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Regularity of solutions of parabolic equations
with coefficients depending on t and parameters

by T. Winiarska (Kraków)

Abstract. The main object of this paper is to study the regularity with respect to
the parameter h of solutions of the problem du/dt + Ah(t)u(t) = fh(t), u(0) = u0h. The
continuity of u with respect to both h and t has been considered in [6].

1. Introduction. In this paper, we consider the family of parabolic
problems

du

dt
(t) +Ah(t)u(t) = fh(t) for t ∈ (0, T ] ,(1)

uh(0) = u0
h ,(2)

with h ∈ Ω, where Ω is an open subset of Rn. It is well known that, under
certain assumptions, the solution of the problem (1), (2) is given by the
formula

(3) uh(t) = Uh(t, 0)u0
h +

t∫
0

Uh(t, s)fh(s) ds ,

where Uh is the fundamental solution of equation (1), for a fixed h ∈ Ω.
The problem of continuity of the mapping

(4) Ω × [0, T ] 3 (h, t)→ uh(t) ∈ X ,

with uh given by (3), was considered in [6].
The main object of this paper is to study the differentiability of (4) with

respect to h.
Similar problems are considered in [7], [8] but for differential equations

with Ah independent of t.

2. Preliminaries. Let X, Y be Banach spaces and let Ω be an open
subset of Rn. To simplify notation we shall assume thatΩ is an open interval
in R.
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We denote by B(X,Y ) the space of bounded linear operators from X
to Y . The space B(X,X) is denoted by B(X). The space of closed linear
operators from X to X will be denoted by C(X). For A ∈ C(X) the resolvent
set of A will be denoted by P (A).

Let D be a normed vector space such that there exist a Banach space
Z and a bijective bounded operator T : Z → D. Similarly to [8], we shall
consider the space

(5) SB(D,Y ) := {A : D → Y | A is linear and AT ∈ B(Z, Y )} .
The definition of SB(D,Y ) is independent of the choice of (Z, T ). The

space

MT := {A : [0, T ]→ SB(D,Y ) | the mapping
[0, T ] 3 t→ A(t)T ∈ B(Z, Y ) is continuous}

is a Banach space with the norm

‖A‖T := sup{‖A(t)T ‖ | t ∈ [0, T ]} .
If (Z ′, T ′) is another pair as needed in (5) thenMT =MT ′ with equivalent
norms. Thus, instead of MT we may write M or M(D,Y ) .

Accordingly, a mapping Ω 3 h→ Ah ∈ M is differentiable (continuous)
at h0 ∈ Ω if Ω 3 h → Ah ∈ MT is differentiable (continuous) at h0. We
have

A′h0
(t) =

(
d

dh
(Ah(t)T )

∣∣∣∣
h=h0

)
T −1 for t ∈ [0, T ] .

The operator A′h0
is independent of (Z, T ). Higher order differentiability

and the Ck-classes are now defined in the standard way.
The Banach space of all continuous mappings from [0, T ] into Y , with

the topology of uniform convergence, is denoted by C([0, T ];Y ).
We shall consider a family (Ah(t))(h,t)∈Ω×[0,T ] of closed linear operators

from X to X defined, for each (h, t) ∈ Ω× [0, T ], on a dense linear subspace
D(Ah(t)) = D of X.

Assumption Z1. There exist a Banach space Z and a bijective mapping
T : Z → D such that T ∈ B(Z,X) and the mapping

Ω × [0, T ] 3 (h, t)→ Ah(t)T ∈ B(Z,X)

is continuous.

If Assumption Z1 is fulfilled then Ah ∈ MT for all h ∈ Ω and the
mapping Ω 3 h→ Ah ∈MT is continuous, and vice versa.

Assumption Z2. There exist a Banach space Z, a continuous linear
bijective mapping T : Z → D and α ∈ (0, 1] such that the mapping

[0, T ] 3 t→ Ah(t)T ∈ B(Z,X)
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is Hölder continuous with exponent α, i.e. there exists L̃ > 0 such that

‖Ah(t)T −Ah(s)T ‖ ≤ L̃|t− s|α

for h ∈ Ω, 0 ≤ s ≤ T and 0 ≤ t ≤ T .

Assumption Z3. Ah(t) ∈ G(C0) for (h, t) ∈ Ω × [0, T ], where

G(C0) = {A ∈ C(X) | D(A) = X, [0,∞) ⊂ P (−A), ‖(A+ ξ)−k‖ ≤ C0ξ
−k

for ξ > 0, k = 1, 2, . . . and ‖A exp(−tA)‖ ≤ C0t
−1 for t > 0} .

Let ∆ = {(t, s) | 0 ≤ s ≤ t ≤ T}.
Definition 1. A mapping

(6) Uh : ∆ 3 (t, s)→ Uh(t, s) ∈ B(X)

is said to be a fundamental solution of (1) if

1) for every x ∈ X the mapping∆ 3 (t, s)→ Uh(t, s)x ∈ X is continuous,
2) Uh(t, r)Uh(r, s) = Uh(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ,
3) Uh(s, s) = I for s ∈ [0, T ],
4) for every x ∈ X the mapping (6) is differentiable with respect to t

and
∂

∂t
Uh(t, s)x = Ah(t)Uh(t, s)x ,

5) for every x ∈ D the mapping (6) is differentiable with respect to s
and

∂

∂s
Uh(t, s)x = −Uh(t, s)Ah(s)x .

Under Assumptions Z1–Z3 we may define (for details see e.g. [5], Chap. 5,
and [6])

Rh1 (t, s) := −(Ah(t)−Ah(s)) exp(−(t− s)Ah(s)) ,

Rhm(t, s) :=
t∫
s

Rh1 (t, τ)Rhm−1(τ, s) dτ for m = 2, 3, . . . ,

Rh(t, s) :=
∞∑
m=1

Rhm(t, s) ,

Wh(t, s) :=
t∫
s

exp(−(t− τ)Ah(τ))Rh(τ, s) dτ ,

Uh(t, s) := exp(−(t− s)Ah(s)) +Wh(t, s) ,(7)

where exp(−tAh(s)) is the strongly continuous semigroup with the infinites-
imal generator Ah(s) for h ∈ Ω, s ∈ [0, T ].

Since sufficient conditions for Uh given by (7) to be a fundamental solu-
tion of (1) are known (see e.g. [5]), we do not discuss them here.
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Assumption Z4. Uh given by (7) is a fundamental solution of (1) for
h ∈ Ω.

We shall use the following two theorems:

Theorem 1. Suppose Assumptions Z1–Z4 are fulfilled.

(i) ([5], Th. 5.2.2) If , for any h ∈ Ω, there exists a solution uh of the
problem (1), (2) and the mapping [0, T ] 3 t→ fh(t) ∈ X is continuous, then
uh is given by (3).

(ii) ([6], Th. 1) If the mappings

(8) Ω 3 h→ u0
h ∈ X ,

(9) Ω × [0, T ] 3 (h, t)→ fh(t)

are continuous, then the mapping (4), with uh given by (3), is continuous.

Theorem 2 ([4], Th. 4 and Th. 5, p. 301). Let k be a nonnegative integer.
If , for any h ∈ Ω,

(a) the mapping Ω 3 h→ Ah ∈M, is k times differentiable and its k-th
derivative is Hölder continuous,

(b) the mapping [0, T ] 3 t→ fh(t) ∈ X is k times differentiable and its
k-th derivative is Hölder continuous,

(c) {λ ∈ C | Reλ ≥ 0} ⊂ P (−Ah(t)) and ∃C > 0 such that

‖(Ah(t) + λI)−1‖ ≤ C 1
|λ|+ 1

,

then

1) there exists a solution uh of the problem (1), (2),
2) uh is given by (3),
3) uh is of class C1 in [0, T ] and Ck+1 in (0, T ].

3. Differentiability with respect to h. For h∈Ω, let uh be a solution
of (1), (2) and let h0 ∈ Ω. The function wh defined by

wh(t) =
uh(t)− uh0(t)

h− h0
for h 6= h0

is, for h 6= h0, a solution of the problem
dwh
dt

(t) +Ah(t)wh(t) = Fh(t) for t ∈ (0, T ] ,(10)

wh(0) = w0
h ,(11)

where

Fh(t) =


fh(t)− fh0(t)

h− h0
− Ah(t)−Ah0(t)

h− h0
uh0(t) for h 6= h0,

f ′h0
(t)−A′h0

(t)uh0(t) for h = h0,
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w0
h =


u0
h − u0

h0

h− h0
for h 6= h0,

u0
h0
′ for h = h0,

and “′” denotes differentiation with respect to h.

Proposition 1. Under the assumptions of Theorem 1, if the mappings

(12) Ω 3 h→ fh ∈ C([0, T ];X), Ω 3 h→ Ah ∈M, Ω 3 h→ u0
h ∈ X

are differentiable at h0 and the mapping

(13) [0, T ] 3 t→ Ah0(t)uh0(t) ∈ X
is continuous, then the mapping

(14) Ω 3 h→ uh ∈ C([0, T ];X)

is differentiable at h0 and its derivative at h0 is given by

(15) u′h0
(t) = Uh0(t, 0)w0

h0
+

t∫
0

Uh0(t, s)Fh0(s) ds .

P r o o f. Since
Ah(t)−Ah0(t)

h− h0
uh0(t) =

Ah(t)−Ah0(t)
h− h0

T (Ah0(t)T )−1Ah0(t)uh0(t)

and the convergence in M is uniform with respect to t, the mapping Ω ×
[0, T ] 3 (h, t)→ Fh(t) is continuous. By Theorem 1 the mapping

Ω × [0, T ]→ w̃h(t) := Uh(t, 0)w0
h +

t∫
0

Uh(t, s)Fh(s) ds

is continuous and w̃h = wh for h 6= h0. Thus, (4) is differentiable with
respect to h at h0, and its derivative at h0 is given by (15).

If uh0 is a solution of (1), (2) for h = h0 , and f is continuous, then (13) is
continuous iff uh0 is of class C1 in [0, T ]. For some theorems on regularity of
uh with respect to t we refer the reader to [4] and [3]. Combining Theorem 2
with Proposition 1 we have

Theorem 3. If the assumptions of Theorem 1 are fulfilled , u0
h ∈ D

for h ∈ Ω, the mappings (12) are differentiable, {λ ∈ C | Reλ ≥ 0} ⊂
P (−Ah(t)), ∃C > 0 such that

‖(Ah(t) + λI)−1‖ ≤ C 1
|λ|+ 1

,

and there exist K > 0 and δ ∈ (0, 1] such that

‖fh(t)− fh(τ)‖ ≤ K|t− τ |δ ,
then
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1) there exists a solution uh of the problem (1), (2),
2) the solution uh is given by (3),
3) the mapping (14) is differentiable and its derivative is given by

u′h(t) = Uh(t, 0)u0
h
′ +

t∫
0

Uh(t, s)f1
h(s) ds ,

where

(16) f1
h(s) = f ′h(s)−A′h(s)uh(s) for h ∈ Ω .

4. Higher order regularity. In this section we assume that the
assumptions of Theorem 1 are fulfilled, the mappings (12) are differentiable
in Ω, there exists a solution uh of the problem (1), (2) and that, for every
h ∈ Ω, it is of class C1 in [0, T ].

Let f1
h be defined by (16).

Lemma 1. If vh is a solution of the problem
dv

dt
(t) +Ah(t)v(t) = f1

h(t) for t ∈ (0, T ] ,

vh(0) = u0
h
′ ,

then

(17) vh(t) = Uh(t, 0)u0
h
′ +

t∫
0

Uh(t, s)f1
h(s) ds

and therefore vh = u′h for h ∈ Ω. Moreover , if the mapping

(18) Ω × [0, T ] 3 (h, t)→ f1
h(t) ∈ X

is continuous, then the mapping (14) is of class C1.

P r o o f. Since, for a given h ∈ Ω, f ′h is continuous (because the conver-
gence in C([0, T ];X) is uniform) and

A′h(t)uh(t) = [A′h(t)T ] ◦ [(Ah(t)T )−1] ◦ [Ah(t)uh(t)]

gives also the continuity of the mapping t → A′h(t)uh(t), f1
h is continuous

in [0, T ]. Therefore, by Theorem 1(i), we have (17). By Theorem 1(ii) and
since the mapping (18) is continuous, the mapping (14) is of class C1.

Lemma 2. If , for h ∈ Ω, uh is a solution of the problem (1), (2) of class
C1 in [0, T ] and C2 in (0, T ], fh and Ah are differentiable with respect to t,
and the mappings

Ω 3 h→ fh(0)−Ah(0)u0
h ∈ X ,

Ω × [0, T ] 3 (h, t)→ dfh(t)
dt

− dAh(t)
dt

uh(t) ∈ X
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are continuous, then the mapping

Ω 3 h→ duh
dt
∈ C([0, T ];X)

is continuous.

P r o o f. Since uh is of class C1 in [0, T ] and C2 in (0, T ], duh/dt is a
solution of the problem

dωh
dt

(t) +Ah(t)ωh(t) =
dfh(t)
dt

− dAh(t)
dt

uh(t) for t ∈ (0, T ] ,

ωh(0) = fh(0)−Ah(0)u0
h .

Now Theorem 1 completes the proof.

Theorem 4. If the assumptions of Lemmas 1 and 2 are fulfilled then the
mapping (4) is of class C1.

P r o o f. This is an immediate consequence of Lemmas 1 and 2.

The method presented here is the key to the inductive construction of
theorems on the higher order regularity of the solution of the problem (1),
(2) with respect to the parameter h.
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