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A type of non-equivalent pseudogroups.
Application to foliations

by Jesús A. Alvarez López (Santiago de Compostela)

Abstract. A topological result for non-Hausdorff spaces is proved and used to obtain
a non-equivalence theorem for pseudogroups of local transformations. This theorem is
applied to the holonomy pseudogroup of foliations.

Introduction. The holonomy pseudogroups of a foliation F are very
important examples of pseudogroups since they contain the whole informa-
tion about the transverse geometric structure of F .

The definition of an equivalence of pseudogroups is given in [H2]. This
notion is defined in such a way that all the holonomy pseudogroups of a
foliation are equivalent. Then, using any representative of the holonomy
pseudogroup one can define important invariants of the foliation [H1], [H2].

In this paper we prove a theorem giving some sufficient conditions for two
pseudogroups to be non-equivalent (Section 2). In the proof of this result
we use a lemma about non-Hausdorff spaces. The proof of this lemma is
the most difficult part of this work (Section 3), and examples are given to
clarify its hypotheses (Section 4).

Finally, the above theorem is applied to the holonomy pseudogroups of
a type of foliations (Section 5), yielding properties of the space of leaves of
the liftings of those foliations to certain covering spaces.

The author would like to thank the referee for helpful remarks.

1. Equivalences of pseudogroups. A pseudogroup H of local trans-
formations of a topological space T is a collection of homeomorphisms of
open sets of T such that:

(i) The composition of elements of H, whenever it is defined, is in H,
and so are the identity map of T and the inverse of any element of H.
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(ii) The restriction of any element of H to an open set is in H.
(iii) If h : U → V is a homeomorphism of open subsets of T and if there

is an open covering U of U such that the restriction of h to any element of
U is in H, then h is in H.

Let H and H′ be pseudogroups of local transformations of spaces T
and T ′ respectively. An equivalence Φ : H → H′ is defined in [H2] as a
collection of homeomorphisms of open subsets of T onto open subsets of T ′

such that Φ = H′ΦH, and so that H (respectively H′) is generated by Φ−1Φ
(respectively ΦΦ−1). So the domains (respectively images) of the elements
of Φ form a covering of T (respectively T ′).

An equivalence of pseudogroups induces an equivalence of the associated
topological groupoids in the sense of [H1].

We will say that a pseudogroup H of local transformations of a space
T is quasi-analytical if any homeomorphism of H defined on a connected
open set U is the identity whenever its restriction to some non-empty open
subset of U is the identity. We will say that H is complete if for any x, y ∈ T
there are open neighborhoods, Vx of x and Vy of y, such that any germ of
a transformation of H with source in Vx and target in Vy is the germ of an
element of H defined on the whole of Vx .

The referee has pointed out that the property of being complete is not
preserved under equivalences of pseudogroups. For example, let H be the
pseudogroup on R generated by a homotethy x 7→ λx, with 0 < |λ| < 1.
Then H is complete and equivalent to its restriction to (−1, 1) which is not
complete. Nevertheless, completeness is invariant under equivalences for
pseudogroups of local isometries [H3].

The property of being quasi-analytical is not preserved by equivalences
either. However, if H is a quasi-analytical pseudogroup equivalent to a
pseudogroup H′ of local transformations of a Hausdorff space, then H′ is
quasi-analytical.

A group G of homeomorphisms of a topological space will be said to be
quasi-analytical if the pseudogroup generated by G is quasi-analytical. We
have the following result with easy proof.

(1.1) Lemma. Let G1 and G2 be groups of homeomorphisms of spaces
T1 and T2 respectively , h : G1 → G2 an injective homomorphism, and
f : T1 → T2 an open mapping which is h-equivariant (fg = h(g)f for all
g ∈ G1). Then, if G2 is quasi-analytical so is G1.

2. A type of non-equivalent pseudogroups. Let T be a topological
space. For each x ∈ T we shall denote by S(x) the subspace of points y ∈ T
such that y 6= x and each neighborhood of x intersects each neighborhood
of y.
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Let us consider the following properties that T may satisfy:

(A) There exists some x ∈ T such that S(x) has some isolated point.

(B) There exist x1, x2 ∈ T such that x2 ∈ S(x1) and there is a local
neighborhood base βi of each xi (i = 1, 2) so that V1 ∩ V2 has a finite
number of connected components for all V1 ∈ β1 and V2 ∈ β2.

A mapping f : T → T ′ between topological spaces will be called locally
injective if each x ∈ T has a neighborhood Vx such that the restriction of f
to Vx is injective. Then the following lemma can be easily proved.

(2.1) Lemma. If f : T → T ′ is a locally injective continuous mapping
and T ′ is Hausdorff , then either S(x) = ∅ or S(x) is discrete for all x ∈ T ;
thus T is either Hausdorff or satisfies (A).

The following result will be proved in the next section.

(2.2) Main Lemma. Let T be a locally connected topological space satis-
fying one of the following properties:

(i) T satisfies (A) and each point of T has some compact Hausdorff
neighborhood.

(ii) T satisfies (B).

Then there exist x1, x2 ∈ T such that for all neighborhoods U1 of x1 and
U2 of x2, there exist y1, y2 ∈ T and there exists a connected open subset
P ⊂ U1 ∩ U2 so that y1 ∈ U1, y2 ∈ U2 ∩ S(y1), and P ∩Q1 ∩Q2 6= ∅ for all
neighborhoods Q1 of y1 and Q2 of y2.

In Section 4 we shall see an example showing the necessity of the as-
sumptions of (2.2).

(2.3) Theorem. Let H and H′ be pseudogroups of local transformations
of spaces T and T ′ respectively. If T satisfies the hypotheses of (2.2), T ′

is Hausdorff , H is quasi-analytical and H′ is complete, then H and H′ are
not equivalent.

P r o o f. Suppose that there exists an equivalence Φ : H → H′ and take
x1, x2 ∈ T as in (2.2). Then each xi has an open neighborhood Ui with a
homeomorphism ϕi : Ui → Vi in Φ (i = 1, 2). By (2.2) there exist y1, y2 ∈ T
and there exists a connected open subset P ⊂ U1 ∩ U2 such that y1 ∈ U1,
y2 ∈ U2 ∩ S(y1), and P ∩ Q1 ∩ Q2 6= ∅ for all neighborhoods Q1 of y1 and
Q2 of y2.

The mapping ϕ2ϕ
−1
1 : ϕ1(P ) → ϕ2(P ) is in H′. Since H′ is quasi-

analytical (because so is H, and T ′ is Hausdorff) and complete, there exists
a neighborhood Wi ⊂ Vi of each ϕi(yi) (i = 1, 2) and there exists a homeo-
morphism h′ : W1 →W2 in H′ such that

h′|W1∩ϕ1(P ) = ϕ2ϕ
−1
1 |W1∩ϕ1(P ) .



190 J. A. Alvarez López

Then h = ϕ−1
2 h′ϕ1 : ϕ−1

1 (W1)→ ϕ−1
2 (W1) is in H.

Since T ′ is Hausdorff it is easy to check that h′ϕ1(y1) = ϕ2(y2), so
h(y1) = y2. Therefore, because H is quasi-analytical and the restriction of h
to ϕ−1

1 (W1)∩P is the identity, we obtain y1 = y2, which is a contradiction.

3. Proof of the Main Lemma. Let T be a locally connected topolog-
ical space satisfying (i) of (2.2). Then there exists x1 ∈ T with an isolated
point x2 in the space S(x1). Let U1 and U2 be open neighborhoods of x1 and
x2 respectively. The connected components of U1∩U2 are open because T is
locally connected. Moreover, we can assume that U1 and U2 are Hausdorff
and locally compact, and U2 ∩ S(x1) = {x2}. Then we obtain the following
properties (the first two with very easy proofs).

(3.1) If Q1 and Q2 are neighborhoods of x1 and x2 respectively , then

xi ∈ ClUi(Q1 ∩Q2 ∩ Ui) for i = 1, 2 .

(3.2) For each connected component W of U1 ∩ U2 we have

∂U1(W ) ∩ ∂U2(W ) = ∅ .

(3.3) Let W be a connected component of U1 ∩ U2. If each z ∈ ∂U2(W )
has an open neighborhood Vz ⊂ U2 such that ClU1(Vz ∩W ) ∩ ∂U1(W ) = ∅,
then for each neighborhood Q of x2 in U2 with ClU2(Q) compact we have

ClU1(Q ∩W ) ∩ ∂U1(W ) = ∅ .

P r o o f. We can suppose that Q∩W 6= ∅. ∂U2(W )∩ClU2(Q) is a compact
subspace contained in the union of the open sets Vz (for z ∈ ∂U2(W )), so
for a finite number of points z1, . . . , zr ∈ ∂U2(W ) we have

∂U2(W ) ∩ ClU2(Q) ⊂ Vz1 ∪ . . . ∪ Vzr
(= V ) .

Then we obtain

(ClU2(Q) ∩W )− V = (ClU2(Q) ∩ ClU2(W ))− V ,

which is closed in U2 and contained in ClU2(Q). Thus (ClU2(Q)∩W )−V is
a compact subset of U1, so it is closed in U1 because U1 is Hausdorff. Then

ClU1(Q ∩W ) ⊂ ClU1(V ∩Q ∩W ) ∪ ((ClU2(Q) ∩W )− V )

⊂
r⋃

k=1

ClU1(Vzk
∩W ) ∪W ⊂ T − ∂U1(W ) .

Denote by Wj (j ∈ J) the connected components of U1 ∩ U2. We can
take an open neighborhood Q of x2 in U2 such that ClU2(Q) is compact
(because U2 is Hausdorff and locally compact).
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(3.4) x1 ∈ ClU1

(⋃
j∈J

∂U1(Q ∩Wj)
)
.

P r o o f. Suppose this property is false. Then, since T is locally connected
there exists a connected open neighborhood V of x1 in U1 such that V ∩
∂U1(Q ∩Wj) = ∅ for each j ∈ J .

By (3.1) we have

x1 ∈ ClU (U1 ∩Q) = ClU1

( ⋃
j∈J

(Q ∩Wj)
)
.

Thus there exists j0 ∈ J such that V ∩Q ∩Wj0 6= ∅. Moreover,

∂V (V ∩Q ∩Wj0) ⊂ V ∩ ∂U1(Q ∩Wj0) = ∅ ,
so V = V ∩Q∩Wj0 because V is connected. Therefore x1 ∈ V ⊂ Q∩Wj0 ⊂
U1 ∩ U2, yielding that x2 is not in S(x1) because U2 is Hausdorff, which is
a contradiction.

Suppose first that Wj satisfies the hypothesis of (3.3) for all j ∈ J .

(3.5) In this case ∂U1(Q ∩Wj) ⊂ ∂U2(Q) for all j ∈ J .

P r o o f. For all j ∈ J , by (3.3) and since Wj is open, we have

∂U1(Q ∩Wj) = ∂U1(Q ∩Wj) ∩Wj = ∂Wj
(Q ∩Wj)

= ∂U2(Q ∩Wj) ∩Wj ⊂ ∂U2(Q) ∩Wj .

By (3.4) and (3.5) we obtain

(3.6) x1 ∈ ClT (∂U2(Q)) in this case.

Since ∂U2(Q) ∩ S(x1) ⊂ (S(x1) − {x2}) ∩ U2 = ∅, for each z ∈ ∂U2(Q)
there exist open neighborhoods V z

1 of x1 and V z
2 of z such that V z

1 ∩V z
2 = ∅.

Since ∂U2(Q) is compact we have

∂U2(Q) ⊂ V z1
2 ∪ . . . ∪ V

zr
2

for some z1, . . . , zr ∈ ∂U2(Q). So V = V z1
1 ∩ . . . ∩ V

zr
1 is an open neighbor-

hood of x1 such that V ∩ ∂U2(Q) = ∅, which contradicts (3.6). Therefore
there exists some connected component P of U1 ∩U2 which does not satisfy
the hypothesis of (3.3), i.e. there exists y0 ∈ ∂U2(P ) such that for every
neighborhood V of y0 in U2 we have ClU1(V ∩ P ) ∩ ∂U1(P ) 6= ∅.

Take an open neighborhood V of y0 in U2 such that ClU2(V ) is compact
and take y1 ∈ ClU1(V ∩P )∩∂U1(P ). Suppose that for every z ∈ ∂U2(V ∩P )
∩ ∂U2(P ) there exist open neighborhoods Qz

1 of y1 and Qz
2 of z such that

Qz
1 ∩ Qz

2 ∩ P = ∅. Since ∂U2(V ∩ P ) ∩ ∂U2(P ) is compact (being closed in
ClU2(V )), we obtain open sets Q1 and Q2 such that y1 ∈ Q1, ∂U2(V ∩ P ) ∩
∂U2(P ) ⊂ Q2, and Q1 ∩Q2 ∩ P = ∅. Therefore

ClU2(V ∩ P )−Q2 = (ClU2(V ∩ P ) ∩ P )−Q2 ⊂ P .
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Moreover, ClU2(V ∩ P )−Q2 is compact because it is closed in ClU2(V ), so
it is closed in U1 because U1 is Hausdorff. Thus

y1 ∈ ClU1(V ∩ P ) ∩ ∂U1(P )
⊂ ClU1((Q2 ∩ P ) ∪ (ClU2(V ∩ P )−Q2)) ∩ ∂U1(P )
= (ClU1(Q2 ∩ P ) ∪ (ClU2(V ∩ P )−Q2)) ∩ ∂U1(P )
⊂ ClU1(Q2 ∩ P ) ∩ ∂U1(P ) ,

implying Q1 ∩Q2 ∩ P 6= ∅, which is another contradiction. Therefore there
exists y2 ∈ ∂U2(V ∩P )∩ ∂U2(P ) such that P ∩Q1 ∩Q2 6= ∅ for all neighbor-
hoods Q1 and Q2 of y1 and y2 respectively. Moreover, y2 ∈ S(y1) because
y2 6= y1 by (3.2). So the proof of (2.2) is finished when (2.2)(i) is satisfied.

The proof of (2.2) in the other case is an easy exercise.

4. Examples. More examples of the type we shall consider can be
found in [HR].

(4.1) Consider two copies of R and identify each point of the open interval
(0, 1) in the first copy with the corresponding point in the second copy. The
quotient space is a manifold satisfying (A) and (B).

(4.2) Consider an infinite family F of disjoint non-empty open subsets of
R, and let U be their union. We can take F such that any neighborhood of
each point of R− U contains infinite sets of F . Then, taking two copies of
R and identifying each point of U in the first copy with the corresponding
point in the second one, we obtain a quotient space which is a manifold
satisfying (A) but not (B).

(4.3) Let A, B and C be non-collinear points in R2, let ∆ be the domain
bounded by the triangle with vertices those points, and let h be the distance
between A and the straight line r which contains B and C. For 0 < ε < h let
rε be the straight line which is parallel to r and at a distance of ε and h− ε
to r and A respectively. With this notation we have the homeomorphism
ϕ : ∆→∆ which carries, by radial projection with center A, each rε ∩∆ to
rh−ε∩∆. Then, taking two copies of R2 and identifying each point (x, y) ∈ ∆
in the first copy with the point ϕ(x, y) in the second one, we get a quotient
space which is a manifold satisfying (B) but not (A).

(4.4) For each positive integer n let ∆n be the domain in R2 bounded
by the triangle with vertices An = (mn, n), Bn = (1/(n + 1), 0) and Cn =
(1/n, 0), where mn = (2n + 1)/(2n(n + 1)). For each n and 0 < ε < n
let rn,ε be the straight line containing Bn and (mn, ε), and let sn,ε be the
straight line containing Cn and (mn, ε). Defining ∆n,1 = {(x, y) ∈ ∆n :
x ≤ mn} and ∆n,2 = {(x, y) ∈ ∆n : x ≥ mn}, we have the homeomorphism
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ϕn : ∆n → ∆n which carries, by radial projection with center An, each
rn,ε ∩∆n,1 to rn,n−ε ∩∆n,1, and each sn,ε ∩∆n,2 to sn,n−ε ∩∆n,2.

Consider two copies of {(x, y) ∈ R2 : y > 0} and, for each n, identify
(x, y) ∈ ∆n in the first copy with ϕn(x, y) in the second one. Then the
quotient space T is a manifold which satisfies neither (A) nor (B). So T
does not satisfy the hypotheses of (2.2), and it is easy to check that T does
not satisfy the conclusion of that lemma either.

5. Application to foliations. A foliation F on a manifold X can be
defined by an open covering {Ui}i∈I of X and surjective submersions fi of
Ui on manifolds Ti with connected fibers, such that there exist homeomor-
phisms hij : fj(Ui ∩Uj)→ fi(Ui ∩Uj) so that fi = hijfj on Ui ∩Uj . If T is
the disjoint union of the Ti’s, a representative of the holonomy pseudogroup
of F is the pseudogroup H generated by the local homeomorphisms hij of
T . Another choice of (Ui, fi, hij) would lead to a pseudogroup equivalent to
H [H2].

From [W] we know that any representative of the holonomy pseudogroup
acting on a Hausdorff manifold is quasi-analytical if and only if the graph of
F is Hausdorff. For instance, this is the case for Riemannian or transversely
analytical foliations.
F is said to be developable if there exists a covering mapping π : X̃ → X

such that the space T̃ of leaves of π∗F is a manifold [H2]. (Such foliations
are characterized in [H3].) In this case the covering transformations preserve
π∗F , thus Aut(π) acts on T̃ and it is easy to check that the pseudogroup H̃
generated by this action is a representative of the holonomy pseudogroup of
F .

We shall say that F is induced by a triple (π,D, h) if π : X̃ → X is a
covering mapping, D is a submersion of X̃ onto a Hausdorff manifold T and
h : Aut(π) → Homeo(T ) is an injective homomorphism such that π∗F is
induced by D (its leaves are the connected components of the fibers of D)
and D is h-equivariant (Dγ = h(γ)D for every deck transformation γ).

In this case it is easy to check that the space T̃ of leaves of π∗F is a
manifold, which in general is not Hausdorff, so F is a developable foliation.
Then the pseudogroup H̃ generated by the action of Aut(π) on T̃ is a repre-
sentative of the holonomy pseudogroup of F . We also have the pseudogroup
H generated by the image H of h. This leads to the question whether H is
equivalent to H̃. Using (1.1), (2.1) and (2.3) it is easy to prove the following
result which gives a negative answer in some cases.

(5.1) Proposition. Assume that , in the above situation, the graph of F
is Hausdorff. Then:

(i) If T̃ is not Hausdorff then H is not equivalent to H̃.
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(ii) If π′ : X̃ ′ → X is another covering mapping such that the space T̃ ′

of leaves of π′∗F is a Hausdorff manifold , then T̃ is Hausdorff.

We have a simple example by taking on X = R2 − {(0, 0)} the foliation
F given by the triple (π,D, h) where π is the trivial covering mapping, D is
the projection of X onto the first axis, and h is the trivial homomorphism.
In this case we conclude that H̃ is not equivalent to H, and the space of
leaves of any lifting of F to any covering of X is not Hausdorff.

Let F be a foliation on a manifold X given by a transverse (G,T )-
structure [H1], i.e. G is a group of homeomorphisms of a manifold T and F
is defined by a cocycle (Ui, fi, gij) with fi : Ui → T and gij ∈ G. In this case,
if G acts quasi-analytically it can be proved (Ehresmann) that F is given
by a triple (π,D, h) as above where H ⊂ G. Moreover, if X is compact, T a
Riemannian manifold and G a group of isometries, then T̃ ≡ T canonically
(thus H̃ ≡ H). For instance, this is the case for Lie foliations on compact
manifolds [M].
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