] S. Dragomir, Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I, II, Geom. Dedicata 28 (1988), 181–197; Atti Sem. Mat. Fis. Univ. Modena 37 (1989), 1–11.
- [3] —, On submanifolds of Hopf manifolds, Israel J. Math. (2) 61 (1988), 199–210.
- [4] A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J. 20 (1973), 329–344.
- K. Sekigawa and L. Vanhecke, Symplectic geodesic symmetries on Kaehler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95–103.

- [6] I. Vaisman, Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. 12 (1979), 263–284.
- [7] K. Yano, On a structure defined by a tensor field of type (1, 1) satisfying $f^3 + f = 0$, Tensor (N.S.) 14 (1963), 99–109.
- [8] K. Yano and M. Kon, Generic submanifolds, Ann. Mat. Pura Appl. 123 (1980), 59-92.
- [9] —, —, CR Submanifolds of Kaehlerian and Sasakian Manifolds, Progr. Math. 30, Birkhäuser, Boston 1983.

DEPARTMENT OF MATHEMATICS STATE UNIVERSITY OF NEW YORK AT STONY BROOK STONY BROOK, NEW YORK 11794-3651 U.S.A. DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI BARI 70125 BARI, ITALY

Reçu par la Rédaction le 15.1.1990