A note on integral representation of Feller kernels

by R. Rębowski (Wrocław)

Abstract. We consider integral representations of Feller probability kernels from a Tikhonov space X into a Hausdorff space Y by continuous functions from X into Y. From the existence of such a representation for every kernel it follows that the space X has to be 0-dimensional. Moreover, both types of representations coincide in the metrizable case when in addition X is compact and Y is complete. It is also proved that the representation of a single kernel is equivalent to the existence of some non-direct product measure on the product space Y^N.

Introduction. Let X and Y be Hausdorff spaces and let \mathcal{B}_Y be the Borel σ-algebra in Y. A Feller kernel p on $X \times \mathcal{B}_Y$ is a continuous mapping $x \to p(x, A)$ from X into the space of all Radon probabilities on Y endowed with the weak* topology. The set of all Feller kernels on $X \times \mathcal{B}_Y$ will be denoted by Φ.

The space $C(X,Y)$ of all continuous functions from X into Y can be embedded as a subspace of Φ. Indeed, every φ in $C(X,Y)$ defines the deterministic Feller kernel $p_\varphi(x, A) = 1_A(\varphi(x))$. It is obvious that Φ is convex and p_φ is an extreme point of Φ for every φ in $C(X,Y)$. If in addition X is separable metrizable and Y is Polish then the extreme points of Φ are exactly the deterministic Feller kernels (see [4] for details).

We endow Φ with the least σ-algebra for which all the mappings $p \to p(x, A)$ ($x \in X, A \in \mathcal{B}_Y$) are measurable. In $C(X,Y)$ we define the least σ-algebra Σ for which the embedding $\varphi \to p_\varphi$ is measurable. In other words, Σ is the least σ-algebra which makes measurable all the evaluation mappings $\varphi \to \varphi(x)$ ($x \in X$).

We say that the Feller kernel $p \in \Phi$ has an integral representation on Σ if there exists a probability measure μ on Σ such that

$$p(x, A) = \int p_\varphi(x, A) \, d\mu(\varphi) \quad (x \in X, A \in \mathcal{B}_Y).$$

Equivalently, $p(x, \cdot) = \pi_x(\mu)$ where π_x is the evaluation map $\pi_x(\varphi) = \varphi(x)$

1991 Mathematics Subject Classification: Primary 60J35; Secondary 28C20.

Key words and phrases: Feller kernel, integral representation.
on \(C(X,Y) \). The above formula gives a Choquet-type integral representation for \(p \in \Phi \).

In \(C(X,Y) \) we can also consider the \(\sigma \)-algebra \(C \) of Borel sets for the compact-open topology in \(C(X,Y) \). Clearly \(\Sigma \subset C \).

The integral representation problem for Feller kernels has been considered by Blumenthal and Corson in [1,2] (see also [3]–[5]). In [1] they proved the following theorem:

Let \(X \) be a 0-dimensional compact Hausdorff space and let \(Y \) be complete metrizable. Then for every Feller kernel \(p \) on \(X \times B_Y \) there is a Radon measure \(\mu \) on \(C \) such that \(p(x,\cdot) = \pi_x(\mu) \) for all \(x \) in \(X \).

Hence if \(X \) and \(Y \) satisfy the assumptions of the above theorem, the existence of the integral representation on \(\Sigma \) also follows for every \(p \in \Phi \).

In Section 1 we show that the 0-dimensionality assumption on \(X \) is in fact necessary in the Blumenthal–Corson integral representation theorem and we prove that the representation of every \(p \in \Phi \) by means of a Radon measure on \(C \) is in fact equivalent to the integral representation on \(\Sigma \) for every \(p \in \Phi \) under rather mild conditions on \(X \) and \(Y \).

Section 2 shows that the existence of an integral representation on \(\Sigma \) for a single Feller kernel is equivalent to the existence of a certain non-direct product measure on \(Y^N \).

1. Necessary conditions for integral representation. We begin by showing that the 0-dimensionality assumption on \(X \) in the Blumenthal–Corson integral representation theorem is in fact necessary. This makes precise a remark in [1], p. 194.

Indeed, assume that \(X \) is a Tikhonov space and \(Y \) is a Hausdorff space containing at least two points. We prove that if every Feller kernel \(p \) on \(X \times B_Y \) has an integral representation by a Radon measure \(\mu \) on \(C \) then \(X \) is 0-dimensional. To this end, take an open neighbourhood \(U \) of \(x_0 \) in \(X \). Without loss of generality we may assume \(U \neq X \). Fix a continuous function \(g \) from \(X \) into the unit interval such that \(g(x_0) = 1 \) and \(g(x) = 0 \) on \(X \setminus U \). Then \(x_0 \in Z(1-g) \subset U \) and \(Z(g) \cap Z(1-g) = \emptyset \), where \(Z(h) \) denotes the zero set of \(h \).

For any two different points \(y \) and \(z \) in \(Y \) we define a Feller kernel \(p \) by

\[
p(x,\cdot) = g(x)\delta_y + (1-g(x))\delta_z
\]

and take a probability Radon measure \(\mu \) on \(C \) which represents \(p \). Now, since \(\mu \) is Radon, we have \(\mu(\{\varphi : \varphi(X) \subset \{y,z\}\}) = 1 \) and clearly \(\mu(\{\varphi : \varphi(x) = y\}) = 1 \) on \(Z(1-g) \) while \(\mu(\{\varphi : \varphi(x) = z\}) = 1 \) on \(Z(g) \). Hence there is a mapping \(\varphi \in C(X,Y) \) such that \(\varphi(Z(g)) = \{z\} \), \(\varphi(Z(1-g)) = \{y\} \) and \(\varphi(X) = \{y,z\} \). This gives a partition of \(X \) into two closed-and-open sets \(V \),
W such that $Z(1-g) \subset V$ and $Z(g) \subset W$. Finally, since $x_0 \in V \subset U$, we see that X is 0-dimensional.

In general $\Sigma \neq C$, so there is no reason for the measure μ on Σ which represents $p \in \Phi$ to have an extension to some Radon measure on the larger σ-algebra C. Nevertheless, we have a similar result for integral representation on Σ under an additional separability condition.

Theorem 1. Let X be a separable metrizable space and let Y be Hausdorff with at least two elements. If every Feller kernel on $X \times B_Y$ has an integral representation on Σ then X is 0-dimensional.

Proof. Let g and p be as in the above proof and assume that p has an integral representation on Σ. By using, instead of the Radon property, the fact that $X, Z(g)$ and $Z(1-g)$ are separable, we obtain as before $\varphi(X) = \{y, z\}$, $\varphi(Z(1-g)) = \{y\}$ and $\varphi(Z(g)) = \{z\}$ for some $\varphi \in C(X, Y)$. This yields the 0-dimensionality of X.

Now by combining the Blumenthal–Corson theorem and Theorem 1 we have

Corollary. Let X and Y be metric spaces with X compact and Y complete. Assume Y has at least two elements. Then the following conditions are equivalent:

1. X is 0-dimensional.
2. Every $p \in \Phi$ has an integral representation on C by a Radon measure.
3. Every $p \in \Phi$ has an integral representation on Σ.

2. Integral representation of Feller kernels. Let X be an infinite separable Hausdorff space and let Y be metrizable. For every $\varphi \in C(X, Y)$ let $T\varphi = (\varphi(x_1), \varphi(x_2), \ldots) \in Y^N$, where $\{x_n\}$ is a fixed dense subset of X with $x_i \neq x_j$ for $i \neq j$. Then T is 1-1 but need not be onto Y^N and we denote by $\text{im}(T)$ the image of $C(X, Y)$ in Y^N under T. It is easy to check that $T^{-1}(B_{Y^n}) = \Sigma$, where B_{Y^n} denotes the Borel σ-algebra in Y^N endowed with the product topology.

The last observation allows us to give an alternative description of the representing measure in terms of a non-direct product measure on B_{Y^n}.

Theorem 2. Let X be an infinite separable Hausdorff space and let Y be metrizable. For every Feller kernel p on $X \times B_Y$ the following conditions are equivalent:

1. p has an integral representation on Σ.
2. There exists a probability measure λ on B_{Y^n} with n-th marginal λ_n equal to $p(x_n, \cdot)$ and the outer measure $\lambda^*(\text{im}T)$ equal to one.
Proof. (1)⇒(2). The equality \(\Sigma = T^{-1}(\mathcal{B}_Y) \) implies \(\lambda^*(\text{im} T) = 1 \) for \(\lambda := T(\mu) \). Since for every \(n = 1, 2, \ldots \) and \(A \in \mathcal{B}_Y \) we have \(\lambda_n(A) = (T(\mu))_n(A) = p(x_n, A) \), the condition (2) is satisfied.

(2)⇒(1). Note that the condition \(\lambda^*(\text{im} T) = 1 \) allows us to define a probability measure \(\mu \) on \(\Sigma \) such that \(T(\mu) = \lambda \). In particular, for every Borel set \(A \) in \(Y \) and every \(n \) we have \(\mu(\{ \varphi : \varphi(x_n) \in A \}) = \lambda_n(A) = p(x_n, A) \).

Fix \(x_0 \in X \) and choose a sequence \(z_n \to x_0 \) selected from \(\{x_n\} \).

For any nonempty closed subset \(F \) in \(Y \) define \(V_n = \{ y : d(y, F) < 1/n \} \) and \(F_n = \{ y : d(y, F) \leq 1/n \} \) where \(d(y, F) \) is the distance of \(y \) from \(F \).

Since for every open (closed) set \(A \) the function \(x \to p(x, A) \) is lower (upper) semicontinuous, the Fatou lemma implies

\[
\int 1_F(\varphi(x_0)) \, d\mu(\varphi) \leq \int 1_{V_n}(\varphi(x_0)) \, d\mu(\varphi) \leq \liminf_k \int 1_{V_n}(\varphi(z_k)) \, d\mu(\varphi)
\]

\[
\leq \limsup_k \int 1_{V_n}(\varphi(z_k)) \, d\mu(\varphi) \leq \limsup_k p(z_k, F_n) \leq p(x_0, F_n)
\]

for every \(n \). Consequently, for every closed set \(F \) in \(Y \) and every \(x \) in \(X \) we have \(\int 1_F(\varphi(x)) \, d\mu(\varphi) \leq p(x, F) \). Since the left hand side is a probability measure on the metric space \(Y \), this implies that \(\mu \) in fact represents \(p \).

References

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCLAW
WYBRZEŻE WYSPIANSKIEGO 27
50-370 WROCLAW, POLAND

Reçu par la Rédition le 20.11.1990
Révisé le 23.1.1991