ANNALES POLONICI MATHEMATICI LVI.2 (1992)

A type of non-equivalent pseudogroups. Application to foliations

by JESÚS A. ALVAREZ LÓPEZ (Santiago de Compostela)

Abstract. A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.

Introduction. The holonomy pseudogroups of a foliation \mathcal{F} are very important examples of pseudogroups since they contain the whole information about the transverse geometric structure of \mathcal{F} .

The definition of an equivalence of pseudogroups is given in [H2]. This notion is defined in such a way that all the holonomy pseudogroups of a foliation are equivalent. Then, using any representative of the holonomy pseudogroup one can define important invariants of the foliation [H1], [H2].

In this paper we prove a theorem giving some sufficient conditions for two pseudogroups to be non-equivalent (Section 2). In the proof of this result we use a lemma about non-Hausdorff spaces. The proof of this lemma is the most difficult part of this work (Section 3), and examples are given to clarify its hypotheses (Section 4).

Finally, the above theorem is applied to the holonomy pseudogroups of a type of foliations (Section 5), yielding properties of the space of leaves of the liftings of those foliations to certain covering spaces.

The author would like to thank the referee for helpful remarks.

1. Equivalences of pseudogroups. A pseudogroup \mathcal{H} of local transformations of a topological space T is a collection of homeomorphisms of open sets of T such that:

(i) The composition of elements of \mathcal{H} , whenever it is defined, is in \mathcal{H} , and so are the identity map of T and the inverse of any element of \mathcal{H} .

 $^{1991\} Mathematics\ Subject\ Classification:\ {\rm Primary}\ 57{\rm R}30.$

Key words and phrases: pseudogroup, foliation, holonomy.

(ii) The restriction of any element of \mathcal{H} to an open set is in \mathcal{H} .

(iii) If $h: U \to V$ is a homeomorphism of open subsets of T and if there is an open covering \mathcal{U} of U such that the restriction of h to any element of \mathcal{U} is in \mathcal{H} , then h is in \mathcal{H} .

Let \mathcal{H} and \mathcal{H}' be pseudogroups of local transformations of spaces Tand T' respectively. An equivalence $\Phi : \mathcal{H} \to \mathcal{H}'$ is defined in [H2] as a collection of homeomorphisms of open subsets of T onto open subsets of T'such that $\Phi = \mathcal{H}' \Phi \mathcal{H}$, and so that \mathcal{H} (respectively \mathcal{H}') is generated by $\Phi^{-1} \Phi$ (respectively $\Phi \Phi^{-1}$). So the domains (respectively images) of the elements of Φ form a covering of T (respectively T').

An equivalence of pseudogroups induces an equivalence of the associated topological groupoids in the sense of [H1].

We will say that a pseudogroup \mathcal{H} of local transformations of a space T is *quasi-analytical* if any homeomorphism of \mathcal{H} defined on a connected open set U is the identity whenever its restriction to some non-empty open subset of U is the identity. We will say that \mathcal{H} is *complete* if for any $x, y \in T$ there are open neighborhoods, V_x of x and V_y of y, such that any germ of a transformation of \mathcal{H} with source in V_x and target in V_y is the germ of an element of \mathcal{H} defined on the whole of V_x .

The referee has pointed out that the property of being complete is not preserved under equivalences of pseudogroups. For example, let \mathcal{H} be the pseudogroup on \mathbb{R} generated by a homotethy $x \mapsto \lambda x$, with $0 < |\lambda| < 1$. Then \mathcal{H} is complete and equivalent to its restriction to (-1, 1) which is not complete. Nevertheless, completeness is invariant under equivalences for pseudogroups of local isometries [H3].

The property of being quasi-analytical is not preserved by equivalences either. However, if \mathcal{H} is a quasi-analytical pseudogroup equivalent to a pseudogroup \mathcal{H}' of local transformations of a Hausdorff space, then \mathcal{H}' is quasi-analytical.

A group G of homeomorphisms of a topological space will be said to be *quasi-analytical* if the pseudogroup generated by G is quasi-analytical. We have the following result with easy proof.

(1.1) LEMMA. Let G_1 and G_2 be groups of homeomorphisms of spaces T_1 and T_2 respectively, $h : G_1 \to G_2$ an injective homomorphism, and $f : T_1 \to T_2$ an open mapping which is h-equivariant (fg = h(g)f for all $g \in G_1$). Then, if G_2 is quasi-analytical so is G_1 .

2. A type of non-equivalent pseudogroups. Let T be a topological space. For each $x \in T$ we shall denote by S(x) the subspace of points $y \in T$ such that $y \neq x$ and each neighborhood of x intersects each neighborhood of y.

Let us consider the following properties that T may satisfy:

- (A) There exists some $x \in T$ such that S(x) has some isolated point.
- (B) There exist $x_1, x_2 \in T$ such that $x_2 \in S(x_1)$ and there is a local neighborhood base β_i of each x_i (i = 1, 2) so that $V_1 \cap V_2$ has a finite number of connected components for all $V_1 \in \beta_1$ and $V_2 \in \beta_2$.

A mapping $f: T \to T'$ between topological spaces will be called *locally* injective if each $x \in T$ has a neighborhood V_x such that the restriction of fto V_x is injective. Then the following lemma can be easily proved.

(2.1) LEMMA. If $f : T \to T'$ is a locally injective continuous mapping and T' is Hausdorff, then either $S(x) = \emptyset$ or S(x) is discrete for all $x \in T$; thus T is either Hausdorff or satisfies (A).

The following result will be proved in the next section.

(2.2) MAIN LEMMA. Let T be a locally connected topological space satisfying one of the following properties:

(i) T satisfies (A) and each point of T has some compact Hausdorff neighborhood.

(ii) T satisfies (B).

Then there exist $x_1, x_2 \in T$ such that for all neighborhoods U_1 of x_1 and U_2 of x_2 , there exist $y_1, y_2 \in T$ and there exists a connected open subset $P \subset U_1 \cap U_2$ so that $y_1 \in U_1$, $y_2 \in U_2 \cap S(y_1)$, and $P \cap Q_1 \cap Q_2 \neq \emptyset$ for all neighborhoods Q_1 of y_1 and Q_2 of y_2 .

In Section 4 we shall see an example showing the necessity of the assumptions of (2.2).

(2.3) THEOREM. Let \mathcal{H} and \mathcal{H}' be pseudogroups of local transformations of spaces T and T' respectively. If T satisfies the hypotheses of (2.2), T'is Hausdorff, \mathcal{H} is quasi-analytical and \mathcal{H}' is complete, then \mathcal{H} and \mathcal{H}' are not equivalent.

Proof. Suppose that there exists an equivalence $\Phi : \mathcal{H} \to \mathcal{H}'$ and take $x_1, x_2 \in T$ as in (2.2). Then each x_i has an open neighborhood U_i with a homeomorphism $\varphi_i : U_i \to V_i$ in Φ (i = 1, 2). By (2.2) there exist $y_1, y_2 \in T$ and there exists a connected open subset $P \subset U_1 \cap U_2$ such that $y_1 \in U_1$, $y_2 \in U_2 \cap S(y_1)$, and $P \cap Q_1 \cap Q_2 \neq \emptyset$ for all neighborhoods Q_1 of y_1 and Q_2 of y_2 .

The mapping $\varphi_2 \varphi_1^{-1} : \varphi_1(P) \to \varphi_2(P)$ is in \mathcal{H}' . Since \mathcal{H}' is quasianalytical (because so is \mathcal{H} , and T' is Hausdorff) and complete, there exists a neighborhood $W_i \subset V_i$ of each $\varphi_i(y_i)$ (i = 1, 2) and there exists a homeomorphism $h' : W_1 \to W_2$ in \mathcal{H}' such that

$$h'_{|W_1 \cap \varphi_1(P)} = \varphi_2 \varphi_1^{-1}_{|W_1 \cap \varphi_1(P)}.$$

Then $h = \varphi_2^{-1} h' \varphi_1 : \varphi_1^{-1}(W_1) \to \varphi_2^{-1}(W_1)$ is in \mathcal{H} .

Since T' is Hausdorff it is easy to check that $h'\varphi_1(y_1) = \varphi_2(y_2)$, so $h(y_1) = y_2$. Therefore, because \mathcal{H} is quasi-analytical and the restriction of h to $\varphi_1^{-1}(W_1) \cap P$ is the identity, we obtain $y_1 = y_2$, which is a contradiction.

3. Proof of the Main Lemma. Let T be a locally connected topological space satisfying (i) of (2.2). Then there exists $x_1 \in T$ with an isolated point x_2 in the space $S(x_1)$. Let U_1 and U_2 be open neighborhoods of x_1 and x_2 respectively. The connected components of $U_1 \cap U_2$ are open because T is locally connected. Moreover, we can assume that U_1 and U_2 are Hausdorff and locally compact, and $U_2 \cap S(x_1) = \{x_2\}$. Then we obtain the following properties (the first two with very easy proofs).

(3.1) If Q_1 and Q_2 are neighborhoods of x_1 and x_2 respectively, then

 $x_i \in \operatorname{Cl}_{U_i}(Q_1 \cap Q_2 \cap U_i) \text{ for } i = 1, 2.$

(3.2) For each connected component W of $U_1 \cap U_2$ we have

 $\partial_{U_1}(W) \cap \partial_{U_2}(W) = \emptyset.$

(3.3) Let W be a connected component of $U_1 \cap U_2$. If each $z \in \partial_{U_2}(W)$ has an open neighborhood $V_z \subset U_2$ such that $\operatorname{Cl}_{U_1}(V_z \cap W) \cap \partial_{U_1}(W) = \emptyset$, then for each neighborhood Q of x_2 in U_2 with $\operatorname{Cl}_{U_2}(Q)$ compact we have

$$\operatorname{Cl}_{U_1}(Q \cap W) \cap \partial_{U_1}(W) = \emptyset$$
.

Proof. We can suppose that $Q \cap W \neq \emptyset$. $\partial_{U_2}(W) \cap \operatorname{Cl}_{U_2}(Q)$ is a compact subspace contained in the union of the open sets V_z (for $z \in \partial_{U_2}(W)$), so for a finite number of points $z_1, \ldots, z_r \in \partial_{U_2}(W)$ we have

$$\partial_{U_2}(W) \cap \operatorname{Cl}_{U_2}(Q) \subset V_{z_1} \cup \ldots \cup V_{z_r} \quad (=V).$$

Then we obtain

$$(\operatorname{Cl}_{U_2}(Q) \cap W) - V = (\operatorname{Cl}_{U_2}(Q) \cap \operatorname{Cl}_{U_2}(W)) - V,$$

which is closed in U_2 and contained in $\operatorname{Cl}_{U_2}(Q)$. Thus $(\operatorname{Cl}_{U_2}(Q) \cap W) - V$ is a compact subset of U_1 , so it is closed in U_1 because U_1 is Hausdorff. Then

$$\operatorname{Cl}_{U_1}(Q \cap W) \subset \operatorname{Cl}_{U_1}(V \cap Q \cap W) \cup \left((\operatorname{Cl}_{U_2}(Q) \cap W) - V \right)$$
$$\subset \bigcup_{k=1}^r \operatorname{Cl}_{U_1}(V_{z_k} \cap W) \cup W \subset T - \partial_{U_1}(W) . \bullet$$

Denote by W_j $(j \in J)$ the connected components of $U_1 \cap U_2$. We can take an open neighborhood Q of x_2 in U_2 such that $\operatorname{Cl}_{U_2}(Q)$ is compact (because U_2 is Hausdorff and locally compact).

(3.4)
$$x_1 \in \operatorname{Cl}_{U_1}\left(\bigcup_{j \in J} \partial_{U_1} (Q \cap W_j)\right).$$

Proof. Suppose this property is false. Then, since T is locally connected there exists a connected open neighborhood V of x_1 in U_1 such that $V \cap$ $\partial_{U_1}(Q \cap W_j) = \emptyset$ for each $j \in J$.

By (3.1) we have

$$x_1 \in \operatorname{Cl}_U(U_1 \cap Q) = \operatorname{Cl}_{U_1}\left(\bigcup_{j \in J} (Q \cap W_j)\right).$$

Thus there exists $j_0 \in J$ such that $V \cap Q \cap W_{j_0} \neq \emptyset$. Moreover,

$$\partial_V (V \cap Q \cap W_{j_0}) \subset V \cap \partial_{U_1} (Q \cap W_{j_0}) = \emptyset$$

so $V = V \cap Q \cap W_{j_0}$ because V is connected. Therefore $x_1 \in V \subset Q \cap W_{j_0} \subset U_1 \cap U_2$, yielding that x_2 is not in $S(x_1)$ because U_2 is Hausdorff, which is a contradiction.

Suppose first that W_i satisfies the hypothesis of (3.3) for all $j \in J$.

(3.5) In this case $\partial_{U_1}(Q \cap W_j) \subset \partial_{U_2}(Q)$ for all $j \in J$.

Proof. For all $j \in J$, by (3.3) and since W_j is open, we have

$$\partial_{U_1}(Q \cap W_j) = \partial_{U_1}(Q \cap W_j) \cap W_j = \partial_{W_j}(Q \cap W_j)$$
$$= \partial_{U_2}(Q \cap W_j) \cap W_j \subset \partial_{U_2}(Q) \cap W_j.$$

By (3.4) and (3.5) we obtain

(3.6) $x_1 \in \operatorname{Cl}_T(\partial_{U_2}(Q))$ in this case.

Since $\partial_{U_2}(Q) \cap S(x_1) \subset (S(x_1) - \{x_2\}) \cap U_2 = \emptyset$, for each $z \in \partial_{U_2}(Q)$ there exist open neighborhoods V_1^z of x_1 and V_2^z of z such that $V_1^z \cap V_2^z = \emptyset$. Since $\partial_{U_2}(Q)$ is compact we have

$$\partial_{U_2}(Q) \subset V_2^{z_1} \cup \ldots \cup V_2^{z_r}$$

for some $z_1, \ldots, z_r \in \partial_{U_2}(Q)$. So $V = V_1^{z_1} \cap \ldots \cap V_1^{z_r}$ is an open neighborhood of x_1 such that $V \cap \partial_{U_2}(Q) = \emptyset$, which contradicts (3.6). Therefore there exists some connected component P of $U_1 \cap U_2$ which does not satisfy the hypothesis of (3.3), i.e. there exists $y_0 \in \partial_{U_2}(P)$ such that for every neighborhood V of y_0 in U_2 we have $\operatorname{Cl}_{U_1}(V \cap P) \cap \partial_{U_1}(P) \neq \emptyset$.

Take an open neighborhood V of y_0 in U_2 such that $\operatorname{Cl}_{U_2}(V)$ is compact and take $y_1 \in \operatorname{Cl}_{U_1}(V \cap P) \cap \partial_{U_1}(P)$. Suppose that for every $z \in \partial_{U_2}(V \cap P)$ $\cap \partial_{U_2}(P)$ there exist open neighborhoods Q_1^z of y_1 and Q_2^z of z such that $Q_1^z \cap Q_2^z \cap P = \emptyset$. Since $\partial_{U_2}(V \cap P) \cap \partial_{U_2}(P)$ is compact (being closed in $\operatorname{Cl}_{U_2}(V)$), we obtain open sets Q_1 and Q_2 such that $y_1 \in Q_1$, $\partial_{U_2}(V \cap P) \cap$ $\partial_{U_2}(P) \subset Q_2$, and $Q_1 \cap Q_2 \cap P = \emptyset$. Therefore

$$\operatorname{Cl}_{U_2}(V \cap P) - Q_2 = (\operatorname{Cl}_{U_2}(V \cap P) \cap P) - Q_2 \subset P.$$

Moreover, $\operatorname{Cl}_{U_2}(V \cap P) - Q_2$ is compact because it is closed in $\operatorname{Cl}_{U_2}(V)$, so it is closed in U_1 because U_1 is Hausdorff. Thus

$$y_{1} \in \operatorname{Cl}_{U_{1}}(V \cap P) \cap \partial_{U_{1}}(P)$$

$$\subset \operatorname{Cl}_{U_{1}}((Q_{2} \cap P) \cup (\operatorname{Cl}_{U_{2}}(V \cap P) - Q_{2})) \cap \partial_{U_{1}}(P)$$

$$= (\operatorname{Cl}_{U_{1}}(Q_{2} \cap P) \cup (\operatorname{Cl}_{U_{2}}(V \cap P) - Q_{2})) \cap \partial_{U_{1}}(P)$$

$$\subset \operatorname{Cl}_{U_{1}}(Q_{2} \cap P) \cap \partial_{U_{1}}(P),$$

implying $Q_1 \cap Q_2 \cap P \neq \emptyset$, which is another contradiction. Therefore there exists $y_2 \in \partial_{U_2}(V \cap P) \cap \partial_{U_2}(P)$ such that $P \cap Q_1 \cap Q_2 \neq \emptyset$ for all neighborhoods Q_1 and Q_2 of y_1 and y_2 respectively. Moreover, $y_2 \in S(y_1)$ because $y_2 \neq y_1$ by (3.2). So the proof of (2.2) is finished when (2.2)(i) is satisfied.

The proof of (2.2) in the other case is an easy exercise.

4. Examples. More examples of the type we shall consider can be found in [HR].

(4.1) Consider two copies of \mathbb{R} and identify each point of the open interval (0, 1) in the first copy with the corresponding point in the second copy. The quotient space is a manifold satisfying (A) and (B).

(4.2) Consider an infinite family F of disjoint non-empty open subsets of \mathbb{R} , and let U be their union. We can take F such that any neighborhood of each point of $\mathbb{R} - U$ contains infinite sets of F. Then, taking two copies of \mathbb{R} and identifying each point of U in the first copy with the corresponding point in the second one, we obtain a quotient space which is a manifold satisfying (A) but not (B).

(4.3) Let A, B and C be non-collinear points in \mathbb{R}^2 , let Δ be the domain bounded by the triangle with vertices those points, and let h be the distance between A and the straight line r which contains B and C. For $0 < \varepsilon < h$ let r_{ε} be the straight line which is parallel to r and at a distance of ε and $h - \varepsilon$ to r and A respectively. With this notation we have the homeomorphism $\varphi: \Delta \to \Delta$ which carries, by radial projection with center A, each $r_{\varepsilon} \cap \Delta$ to $r_{h-\varepsilon} \cap \Delta$. Then, taking two copies of \mathbb{R}^2 and identifying each point $(x, y) \in \Delta$ in the first copy with the point $\varphi(x, y)$ in the second one, we get a quotient space which is a manifold satisfying (B) but not (A).

(4.4) For each positive integer n let Δ_n be the domain in \mathbb{R}^2 bounded by the triangle with vertices $A_n = (m_n, n)$, $B_n = (1/(n+1), 0)$ and $C_n = (1/n, 0)$, where $m_n = (2n+1)/(2n(n+1))$. For each n and $0 < \varepsilon < n$ let $r_{n,\varepsilon}$ be the straight line containing B_n and (m_n, ε) , and let $s_{n,\varepsilon}$ be the straight line containing C_n and (m_n, ε) . Defining $\Delta_{n,1} = \{(x, y) \in \Delta_n : x \le m_n\}$ and $\Delta_{n,2} = \{(x, y) \in \Delta_n : x \ge m_n\}$, we have the homeomorphism

192

 $\varphi_n : \Delta_n \to \Delta_n$ which carries, by radial projection with center A_n , each $r_{n,\varepsilon} \cap \Delta_{n,1}$ to $r_{n,n-\varepsilon} \cap \Delta_{n,1}$, and each $s_{n,\varepsilon} \cap \Delta_{n,2}$ to $s_{n,n-\varepsilon} \cap \Delta_{n,2}$.

Consider two copies of $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ and, for each n, identify $(x, y) \in \Delta_n$ in the first copy with $\varphi_n(x, y)$ in the second one. Then the quotient space T is a manifold which satisfies neither (A) nor (B). So T does not satisfy the hypotheses of (2.2), and it is easy to check that T does not satisfy the conclusion of that lemma either.

5. Application to foliations. A foliation \mathcal{F} on a manifold X can be defined by an open covering $\{U_i\}_{i \in I}$ of X and surjective submersions f_i of U_i on manifolds T_i with connected fibers, such that there exist homeomorphisms $h_{ij} : f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$ so that $f_i = h_{ij}f_j$ on $U_i \cap U_j$. If T is the disjoint union of the T_i 's, a representative of the holonomy pseudogroup of \mathcal{F} is the pseudogroup \mathcal{H} generated by the local homeomorphisms h_{ij} of T. Another choice of (U_i, f_i, h_{ij}) would lead to a pseudogroup equivalent to \mathcal{H} [H2].

From [W] we know that any representative of the holonomy pseudogroup acting on a Hausdorff manifold is quasi-analytical if and only if the graph of \mathcal{F} is Hausdorff. For instance, this is the case for Riemannian or transversely analytical foliations.

 \mathcal{F} is said to be *developable* if there exists a covering mapping $\pi : \widetilde{X} \to X$ such that the space \widetilde{T} of leaves of $\pi^* \mathcal{F}$ is a manifold [H2]. (Such foliations are characterized in [H3].) In this case the covering transformations preserve $\pi^* \mathcal{F}$, thus $\operatorname{Aut}(\pi)$ acts on \widetilde{T} and it is easy to check that the pseudogroup $\widetilde{\mathcal{H}}$ generated by this action is a representative of the holonomy pseudogroup of \mathcal{F} .

We shall say that \mathcal{F} is *induced by a triple* (π, D, h) if $\pi : \widetilde{X} \to X$ is a covering mapping, D is a submersion of \widetilde{X} onto a Hausdorff manifold T and $h : \operatorname{Aut}(\pi) \to \operatorname{Homeo}(T)$ is an injective homomorphism such that $\pi^* \mathcal{F}$ is induced by D (its leaves are the connected components of the fibers of D) and D is h-equivariant $(D\gamma = h(\gamma)D$ for every deck transformation γ).

In this case it is easy to check that the space T of leaves of $\pi^* \mathcal{F}$ is a manifold, which in general is not Hausdorff, so \mathcal{F} is a developable foliation. Then the pseudogroup $\widetilde{\mathcal{H}}$ generated by the action of $\operatorname{Aut}(\pi)$ on \widetilde{T} is a representative of the holonomy pseudogroup of \mathcal{F} . We also have the pseudogroup \mathcal{H} generated by the image H of h. This leads to the question whether \mathcal{H} is equivalent to $\widetilde{\mathcal{H}}$. Using (1.1), (2.1) and (2.3) it is easy to prove the following result which gives a negative answer in some cases.

(5.1) PROPOSITION. Assume that, in the above situation, the graph of \mathcal{F} is Hausdorff. Then:

(i) If T is not Hausdorff then \mathcal{H} is not equivalent to \mathcal{H} .

(ii) If $\pi': \widetilde{X}' \to X$ is another covering mapping such that the space \widetilde{T}' of leaves of $\pi'^* \mathcal{F}$ is a Hausdorff manifold, then \widetilde{T} is Hausdorff.

We have a simple example by taking on $X = \mathbb{R}^2 - \{(0,0)\}$ the foliation \mathcal{F} given by the triple (π, D, h) where π is the trivial covering mapping, D is the projection of X onto the first axis, and h is the trivial homomorphism. In this case we conclude that $\widetilde{\mathcal{H}}$ is not equivalent to \mathcal{H} , and the space of leaves of any lifting of \mathcal{F} to any covering of X is not Hausdorff.

Let \mathcal{F} be a foliation on a manifold X given by a transverse (G, T)structure [H1], i.e. G is a group of homeomorphisms of a manifold T and \mathcal{F} is defined by a cocycle (U_i, f_i, g_{ij}) with $f_i : U_i \to T$ and $g_{ij} \in G$. In this case, if G acts quasi-analytically it can be proved (Ehresmann) that \mathcal{F} is given by a triple (π, D, h) as above where $H \subset G$. Moreover, if X is compact, T a Riemannian manifold and G a group of isometries, then $\widetilde{T} \equiv T$ canonically (thus $\widetilde{\mathcal{H}} \equiv \mathcal{H}$). For instance, this is the case for Lie foliations on compact manifolds [M].

References

- [H1] A. Haefliger, Groupodes d'holonomie et classifiants, in: Structures Transverses des Feuilletages, Toulouse 1982, Astérisque 116 (1984), 70–97.
- [H2] —, Pseudogroups of local isometries, in: Differential Geometry, Res. Notes in Math. 131, Pitman, 1985, 174–197.
- [H3] —, Leaf closures in Riemannian foliations, in: A Fête of Topology, Academic Press, Boston, Mass., 1988, 3–32.
- [HR] A. Haefliger et G. Reeb, Varits (non sparées) à une dimension et structures feuilletes du plan, Enseign. Math. 3 (1957), 107-125.
- [M] P. Molino, Gomtrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), 45–76.
- [W] H. E. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (3) (1983), 51–75.

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA DEPARTAMENTO DE XEOMETRÍA E TOPOLOXÍA COLEXIO UNIVERSITARIO DE LUGO 27071 LUGO, SPAIN E-MAIL: XTZZL002@SEINL.LUGO.USC.ES

> Reçu par la Rédaction le 4.12.1990 Révisé le 22.4.1991