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On uniformly convex functions
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Abstract. We introduce a new class of normalized functions regular and univalent in
the unit disk. These functions, called uniformly convex functions, are defined by a purely
geometric property. We obtain a few theorems about this new class and we point out a
number of open problems.

1. Introduction. An earlier paper [3] introduced the class UST of uni-
formly starlike functions. We now consider the similar concept of uniformly
convex functions. Let CV denote the usual class of convex functions

(1.1) f(z) = z +
∞∑
n=2

anz
n.

These are normalized functions regular and univalent in E : |z| < 1, for
which f(E) is a convex domain.

Definition 1. A function f(z) is said to be uniformly convex in E if
f(z) is in CV and has the property that for every circular arc γ contained
in E, with center ζ also in E, the arc f(γ) is a convex arc. We let UCV
denote the class of all such functions.

A directed arc Γ (t), a < t < b, is said to be convex if the argument of
the tangent to Γ (t) is a nondecreasing function of t [2, Vol. I, pp. 109–110].
In our case the direction of Γ (t) = f(γ) is the one dictated by the direction
of γ which is the usual counterclockwise direction on a circle.

In [2, p. 110] we proved that if any arc γ is given by z(t), then f(γ) is
convex iff

(1.2) Im
[
z′′(t)
z′(t)

+
f ′′(z)
f ′(z)

z′(t)
]
≥ 0

for all z on γ.

1991 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
Key words and phrases: univalent functions, convex functions, coefficient bounds.



88 A. W. Goodman

For a circular arc with center ζ, set z = ζ + reit. Then z′(t) = i (z − ζ)
and z′′(t) = −(z − ζ). A brief computation using (1.2) will give

Theorem 1. Let f(z) have the form (1.1). Then f(z) is in UCV iff

(1.3) 1 + Re
[
f ′′(z)
f ′(z)

(z − ζ)
]
≥ 0

for every pair (z, ζ) in the polydisc E × E.

Thus all the properties of functions in UCV are contained implicitly in
the relation (1.3). However, obtaining these properties is not always easy.

2. Functions with positive real part on the polydisc. Let P (2)

denote the set of functions

(2.1) P (z, ζ) = 1 +
∑∑
m+n>0

bmnz
mζn

that are regular in E×E and satisfy the condition ReP ≥ 0 in that domain.
Such functions have been the subject of numerous investigations. However,
a representation formula for all functions in P (2) is still missing [4].

As my colleague V. Totik suggested, if we set ζ = eiαz in (2.1) we obtain

(2.2) F (z) ≡ P (z, eiαz) ≡ 1 +
∞∑
n=1

Bnz
n

where for n ≥ 1

(2.3) Bn =
n∑
k=0

bn−k,ke
ikα .

If P (z, ζ) ∈ P (2), the classical Carathéodory Theorem applied to F (z) gives
|Bn| ≤ 2 for all n ≥ 1, and all real α. Then on integrating BnBn on a
suitable circle we obtain

(2.4)
n∑
k=0

|bn−k,k|2 ≤ 4 , n ≥ 1 ,

for P (z, ζ) in P (2).
Let

(2.5) Q(z, ζ) ≡ 1 +
f ′′(z)
f ′(z)

(z − ζ)

and let Q(2) = {Q(z, ζ) | f(z) ∈ UCV}. Then Q(2) is properly contained
in P (2) and in fact if Q(z, ζ) has the form (2.1), then clearly bmn = 0 for all
m ≥ 0 and n ≥ 2. Further, if we put ζ = z we see that bm−1,1 = −bm,0 for
all m ≥ 1. Although these restrictions on Q(z, ζ) may be interesting, appar-
ently they are not very helpful in obtaining properties for the class UCV.
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3. Properties of uniformly convex functions. It is clear from the
definition of UCV that the class is invariant under the rotation eiαf(e−iαz).
Hence we may assume w.l.o.g. that a2 ≥ 0 in (1.1). We can let ζ → 1−

in (2.5) and obtain

(3.1) Re(Q(z, 1)) = Re
(

1− 2a2 +
∞∑
n=1

cnz
n
)
≥ 0 .

This gives 0 ≤ 1 − 2a2 or 0 ≤ a2 ≤ 1
2 . But if a2 = 1

2 , then cn = 0 for all
n > 0 and hence

(3.2) 1 + z
f ′′(z)
f ′(z)

(z − 1) ≡ 0 .

Now (3.2) holds if and only if f(z) = − ln(1−z). For this function Q(z, ζ) =
(1− ζ)/(1− z) and for suitable selection of z and ζ we have ReQ(z, ζ) < 0.
We have proved

Theorem 2. If f(z) ∈ UCV, then |a2| < 1/2.

The sharp upper bounds for |an| in the class UCV are not known, but
we have

Theorem 3. If f(z) is in UCV, then |an| ≤ 1/n for every n ≥ 2.

P r o o f. We use the symbol f(z)� g(z) to indicate that the power series
for f(z) is dominated by the power series for g(z) [2, Vol. I, pp. 81–83]. We
set ζ = −z in Q(z, ζ) and if f(z) ∈ UCV, then

(3.3) Q(z, ζ) = Q(z,−z) = 1 +
f ′′(z)
f ′(z)

2z � 1 + z

1− z
.

Then

(3.4) 2z
f ′′(z)
f ′(z)

� 2z
1− z

.

Integration gives ln f ′(z) � − ln(1 − z). Consequently f ′(z) � 1/(1 − z)
and hence |an| ≤ 1/n.

The following example will be useful.

Theorem 4. The function

(3.5) F1(z) =
z

1−Az
= z +

∞∑
n=2

An−1zn

is in UCV iff |A| ≤ 1/3.

P r o o f. By a rotation we may assume that 0 ≤ A in (3.5). A simple
computation shows that for this function

Q(z, ζ) =
1 +Az − 2Aζ

1−Az
.
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We set z = reiθ and ζ = ρeiϕ. Then ReQ(z, ζ) ≥ 0 iff

Re(1 +Areiθ − 2Aρeiϕ)(1−Are−iθ) ≥ 0

or

(3.6) 1− 2Aρ cosϕ−A2r2 + 2A2rρ cos(ϕ− θ) ≥ 0 .

It is clear that the minimum of the expression on the left side of (3.6) occurs
when r = ρ = 1, ϕ = 0 and θ = π. (Thus, ζ = 1 and z = −1.) These values
yield 1−2A−3A2 ≥ 0, and this is true for 0 ≤ A ≤ 1/3. Thus, the condition
is sufficient for F1(z) to be in UCV. By a limit argument as z → −1+ and
ζ → 1− the condition is also necessary.

As a corollary of Theorem 4 we see that the set UCV has infinitely many
members.

It is natural to look for transformations which preserve the set UCV.
The rotation eiαf(e−iαz) is one such, but no other transformation seems
to be available. Pommerenke [2, Vol. II, p. 109] introduced the concept of
the linear-invariant family M and showed that numerous theorems about
the family M followed immediately once we have proved that M is a linear-
invariant family. By definition M is a linear-invariant family if

(3.7) Λϕ[f ] ≡ f(ϕ(z))− f(ϕ(0))
ϕ′(0)f ′(ϕ(0))

, ϕ(z) =
z + c

1 + cz
,

is also in M for every f in M and every c in E. If we apply (3.7) to
F1(z) = z/(1−Az) we find that

(3.8) Λϕ

[
z

1−Az

]
=

z

1−Bz
, B =

A− c
1− cA

.

Now set A = 1/4 < 1/3 and c = −1/2 . Then F1(z) is in UCV, but B =
2/3 > 1/3, so Λϕ is not in UCV. We have proved

Theorem 5. The family UCV is not a linear-invariant family.

4. The sets UST and UCV. We recall the classic Alexander Theorem
that if f(z) is given by (1.1), then f(z) is in CV iff

(4.1) F (z) ≡ zf ′(z)

is in ST, where CV and ST are the usual normalized families of convex and
starlike functions. What is the situation when we prefix the word “uni-
formly”?

To prove that (4.1) does not give a one-to-one correspondence between
the sets UST and UCV we need two examples.
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Lemma 1. The function F (z) ≡ z −Bz2 is in UST iff |B| ≤
√

3/4.

As we mentioned in [3], the proof of this lemma is a simple exercise in
calculus, but the computation is rather long so we omit the details.

Lemma 2. The function f(z) ≡ z −Az2 is in UCV iff |A| ≤ 1/6.

P r o o f. If f(z) = z −Az2, then

1 + Re
[
f ′′(z)
f ′(z)

(z − ζ)
]

= 1 + Re
−2A(z − ζ)

1− 2Az
.

But for 0 < A < 1/2,

(4.2) 1 + Re
−2A(z − ζ)

1− 2Az
≥ 1−

∣∣∣∣2A(z − ζ)
1− 2Az

∣∣∣∣ ≥ 1− 4A
1− 2A

and hence in E × E

1 + Re
f ′′(z)
f ′(z)

(z − ζ) ≥ 1− 6A
1− 2A

≥ 0

iff A ≤ 1/6. But equality can occur when z = 1 and ζ = −1.

Now set F (z) = z−Bz2 whereB =
√

3/4 and hence F (z) is in UST. Then
(4.1) gives f(z) = z − Az2 where A =

√
3/8 ≈ 0.216. Since

√
3/8 > 1/6,

the corresponding f(z) is not in UCV. The converse relation may hold. It
may be that f(z) in UCV implies that F (z) = zf ′(z) is in UST, but I have
not been able to prove or disprove this statement.

5. A sufficient condition. It is well-known [1] that if f(z) is given
by (1.1) and

∑∞
n=2 n|an| ≤ 1, then f(z) is in ST. In [3] we proved that if

(5.1)
∞∑
n=2

n|an| ≤
√

2
2
,

then f(z) is in UST. However, it was conjectured in [3] that the constant√
2/2 can be replaced by

√
3/2 in (5.1).

Theorem 6. Suppose that f(z) is given by (1.1). If

(5.2)
∞∑
n=2

n(n− 1)|an| ≤
1
3
,

then f(z) is in UCV. Further , the constant 1/3 in (5.2) cannot be replaced
by a larger number.
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P r o o f. If (5.2) is satisfied, then
∑∞
n=2 n|an| ≤ 1/3. Hence in E × E

1 + Re
f ′′(z)
f ′(z)

(z − ζ) ≥ 1−

∞∑
n=2

n(n− 1)|an| |zn−2|

1−
∞∑
n=2

n|an| |zn−1|
|z − ζ|(5.3)

≥ 1− 2/3
1− 1/3

= 0 .

But equality is attained in (5.3) when f(z) = z − z2/6, z = 1 and ζ = −1.
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