A univalence criterion for meromorphic functions

by J. Miazga and A. Wesołowski (Lublin)

Abstract. A sufficient univalence condition for meromorphic functions is given.

1. Let \(f \) denote a meromorphic and locally univalent function in \(E = \{ z : |z| > 1 \} \), that is, \(f'(z) \neq 0 \) and any pole of \(f \) is simple.

In this note we give a univalence criterion for \(f \) in terms of the Schwarz derivative defined by

\[
S_f(z) = \left(\frac{f''(z)}{f'(z)} \right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)} \right)^2.
\]

Epstein (see for example [4]) gives the following univalence criterion for meromorphic and locally univalent functions in the unit disk \(D = \{ z : |z| < 1 \} \).

Theorem E. Let \(f \) be meromorphic and \(g \) holomorphic in \(D \). If both functions are locally univalent in \(D \) and if

\[
\left| \frac{1}{2} (1 - |z|^2)^2 (S_f(z) - S_g(z)) + (1 - |z|^2) \frac{g''(z)}{g'(z)} \right| \leq 1, \quad z \in D,
\]

then \(f \) is univalent in \(D \).

In this section we transfer Theorem E to the exterior of the unit disk, which cannot be obtained immediately from Theorem E.

Theorem 1. Let \(f \) and \(g \) be meromorphic and locally univalent functions in \(E \) and let \(g(\zeta) = b_0 + b_1/\zeta + \ldots \). If there exists a holomorphic function \(h \) in \(E \) with \(\text{Re} h \geq 1/2 \) in \(E \) and \(h(\zeta) = 1 + h_2/\zeta^2 + \ldots \) such that

\[
(1) \quad \left| \frac{1}{2} ((|\zeta|^2 - 1)^2 (S_f(\zeta) - S_g(\zeta)) - \frac{\zeta^2 h(\zeta)}{\zeta} \right| \leq 1, \quad \zeta \in E,
\]

1991 Mathematics Subject Classification: 30A36.

Key words and phrases: Löwner chain, Schwarz derivative.
then f is univalent in E.

Proof. Without loss of generality we can consider the functions of the form

$$f(\zeta) = \zeta + \frac{a_1}{\zeta} + \ldots, \quad g(\zeta) = \zeta + \frac{b_1}{\zeta} + \ldots$$

since the Schwarzian derivative is invariant under Möbius transformations. The assumption $h(\infty) = 1$ can be dropped (see [5]). Let

$$v(\zeta) = \sqrt{\frac{g'(\zeta)}{f'(\zeta)}} = 1 + \frac{\beta_1}{\zeta^2} + \ldots, \quad u(\zeta) = f(\zeta)v(\zeta) = \zeta + \frac{c_1}{\zeta} + \ldots$$

The functions u and v are meromorphic in E since f and g do not have multiple poles and f' and g' are different from zero.

For $t \in I = [0, \infty)$, $1/\zeta = z$, we consider

$$f(z, t) = \left[\frac{u(z) + (e^{-t} - e^{t}) \frac{1}{2} h(\frac{z}{t}) u'(\frac{z}{t})}{v(z) + (e^{-t} - e^{t}) \frac{1}{2} h(\frac{z}{t}) v'(\frac{z}{t})} \right]^{-1}, \quad z \in D.$$

The function $f(z, t)$ is meromorphic in D. By (2) the denominator in (3) in square brackets is $1 + O(z^2)$ as $z \to 0$, uniformly in t. Hence there exist constants $r_0 > 0$ and K_0 such that

$$|f(z, t)| \leq K_0 e^t \quad \text{for} \ |z| < r_0, \ t \in I.$$

By (2) the numerator in (3) is $e^{-t}/z + O(z^2)$ as $z \to 0$. Hence

$$f(z, t) = e^t z + O(z^2) \quad \text{as} \ z \to 0.$$

We set

$$f'(z, t) = \frac{\partial f(z, t)}{\partial z}, \quad \dot{f}(z, t) = \frac{\partial f(z, t)}{\partial t}.$$

After simple calculations from (3) we obtain

$$w(z, t) = \frac{\dot{f}(z, t) - zf'(z, t)}{f(z, t) + zf'(z, t)}$$

$$= - \left\{ \left(\frac{1}{h} - 1 \right) e^{2t} + (e^{-t} - e^{t}) \frac{e^{2t}}{z} \left(\frac{h'}{h} + \frac{u''v - uv''}{u'v - uv'} \right) + (e^{-t} - e^{t}) \frac{e^{2t}}{z^2} \frac{u''v' - u'v''}{u'v - uv'} \right\},$$

where

$$u'v - uv' = g', \quad u''v - uv'' = g'',$$

$$u''v' - u'v'' = \frac{1}{2} g' (S_f - S_g).$$

and \(u, v, u', v', u'', v'' \) are calculated at \(e^t/z \). Hence

\[
-w(z,t) = \frac{1}{2} (e^{-t} - e^t)^2 \left(\frac{e^t}{z} \right)^2 h \left(\frac{e^t}{z} \right) \left(S_f \left(\frac{e^t}{z} \right) - S_g \left(\frac{e^t}{z} \right) \right) \\
+ (1 - e^{2t}) \frac{e^t}{z} \left(h' \left(\frac{e^t}{z} \right) g'' \left(\frac{e^t}{z} \right) + g' \left(\frac{e^t}{z} \right) h'' \left(\frac{e^t}{z} \right) \right) + \left(\frac{1}{h' \left(\frac{e^t}{z} \right)} - 1 \right) e^{2t}.
\]

The right hand side is zero for \(t = 0 \), and is holomorphic in \(D = \{ z : |z| \leq 1 \} \) for \(t > 0 \).

Putting \(e^t/z = \tilde{\zeta} \in E, \tilde{\zeta} = \zeta e^t, e^t = |\tilde{\zeta}| \) for \(|z| = 1 \), from (7) by assumption (1) replacing \(\tilde{\zeta} \) by \(\zeta \) we have

\[
|w(z,t)| = \left| \frac{\tilde{f}(z,t) - zf'(z,t)}{\tilde{f}(z,t) + zf'(z,t)} \right| \leq 1,
\]

so \(\tilde{f}(z,t) = zf'(z,t)p(z,t) \), \(\Re p(z,t) > 0, z \in D, t \in I \).

Hence from (4) and (5) it follows that \(f(z,t), z \in D, t \in T \), is a L"owner chain (see [5], Th. 6.2) and so \(f(z,t) \) is univalent in \(D \). From (2) and (3) it follows in particular that

\[
f(z,0) = \frac{1}{f(\zeta)} = \frac{v(\zeta)}{u(\zeta)}, \quad 1/\zeta = z \in D.
\]

For \(h \equiv 1 \) in \(E \) the inequality (1) reads

\[
\left| \frac{1}{2} (|\zeta|^2 - 1)^2 \zeta (S_f(\zeta) - S_g(\zeta)) - (|\zeta|^2 - 1) \frac{\zeta g''(\zeta)}{g'(\zeta)} \right| \leq 1, \quad \zeta \in E.
\]

This inequality is a sufficient univalence condition of Epstein type on the exterior of the unit disk obtained earlier by the second author [6].

If in Theorem 1 we take \(g(z) = z, h = 1/c, |c - 1| < 1, c \neq 0 \), then the resulting inequality

\[
\left| \frac{1}{2} (|\zeta|^2 - 1) \zeta S_f(\zeta) - c(1-c)|\zeta|^2 \right| \leq |c|, \quad \zeta \in E.
\]

is a sufficient univalence condition on the exterior of the unit disk of Ahlfors type [1] and for \(c = 1 \) of Nehari type [3].

On putting \(f = g, h = 1/c, |c - 1| \leq 1, c \neq 0 \) in Theorem 1, the inequality (1) reads

\[
\left| (|\zeta|^2 - 1) \frac{\zeta g''(\zeta)}{g'(\zeta)} - (1 - c)|\zeta|^2 \right| \leq 1, \quad \zeta \in E.
\]

For \(c = 1 \), this is a known univalence condition for functions in \(E \) obtained by Becker [2].

To show that Theorem 1 is an essential generalization of known univalence conditions for functions defined in the exterior of the unit disk we
consider the following example.

Example. Define

\[f(\zeta) = \frac{\zeta^2}{(\zeta - 1)^2}, \quad g(\zeta) = \frac{2\zeta^2}{2\zeta - 1}, \]

and let

\[h(\zeta) = \frac{(\zeta - 1/2)^2}{\zeta - 1}. \]

Then \(\text{Re} h(\zeta) \geq 1/2, \zeta \in E \). It is easy to show that the left hand side of (1) is

\[\frac{\zeta^2}{4\zeta(\zeta - 1) + 1} = \left| \frac{\zeta}{2\zeta - 1} \right|^2 \leq 1, \quad \zeta \in E. \]

On the other hand, the left hand side of (8) is

\[\frac{|\zeta|^2 - 1}{|(\zeta - 1)(2\zeta - 1)|} \leq \frac{|\zeta| + 1}{2|\zeta| - 1}. \]

So for \(\zeta \in E \), \(f \) and \(g \) do not satisfy the inequality (8).

Neither (9) nor (10) are satisfied by the function \(f \) or \(g \) in \(E \).

References

