On one-dimensional diffusion processes living in a bounded space interval

by Anna Milian (Kraków)

Abstract. We prove that under some assumptions a one-dimensional Itô equation has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness holds.

Introduction. In the present paper we will consider a diffusion satisfying the stochastic integral Itô equation

\begin{equation}
X(t) = X(0) + \int_0^t a(s, X(s)) \, ds + \int_0^t b(s, X(s)) \, dW(s)
\end{equation}

where \(W(t) \) is a given one-dimensional Wiener process on a probability space \((\Omega, \mathcal{F}, P)\).

It is known ([1], p. 372) that if \(b(t, r_i) = 0 \leq (-1)^i a(t, r_i) \), \(i = 0, 1, t \geq 0 \), and if \(a \) and \(b \) are sufficiently regular, then (1) has a unique solution \(X(t) \) concentrated on the interval \([r_0, r_1]\).

In this paper we consider strong solutions of (1) ([3], p. 149). An example of a stochastic integral equation which has a solution but has no strong solution is due to H. Tanaka ([3], p. 152). We will give some sufficient conditions in order that (1) has a unique (in the sense of pathwise uniqueness) strong solution \(X(t) \), satisfying \(X(t) \in (\alpha(t), \beta(t)) \) for \(t \geq 0 \), where \(\alpha \) and \(\beta \) are given sufficiently regular real-valued functions defined for \(t \geq 0 \).

Existence and pathwise uniqueness of the strong solution of equation (1) on a finite spatial interval. First we give some sufficient conditions in order that a strong solution \(X(t) \) of the stochastic equation

1991 Mathematics Subject Classification: 60H20.

Key words and phrases: one-dimensional Itô equation, bounded strong solutions, time-dependent boundaries.
exists and satisfies the additional condition
\[|X(t)| < 1 \quad \text{for } t \geq 0. \]

We will need the following theorem ([1], Theorem 3.11, p. 300 in the case \(d = 1 \)):

Theorem 1. Let \(a : [0,\infty) \times \mathbb{R} \to \mathbb{R} \) and \(b : [0,\infty) \times \mathbb{R} \to \mathbb{R} \) be locally bounded and Borel measurable. Suppose that for each \(T > 0 \) and \(N \geq 1 \) there exist constants \(K_T \) and \(K_{T,N} \) such that

1) \[|b(t,x)|^2 \leq K_T(1 + x^2), \quad xa(t,x) \leq K_T(1 + x^2), \quad 0 \leq t \leq T, \ x \in \mathbb{R}, \]

2) \[|b(t,x) - b(t,y)| \vee |a(t,x) - a(t,y)| \leq K_{T,N}|x - y|, \quad 0 \leq t \leq T, \ |x| \vee |y| \leq N. \]

Given a 1-dimensional Brownian motion \(W \) and an independent \(\mathbb{R} \)-valued random variable \(\xi \) on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) such that \(E[|\xi|^2] < \infty \), there exists a process \(X \) with \(X(0) = \xi \) a.s. such that \((\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}, W, X)\) is a solution of the stochastic integral equation (1), where \(\mathcal{F}_t = \mathcal{F}^W_t \vee \sigma(\xi) \) (\(\sigma(\xi) \) denotes the minimal \(\sigma \)-algebra with respect to which \(\xi \) is measurable).

Let \(\Phi(t,x) \) be a monotone (in \(x \)) continuous function, defined for \(t \in [0,T], x \in (-1,1) \), for which the derivatives \(\Phi_t(t,x) \), \(\Phi_x(t,x) \) and \(\Phi_{xx}(t,x) \) exist and are continuous. For each \(t \in [0,T] \) there exists a function \(\Psi(t,x) \) inverse to \(\Phi(t,x) \), i.e. \(\Phi(t,\Psi(t,x)) = x, \Psi(t,\Phi(t,x)) = x \). If \(\xi(t) \) satisfies (1) and \(|\xi(t)| < 1 \) for \(t \in [0,T] \), then applying Itô’s formula ([2], Theorem 4, p. 24) we conclude that the process \(X(t) = \Phi(t,\xi(t)) \) satisfies the equation

\[dX(t) = m(t,X(t)) \, dt + \sigma(t,X(t)) \, dW(t), \]

where

\[m(t,x) = \frac{\partial \phi}{\partial t}(t,\Psi(t,x)) + \frac{\partial \phi}{\partial x}(t,\Psi(t,x))a(t,\Psi(t,x)) + \frac{1}{2} \frac{\partial^2 \phi}{\partial x^2}(t,\Psi(t,x))b^2(t,\Psi(t,x)), \]

\[\sigma(t,x) = \frac{\partial \phi}{\partial x}(t,\Psi(t,x))b(t,\Psi(t,x)). \]

Let

\[p(x) = \int_0^x \frac{ds}{\sqrt{1 + s^2}}, \]

\[\Phi(x) = p^{-1}\left(\ln \frac{1 + x}{1 - x} \right). \]
Note that Φ is an increasing one-to-one mapping from $(-1, 1)$ onto \mathbb{R}. Define

$$\Psi(x) = \Phi^{-1}(x) = \frac{e^{p(x)} - 1}{e^{p(x)} + 1}.$$

Theorem 2. Assume that a 1-dimensional Wiener process $W(t)$ and an independent \mathbb{R}-valued random variable X_0 on a probability space (Ω, \mathcal{F}, P) are given, $|X_0| < 1$ with probability 1. Let the coefficients $a(t, x)$ and $b(t, x)$ of (1) be defined, Borel measurable and locally bounded for $t \geq 0$, $|x| \leq 1$. Suppose further that

1) for each $T > 0$ there exists a constant K_T such that
$$|a(t, x) - a(t, y)| + |b(t, x) - b(t, y)| \leq K_T|x - y|$$
$t \in [0, T], |x| \leq 1, |y| \leq 1$,

2) $b(t, \mp 1) = 0$ for $0 \leq t \leq T$,

3) $a(t, 1) \leq 0, a(t, -1) \geq 0$ for $0 \leq t \leq T$,

4) $E(\Phi(X_0))^2 < \infty$.

Then there exists a process $X(t)$ with $X(0) = X_0$ a.s. such that $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}, W, X(t))$ is a solution of the stochastic integral equation (1), where $\mathcal{F}_t = \mathcal{F}_t^W \lor \sigma(X_0)$, and $|X(t)| < 1$ for $0 \leq t \leq T$ a.s. If $X_1(t)$ and $X_2(t)$ are two solutions of (1) with $P(X_i(0) = X_0) = 1$ and $|X_i(t)| < 1$ a.s. for $i = 1, 2$ and for $t \in [0, T]$, then
$$P\left\{ \sup_{0 \leq t \leq T} |X_1(t) - X_2(t)| = 0 \right\} = 1.$$

Proof. By 1) and 2) we have $|b(t, x)| = |b(t, x) - b(t, 1)| \leq K_T|x - 1|$. Thus
$$\left| \frac{b(t, x)}{x} \right| \leq K_T \quad \text{for } 0 \leq t \leq T, |x| < 1.$$

Analogously
$$\left| \frac{b(t, x)}{x + 1} \right| \leq K_T \quad \text{for } 0 \leq t \leq T, |x| < 1.$$

From 1) and 3) we have
$$\frac{a(t, x)}{x + 1} = \frac{a(t, x) - a(t, -1)}{x + 1} + \frac{a(t, -1)}{x + 1} \geq \frac{a(t, x) - a(t, -1)}{x + 1} \geq \frac{-|a(t, x) - a(t, -1)|}{x + 1}.$$

Hence
$$\frac{a(t, x)}{x + 1} \geq -K_T \quad \text{for } 0 \leq t \leq T, |x| < 1.$$
Analogously

\[\frac{a(t,x)}{1-x} - \frac{a(t,1)}{1-x} \leq K_T \quad \text{for } 0 \leq t \leq T, |x| < 1. \]

Consider the equation (1) with the drift coefficient \(m(t,x) \) and the diffusion coefficient \(\sigma(t,x) \) given by the formulas (2) and (3); \(\Phi \) and \(\Psi \) are given by (5) and (6). We will prove that they satisfy all assumptions of Theorem 1. By (6)

\[\Psi'(x) = \frac{2e^{p(x)}}{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}, \]

\[\Psi''(x) = \frac{2e^{p(x)}[(1 - e^{p(x)})\sqrt{1 + x^2} - e^{p(x)} + 1]}{(1 + x^2)^{3/2}[e^{p(x)} + 1]^3}. \]

Since \(\Phi \circ \Psi = \text{id} \), we have

\[\Phi'(\Psi(x)) = \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}}. \]

Differentiating the identity \(\Phi'(\Psi(x))\Psi'(x) = 1 \), we obtain \(\Phi''(\Psi(x)) = -\Psi''(x)\{\Psi'(x)\}^{-3} \). Thus

\[m(t,x) = a(t,\Psi(x)) \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}} \]

\[\quad - \frac{1}{2} b^2(t,\Psi(x)) \left(\frac{b(t,\Psi(x))}{\Psi'(x)} \right)^2 \Psi''(x) \frac{\Psi''(x)}{\Psi'(x)}, \]

\[\sigma(t,x) = b(t,\Psi(x)) \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}}. \]

If \(x \geq 0 \), then \(p(x) \geq 0 \) and by (7) and (12) we obtain

\[|\sigma(t,x)| \leq K_T \frac{e^{p(x)} + 1}{e^{p(x)}} \sqrt{1 + x^2} \leq 2K_T \sqrt{1 + x^2}. \]

If \(x \leq 0 \), then \(p(x) \leq 0 \) and by (8) and (12) we have

\[|\sigma(t,x)| \leq K_T \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}} \leq 2K_T \sqrt{1 + x^2}. \]

Thus \(\sigma(t,x) \) satisfies Condition 1) of Theorem 1.
If $x \geq 0$, then by (10)
\begin{equation}
(13) \quad xa(t, \Psi(x)) \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}} = \frac{a(t, \Psi(x))}{1 - \Psi(x)} x \sqrt{1 + x^2(1 + e^{-p(x)})} \leq 2K_T(1 + x^2).
\end{equation}

If $x \leq 0$, then by (9)
\begin{equation}
(14) \quad xa(t, \Psi(x)) \frac{\sqrt{1 + x^2(e^{p(x)} + 1)^2}}{2e^{p(x)}} = \frac{a(t, \Psi(x))}{1 + \Psi(x)} x \sqrt{1 + x^2(e^{p(x)} + 1)} \\
\leq -K_T x \sqrt{1 + x^2(e^{p(x)} + 1)} - K_T (-x) \sqrt{1 + x^2(e^{p(x)} + 1)} \leq 2K_T(1 + x^2).
\end{equation}

Next
\begin{equation}
(15) \quad -\frac{1}{2} \Psi''(x) = \frac{1}{2} \Psi(x) - \frac{x}{2(1 + x^2)}.
\end{equation}

Since $b(t, \Psi(x))/\Psi'(x) = \sigma(t, x)$ satisfies Condition 1) of Theorem 1, by (13)–(15) we conclude that $m(t, x)$ satisfies Condition 1) of Theorem 1. Condition 2) of Theorem 1 also holds.

Thus, there exists a process $Y(t)$ satisfying (1) with the coefficients $m(t, x)$ and $\sigma(t, x)$ with the initial condition $Y(0) = \Phi(0, X_0)$. Using Itô’s formula, we prove that the process $X(t) = \Psi(t, Y(t))$ satisfies the equation
\begin{align*}
\quad dX(t) &= a_1(t, X(t))dt + b_1(t, X(t))dW(t), \\
\quad a_1(t, x) &= \Psi'(\Phi(x))m(t, \Phi(x)) + \frac{1}{2}\Psi''(\Phi(x))\sigma^2(t, \Phi(x)), \\
\quad b_1(t, x) &= \Psi'\Phi(x))\sigma(t, \Phi(x)).
\end{align*}

Applying formulas (2), (3) and the identity $\Psi \circ \Phi = \text{id}$, we obtain
\begin{equation*}
\quad a_1(t, x) = a(t, x)(\Psi \circ \Phi)'(x) + \frac{1}{2}b^2(t, x)(\Psi \circ \Phi)''(x) = a(t, x).
\end{equation*}

Analogously,
\begin{equation*}
\quad b_1(t, x) = b(t, x)(\Psi \circ \Phi)'(x) = b(t, x).
\end{equation*}

Thus $X(t)$ is a strong solution of (1) with the initial condition $X(0) = \Phi(0, Y(0)) = \Phi(0, \Phi(0, X_0)) = X_0$. Moreover, $|X(t)| < 1$ for $t \geq 0$ a.s. Let $X_1(t)$ and $X_2(t)$ be two solutions of (1) with $P(X_i(0) = X_0) = 1$ and $|X_i(t)| < 1$ for $t \in [0, T]$, $i = 1, 2$. Extend b to be zero outside $[-1, 1]$ and set $a(t, x) = a(t, -1)$, $x < -1$, and $a(t, x) = a(t, 1)$, $x > 1$. Then from Theorem 3.7 of [1], p. 297, we conclude that $P\{X_1(t) = X_2(t) \text{ for } 0 \leq t \leq T\} = 1$, that is to say, the pathwise uniqueness holds. The proof is finished.

If the coefficients of (1) satisfy the assumptions of Theorem 2 and additionally $a(t, x)$ and $b(t, x)$ are continuous in both arguments, then ([2], Theorem 2, p. 68 and [2], p. 66) the solution of (1) is a diffusion with diffusion coefficient $b^2(t, x)$ and drift coefficient $a(t, x)$.
Let \(f(t, x) \) be a real function defined in \(G = \{(t, x) : 0 \leq t \leq T, \alpha(t) \leq x \leq \beta(t)\} \), where \(\alpha, \beta \in C^1[0, T] \). Assume that \(f(t, x) \) is \(C^3 \) in some open neighbourhood of \(G \) and \((\partial f/\partial x)(t, x) > 0 \) in \(G \). Moreover, suppose \(f(t, \cdot) \) is a one-to-one mapping from \((\alpha(t), \beta(t)) \) onto \((-1, 1)\) for \(t \in [0, T] \). Let \(g(t, \cdot) \) denote the inverse of \(f(t, \cdot) \), i.e.,

\[
g(t, f(t, x)) = x \quad \text{for } t \in [0, T].
\]

From Theorem 2 follows:

Corollary 1. Assume that a 1-dimensional Wiener process \(W(t) \) and an independent \(\mathbb{R} \)-valued random variable \(X_0 \) on a probability space \((\Omega, \mathcal{F}, P)\) are given, and \(X_0 \in (\alpha(0), \beta(0)) \) a.s. Let \(a(t, x) \) and \(b(t, x) \) be measurable in \(G \). Suppose the following assumptions are satisfied:

1. \(|a(t, x) - a(t, y)| + |b(t, x) - b(t, y)| \leq K|x - y|\) for \((t, x), (t, y) \in G\),
2. \(b(t, \alpha(t)) = b(t, \beta(t)) = 0\) for \(t \in [0, T]\),
3. \(a(t, \alpha(t)) \geq a(t, \beta(t)) \leq \beta(t)\) for \(t \in [0, T]\),
4. \(E[\Phi(0, (0, X_0))]^2 < \infty\).

Then there exists a process \(X(t) \) satisfying the conditions:

(A) \(X(t) = X_0 \) for \(t = 0 \),
(B) \(X(t) \in (\alpha(t), \beta(t)) \) a.s. for \(t \in [0, T]\).
(C) \((\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}, W, X(t))\) is a solution of (1), where \(\mathcal{F}_t = \mathcal{F}^W_t \vee \sigma(X_0) \).

Proof. Define

\[
a_1(t, x) = \frac{\partial f}{\partial t}(t, g(t, x)) + \frac{\partial f}{\partial x}(t, g(t, x))a(t, g(t, x)) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(t, g(t, x))b^2(t, g(t, x)),
\]

\[
b_1(t, x) = \frac{\partial f}{\partial x}(t, g(t, x))b(t, g(t, x)).
\]

We will show that \(a_1(t, x) \) and \(b_1(t, x) \) satisfy all the assumptions of Theorem 2.

Since \(f \) and \(g \) are \(C^3 \), by 1) the coefficients \(a_1(t, x) \) and \(b_1(t, x) \) satisfy Condition 1) of Theorem 2. Since \(g(t, -1) = (t, 0) = \beta(t), f(t, \beta(t)) = 1 \) and \(f_x(t, x) = 2 \) imply Conditions 2)–4) of Theorem 2, respectively.

Thus, by Theorem 2, there exists a solution \(X_1(t) \) of (1) with the coefficients \(a_1(t, x) \) and \(b_1(t, x) \) satisfying \(X_1(0) = f(0, X_0), |X_1(t)| < 1 \) a.s. for \(t \in [0, T]\). In the same way as in Theorem 2 we prove that the process \(X(t) = g(t, X_1(t)) \) is a solution of (1) with the coefficients \(a(t, x) \) and \(b(t, x) \). Moreover, \(X(t) \) satisfies Conditions (A)–(C).
If $X(t)$ and $\overline{X}(t)$ are two solutions of (1) satisfying (A)–(C), then by Theorem 2
\[P\left\{ \sup_{0 \leq t \leq T} |X(t) - \overline{X}(t)| = 0 \right\} = P\left\{ \sup_{0 \leq t \leq T} |f(t, X(t)) - f(t, \overline{X}(t))| = 0 \right\} = 1. \]
The corollary is proved.

If the conditions of Corollary 1 are fulfilled and additionally $a(t, x)$ and $b(t, x)$ are continuous in both arguments, then ([2], Theorem 2, p. 68 and [2], p. 66) $X(t)$ is a diffusion with diffusion coefficient $b^2(t, x)$ and drift coefficient $a(t, x)$.

Acknowledgements. The author would like to thank the referee for his suggestions that have helped to generalize an earlier version of Theorem 2.

References

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF CRACOW
WARSZAWSKA 24
31-155 KRAKOW, POLAND

Reçu par la Rédaction le 20.2.1990
Révisé le 8.5.1990, 18.3.1991 et 11.10.1991