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Abstract. Let T be a stochastic operator on a σ-finite standard measure space with
an equivalent σ-finite infinite subinvariant measure λ. Then T possesses a natural “con-
servative deterministic factor” Φ which is the Frobenius–Perron operator of an invertible
measure preserving transformation ϕ. Moreover, T is mixing (“sweeping”) iff ϕ is a mix-
ing transformation. Some stronger versions of mixing are also discussed. In particular, a
notion of ∗L1-s.o.t. mixing is introduced and characterized in terms of weak compactness.
Finally, it is shown that most stochastic operators are completely mixing and that the
same holds for convolution stochastic operators on l.c.a. groups.

1. Introduction. Let (X,Σ,m) be a σ-finite measure space. A linear
operator T on L1(m) is called stochastic if T takes probability densities to
probability densities. The adjoint T ′ is then a Markov operator on L∞(m).
If ϕ : X → X is a nonsingular transformation then the stochastic operator
Tϕ such that T ′ϕh = h ◦ ϕ is called the Frobenius–Perron operator of ϕ. On
a standard measure space the Frobenius–Perron operators are exactly the
extreme points of the convex set S = S(X,Σ,m) of all stochastic operators.

We consider (strong) mixing properties of stochastic operators and for
the most part restrict our attention to the set of operators admitting an
infinite invariant (or subinvariant) equivalent measure λ. If T is such an op-
erator then the action of T on L1(λ) will be denoted by P (see the notion of
λ-representation below). Various gradations of mixing depend on the mode
of convergence of Pn (see Section 2). If Pn → 0 in the weak operator topol-
ogy on L2(λ) then T (and P ) is simply called mixing [4], [11], or “sweeping”
[9]. Using some ideas of Foguel [4] we analyze the structure of P and prove
that the mixing property depends solely on the “conservative deterministic
factor” Φ of P (Thm. 1). In particular, a stochastic operator with a trivial
deterministic factor must be mixing.

Another, stronger notion is that of complete mixing (and its version
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of norm complete mixing) introduced in Krengel and Sucheston [10] and
investigated by Lin [11] in the general case (see also [1]). Interrelations be-
tween various mixing properties are indicated in Section 3 (Thm. 2). We
have also introduced ∗L1-s.o.t. mixing, a notion essentially stronger than the
complete mixing of the adjoint, characterized in terms of weak compactness
(Prop. 2).

The topological size of the set of mixing operators was analyzed in [7]
for the operator norm topology (o.n.t.), strong operator topology (s.o.t.),
and weak operator topology (w.o.t.) in S; the reader is also referred to [3]
for historic background. In Section 4 we prove that the norm completely
mixing operators form a residual set in s.o.t. both in S and in the set of
stochastic operators admitting a fixed σ-finite invariant (or subinvariant)
measure. Briefly, most stochastic operators are completely mixing (Thms.
3 and 4). This strengthens some results in [7]. The last section is devoted
to random walks on second countable locally compact abelian groups. We
observe that most random walks are completely mixing (Thm. 5).

Generally our notation is taken from [7] and [4]. Most of the basic facts
presented in this section can be found in [4].

It is well known that every positive operator in L(L1(m)) can be uniquely
extended by monotonicity to act on arbitrary nonnegative measurable func-
tions (or absolutely continuous measures). As in [7], if λ is a σ-finite equiv-
alent measure (λ ∼ m) then we write

S≤λ = {T ∈ S : Tλ ≤ λ} , Sλ = {T ∈ S : Tλ = λ} ,

and λ is called subinvariant (resp. invariant) with respect to T . Clearly
S≤λ = Sλ whenever λ is finite.

For any T ∈ S≤λ the action of T on the densities with respect to λ is
given by the λ-representation P of T , where P is a stochastic operator on
L1(λ) defined by

Pf =
dm

dλ
T

(
dλ

dm
f

)
(f ∈ L1(λ)) .

Clearly P acts as a positive contraction on any Lp(λ), 1 ≤ p ≤ ∞. We
denote by P ∗ the L2(λ)-adjoint of P as well as its monotone extensions to
all the spaces Lp(λ).

It is easy to see that an operator P ∈ L(L1(λ)) is the λ-representation
of some T ∈ S≤λ (resp. T ∈ Sλ) iff P ∈ P≤λ (resp. P ∈ Pλ), where

P≤λ = {P ∈ L(L1(λ)) : P ≥ 0, P1 ≤ 1, P ∗1 = 1} ,
Pλ = {P ∈ L(L1(λ)) : P ≥ 0, P1 = 1, P ∗1 = 1} .

For T ∈ S let X = C(T ) ∪ D(T ) be the Hopf decomposition into the
conservative and dissipative part of T . It is well known that T ′χD(T )≤χD(T )
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and C(TC(T )) = C(T ). A set A ∈ Σ is called T -invariant if T ′χA = χA.
A function f will be called invariant with respect to T if f ∈ L1(m) and
Tf = f .

Finally, we recall the Harris decomposition Tn = Qn +Rn, where Qn is
a positive kernel operator and there is no nonzero kernel operator K with
0 ≤ K ≤ Rn. An operator T ∈ S is called Harris if it is conservative and
Qn is not the zero operator for some n ≥ 1.

2. Mixing, factorization theorem. Our definition of mixing is the
same as in [7] and in accord with [4] and [11]. Let T ∈ S≤λ and P ∈ P≤λ
be the λ-representation of T . Then T (or P ) is called mixing if

(M) lim
∫
B

PnχAdλ = λ(A)λ(B)/λ(X)

whenever λ(A) + λ(B) < ∞. In other words, T is mixing if the iterations
Pn converge in the w.o.t. of L(L2(λ)) to the operator Eλ defined by Eλf =∫
fdλ/λ(X) if λ(X) < ∞, and Eλ = 0 if λ(X) = ∞. We remark that,

for λ(X) = ∞, mixing operators are also called “sweeping with respect to
sets of finite measure” and if the convergence of iterates is weakened to the
Cesàro convergence

(C) (1/n)
∑
i<n

∫
B

P iχAdλ→ 0 (λ(A) + λ(B) <∞) ,

then P is called “Cesàro sweeping with respect to the family of λ-finite sets”
(see [9]). It is easy to see e.g. by the ergodic theorem ([4], Thm. B, Ch. VII)
that (C) holds iff P has no nonzero invariant functions in L1(λ).

For infinite λ, if T ∈ S≤λ is mixing then T has no nonzero invariant
functions. Nevertheless, there exist nonergodic mixing operators, so (M)
is essentially stronger than (C). Indeed, it follows from [15] (Thms. 2.2
and 2.3) that a generic Frobenius–Perron operator in Sλ is ergodic and
conservative—hence satisfies (C)—without being mixing. Concrete examples
of ergodic nonmixing transformations can easily be obtained by modifying
the classical Chacon transformation.

Now we characterize mixing in terms of a “deterministic factor” of P ∈
P≤λ. As in [4], Ch. VIII, let

K = {f ∈ L2(λ) : ‖Pnf‖2 = ‖(P ∗)nf‖2 = ‖f‖2, n = 1, 2, . . .} .
Then K is a closed sublattice of L2(λ) and the operator P is unitary on K.
Note that for every f from the orthogonal complement of K, Pnf → 0 and
(P ∗)nf → 0 weakly in L2(λ). The family Σ1(P ) = {A ∈ Σ : χA ∈ K} is
a subring of Σ on which P and P ∗ act as automorphisms. Moreover, K is
the closed span of {χA : A ∈ Σ1} and if X1 ∈ Σ is minimal in Σ with the
property that A ⊂ X1 (mod λ) for every A ∈ Σ1 then X1 is P -invariant.
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The set X1 will be referred to as the deterministic part of P . Moreover, if
A ⊂ X2 = X\X1 and A has finite measure, then χA is orthogonal to K
whence PnχA → 0 weakly, which shows that P is always mixing on the
nondeterministic part X2. This allows us to consider the restriction of P to
X1. Note that the deterministic part of the restricted operator PX1 is also
equal to X1.

Now the following proposition, which is implicit in [4], easily follows:

Proposition 1. Assume (X,Σ) is a standard Borel space and λ is σ-
finite. Let T ∈ S≤λ and let P be the λ-representation of T . Then the space

K ′ = {f ∈ L2(λC(P )) : ‖Pnf‖2 = ‖(P ∗)nf‖2 = ‖f‖2, n = 1, 2, . . .}
coincides with L2(X ′, Σ′, λ′) where X ′ = X1 ∩ C(P ), Σ′ is the σ-algebra
generated by Σ1(P ) restricted to X ′ and λ′ is the (σ-finite) restriction of λ
to Σ′. Moreover , the following diagram commutes:

L2(λ) P−→ L2(λ)
Π ↓ ↓ Π
L2(λ′) Φ−→ L2(λ′)

where Πf is the conditional expectation of χC(P )f given Σ′, and Φg =
g ◦ ϕ−1 where ϕ is an invertible measure preserving transformation of
(X ′, Σ′, λ′).

We remark that if P is a Harris operator (in particular, if P is given by an
integral kernel) then by Thm. D of Ch. V in [4], and by [5], the measure space
(X ′, Σ′, λ′) is atomic. If, in addition, P admits no invariant functions then
each atom of λ′ must be a wandering set. Consequently, X ′ ⊆ D(P )∩C(P )
so it is trivial. On the other extreme, if P is the Frobenius–Perron operator
induced by a conservative invertible measure preserving transformation of
(X,Σ, λ) then clearly (X,Σ, λ) = (X ′, Σ′, λ′) and Φ = P . In general, the
transformation ϕ of (X ′, Σ′, λ′) can be viewed as the conservative determin-
istic factor of P (or T ).

Under the assumption of Proposition 1 we have

Theorem 1. P is mixing iff Φ is mixing.

P r o o f. It is clear that P is mixing iff PX1 is mixing. Also, P is mixing iff
PC(P ) is mixing since PD(P ) is always mixing. Moreover, P is always mixing
on the orthogonal complement of K. Now observe that PC(P ) on K is equal
to Φ.

3. Stronger version of mixing for infinite measure. In this section
we fix an equivalent σ-finite infinite measure λ and consider the set P≤λ. An
operator P ∈ P≤λ may possess stronger mixing properties than the mixing
considered above. They are defined according to the mode of convergence
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of Pn to zero. Some stronger versions of mixing have been discussed in the
literature ([8], [10], [13], [11], [12], [1], [7]). Below we introduce another kind
of mixing and review the relations between various mixing properties.

As in [7], we say that P is Lp-s.o.t. mixing if Pn → 0 in Lp-s.o.t. (Here
and below in this section we only consider Lp spaces for the measure λ.) Note
that L2-s.o.t. mixing is equivalent to the condition (ii) in Thm. 3.3 of [11] (see
the proof below). Similarly, we say that P is ∗Lp-s.o.t. mixing if (P ∗)n→0
in Lp-s.o.t. According to [10] (see also [11]), P is called completely mixing if
for every f ∈ L1

0 (i.e. f ∈ L1 with integral zero), Pnf → 0 weakly in L1. It
follows from [10] that complete mixing implies ergodicity and is equivalent
to the apparently stronger norm complete mixing defined by ‖Pnf‖1 → 0
(f ∈ L1

0). A more general definition of norm complete mixing for any T in S
is considered in Section 4. Analogously, P will be called (norm) ∗completely
mixing if for every f ∈ L1

0, ‖(P ∗)nf‖1 → 0 (this is condition (a) in Thm. 3.3
of [11]).

Theorem 2. The following implications hold :
L∞-s.o.t. mixing

↓
complete mixing → L2-s.o.t. mixing

↓
∗L1-s.o.t. mixing → ∗complete mixing → ∗L2-s.o.t. mixing → mixing

P r o o f. ∗L1-s.o.t. mixing implies ∗complete mixing by definition. It fol-
lows from Thm. 3.3 of [11] that ∗complete mixing implies ‖(P ∗)ng‖2 → 0
(g ∈ L2 ∩ L1

0). To prove that ∗complete mixing implies ∗L2-s.o.t. mixing it
suffices to observe that L2 ∩ L1

0 is dense in L2 for infinite λ. Analogously,
complete mixing implies L2-s.o.t. mixing. That L∞-s.o.t. mixing implies
L2-s.o.t. mixing has been observed in [7]. Clearly, mixing is implied by
L2-s.o.t. mixing and by ∗L2-s.o.t. mixing.

R e m a r k. None of the implications can be reserved. The operator
Pf(x) = f(x + 1) on L1(R) is mixing without being L2-s.o.t. mixing or
∗L2-s.o.t. mixing. Random walks on l.c.a. groups are usually L2-s.o.t. (and
∗L2-s.o.t.) mixing without being L∞-s.o.t. mixing or complete mixing (see
Section 5). A ∗L1-s.o.t. mixing operator must be dissipative while there exist
conservative ∗complete mixing operators among e.g. symmetric random
walks.

The notion of ∗L1-s.o.t. mixing can be characterized in terms of weak
compactness. As in [4], 3.7, we denote by C1(P ) the maximal part of C(P )
which is a countable union of P -invariant sets of finite measure.

Lemma 1. Let P ∈ P≤λ. Then P and P ∗ have the same sets of invariant
functions. Moreover , P has no nonzero invariant functions iff C1(P ) = ∅.
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P r o o f. From C(P ) = C(P ∗) we have (PC(P ))∗ = P ∗C(P∗). Furthermore,
as every invariant function is zero on the dissipative part, we can limit
ourselves to the case of conservative operators. Clearly, it suffices to prove
that every P -invariant function f is P ∗-invariant. The invariant functions
form a sublattice of L1(λ) so we can assume that f ≥ 0. Now f is measurable
with respect to P -invariant sets (see [4], Thm. A in Ch. III, and 7.4 in [4]),
so by a monotonicity argument, f is P ∗-invariant.

If P has no nonzero invariant functions then, by 7.4 and 3.7 in [4],
C1(P ) = ∅. To prove the converse it suffices to show that the supports
of P -invariant functions are contained in C1(P ). This follows immediately
from the first part of the proof and the definition of C1(P ).

If P is a λ-representation of T ∈S≤λ then P ∗ = T ′ and therefore P and T
have the same invariant sets. In particular, C1(P ) = ∅ iff every T -invariant
set has λ measure zero or infinity. On the other hand, P has no nonzero
invariant functions iff T has no nonzero invariant functions.

Now by Lemma 1, the above remark, and Lemma 8.6 in [16] (see also
[10]) we obtain

Proposition 2. Let P be a λ-representation of T ∈ S≤λ and suppose the
T -invariant sets are of measure zero or infinity. Then for every f ∈ L1(λ),
‖(P ∗)nf‖1 → 0 iff the sequence (P ∗)nf is conditionally weakly compact.

To conclude this section we remark that although it may seem reasonable
to consider the whole range of Lp-s.o.t. mixing properties for 1 < p <∞,
they all coincide with the L2-s.o.t. mixing. We omit a standard proof.
An analogous result for a finite measure λ has been proved by Lin ([11],
Thm. 2.3).

It should be recalled that by Lin [12], if P ∈ P≤λ, λ(X) = ∞, and P
is given by a transition probability then P is Lp-s.o.t. mixing iff the past
σ-field of the associated 2-sided Markov shift with the initial distribution λ
has no sets of positive finite measure.

4. Most stochastic operators are completely mixing. Through-
out the present section L1(m) is a separable space. We shall consider two
topologies in S: the o.n.t. and the s.o.t. Recall that S is a Polish space for
both.

Denote by N the set of norm completely mixing operators in S, i.e. a
stochastic operator T is in N iff

‖Tnf‖1 → 0 for every f ∈ L1
0(m) .

The following theorem shows that most operators in S are completely
mixing.
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Theorem 3. The set of norm completely mixing operators is a dense Gδ
in S for both s.o.t. and o.n.t.

P r o o f. Let f1, f2, . . . be a dense subset of L1
0(m). It is clear that

N =
⋂
n

⋂
k

⋂
p

⋃
r≥p

{T ∈ S : ‖T rfn‖1 < 1/k}

so N is a Gδ set for s.o.t. To prove the norm denseness we fix a function
0 ≤ u ∈ L1(m) with

∫
u dm = 1 and define

Ef = u
∫
f dm .

Clearly E is in S and so is Tα = αT+(1−α)E for every T ∈ S and 0 < α < 1.
If f ∈ L1

0(m) then T kf ∈ L1
0(m) whence ET kf = 0 for k ≥ 0. Consequently,

Tnα f = αnTnf → 0 in L1-norm so Tα ∈ N . Moreover, ‖Tα − T‖ → 0 as
α→ 1, which proves the denseness of N in S.

Now we consider the local size of the family of completely mixing oper-
ators by looking at N ∩ Sλ, where λ is a fixed equivalent σ-finite measure.
We denote by Cλ the set of λ-representations of (norm) completely mixing
operators in Sλ. Equivalently, P ∈ Cλ iff P ∈ Pλ and ‖Pnf‖ → 0 for every
f ∈ L1

0(λ) (here and below ‖ ‖ denotes the norm in L1(λ)). We recall that
Sλ as well as Pλ are Polish spaces for s.o.t. and the natural correspondence
T → P between Sλ and Pλ is an s.o.t. homeomorphism.

Lemma 2. For every s.o.t. neighborhood V in Pλ and every F ∈ Σ with
λ(F ) < ∞ there exist P ∈ V and A ∈ Σ such that λ(A) < ∞, F ⊂ A, and
PχA = χA.

P r o o f. We may assume that

V = {P ∈ Pλ : ‖PχEi
− P0χEi

‖ < ε , i = 1, . . . , p}

where ε > 0, P0 ∈ Pλ, and E1, . . . , Ep are disjoint sets of finite positive λ
measure. Now we may find nonnegative functions g1, . . . , gp that approxi-
mate P0χE1 , . . . , P0χEp so that

(a) λ{gi 6= 0} <∞,
(b)

∫
gi dλ = λ(Ei),

(c) ‖gi − P0χEi
‖ < ε,

(d)
∑
gi ≤ 1.

Indeed, note that
∑
i P0χEi

≤ 1. Now if λ{P0χEi
6= 0} < ∞ then sim-

ply let gi = P0χEi
. Otherwise, let gi = χAi

P0χEi
+ ciχBi

where the
coefficients 0 < ci ≤ 1 and the sets Ai, Bi are chosen in such a way
that A1 ∪ . . . ∪ Ap, B1, . . . , Bp are pairwise disjoint of finite measure and
ciλ(Bi) = ‖χAc

i
P0χEi‖ < ε/2 (i = 1, . . . , p).
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We now let E = E1∪ . . .∪Ep and A any set of finite measure containing

F ∪ E ∪
p⋃
i=1

{gi 6= 0} .

We define

Pf =
∑
i

gi
λ(E)

∫
Ei

f dλ+
χA −

∑
gi

λ(A\E)

∫
A\E

f dλ+ χAcf

(if E = X then omit the second term on the right; if λ(Ec) > 0, we may
always choose A with λ(A\E) > 0). It is easy to check that P ∈ Pλ and
PχEj = gj . Therefore P ∈ V by (c). Clearly PχA = χA, which ends the
proof of the lemma.

Theorem 4. The set of completely mixing operators is a dense Gδ in Sλ
with s.o.t.

P r o o f. It suffices to prove that Pλ\Cλ is a countable union of closed
nowhere dense sets in Pλ. To this end we choose a dense sequence f1, f2, . . .
in L1

0(λ) satisfying λ{fi 6= 0} <∞ (i ≥ 1). Now let

A(n, k) =
⋂
r

{P ∈ Pλ : ‖P rfn‖ ≥ 1/k}

and note that
Pλ\Cλ =

⋃
n

⋃
k

A(n, k) .

Since A(n, k) is closed, it suffices to show that it has empty interior.
Given any open neighborhood V in Pλ we apply the lemma above to

find P ∈ V and A ∈ Σ with 0 < λ(A) < ∞ and {fn 6= 0} ⊂ A such that
PχA = χA. Define

EAf =

∫
A
f dλ

λ(A)
χA

and Qf = EAf + χAcf . Clearly Q ∈ Pλ. Moreover, for every 0 < α < 1 we
have Pα = αP + (1 − α)Q ∈ Pλ. Note that if f ∈ L1(λ) and {f 6= 0} ⊂ A
then PEAf = EAPf = EAf , so P rαf = αrPf + (1−αr)EAf . In particular,
for n = 1, 2, . . . , ‖P rαfn‖ = αr‖Pf‖ → 0, which implies Pα 6∈ A(n, k). Since
Pα ∈ V for α sufficiently close to 1, the neighborhood V cannot be contained
in A(n, k).

5. Remarks on random walks. In this section we consider “space ho-
mogeneous” stochastic operators. Let X = G be a second countable locally
compact group with Borel σ-algebra Σ and left Haar measure m = λ. Any
probability measure µ on G defines a left convolution operator Tµ, where
(Tµf)(x) = (µ ∗ f)(x) =

∫
f(y−1x) dµ(y) for f ∈ L1(λ). Clearly Tµ ∈ Sλ
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and the associated Markov process is the (left) random walk determined by
µ. We note that if T ∈ S then by Wendel’s theorem (see [6], 35.5), T is a
convolution operator iff T is (right) translation invariant, which means that
TRa = RaT (a ∈ G), where Raf(x) = f(xa).

It has been shown by J. Rosenblatt [14] that there exists a completely
mixing convolution on G iff G is amenable. There seems to be no character-
ization of completely mixing random walks on general amenable groups in
terms of the support of the measure. On the other hand, the abelian case is
well understood. The following facts concerning l.c.a. groups are well known
(references can be found in [14]).

Let G be abelian and µ a probability measure on G. Then

(a) Tµ is ergodic iff µ is not concentrated on a closed proper subgroup
(Choquet–Deny);

(b) Tµ is norm completely mixing iff µ is not concentrated on a coset of
a closed proper subgroup.

It has also been observed in [7] that

(c) Tµ is L2-s.o.t. mixing iff |µ̂| < 1 a.e. on Ĝ.

In particular, we have the following example which should be compared with
Thm. 2.

Example. Let µ be a probability measure on G = R. Then

(i) Tµ is mixing iff µ 6= δ0;
(ii) Tµ is L2-s.o.t. mixing iff µ is not a point mass;
(iii) Tµ is norm completely mixing iff µ is not concentrated on a bilateral

arithmetic progression.

Assertions (i) and (ii) follow readily from (c) and the fact that {γ :
|µ̂(γ)| = 1} is a closed subgroup of the dual group. Clearly, similar condi-
tions hold in Rn.

Now we show that the generic convolution operator on an abelian group
is completely mixing. We first observe that the set of convolution operators
is w.o.t. closed in S (and in Sλ), so it is s.o.t. Baire. Indeed, by Wendel’s
theorem

⋂
a∈G{T ∈ S : TRa = RaT} is the set of all convolution operators

in S = S(G,Σ,m).

Theorem 5. Let G be a second countable locally compact abelian group.
The norm completely mixing convolution operators form a dense Gδ subset
of the set of convolution stochastic operators for both s.o.t. and o.n.t.

P r o o f. The Gδ assertion follows from Thm. 3, so it suffices to prove the
norm denseness. Let ν be a fixed probability measure with supp ν = G. If
Tµ is a stochastic convolution operator, then for any 0 < α < 1 the operator
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αTµ + (1− α)Tν = Tαµ+(1−α)ν is norm completely mixing by (b) and norm
approximates Tµ as α tends to 1.

Recently, W. Bartoszek [2] generalized the above theorem to amenable
groups.
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Révisé le 4.11.1991


