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The kaehlerian structures and reproducing kernels

by Anna Krok and Tomasz Mazur (Radom)

Abstract. It is shown that one can define a Hilbert space structure over a kaehlerian
manifold with global potential in a natural way.

Introduction. S. Bergman introduced and developed some methods of
functional analysis and differential geometry in the theory of several complex
variables [2, 3]. In this approach important role is played by the Hilbert
space L2H(D) of all functions which are holomorphic and Lebesgue square
integrable on a domain D ⊂ CN . The evaluation functional

χ∗z : L2H(D)→ C , χ∗z(f) = f(z) ,

is continuous and can be represented by χz ∈ L2H(D) as follows:

f(z) = (f, χz)

(for details see [2, 10, 12]). The well-known Bergman function [2, 12]

(0.1) KD(z, w) = (χw, χz)

generates a geometric structure on D, given by a tensor g of the form

(0.2) g(z) =
N∑

i,j=1

(gij̄(z)dzi ⊗ dzj + gīj(z)dzi ⊗ dzj)

where
gij̄(z) := ∂2 logKD(z, z)/∂zi∂zj .

The tensor g defines a kaehlerian structure on every bounded domain D ⊂
CN [2, 12].

The situation described above was the starting point of fruitful inves-
tigations exhibiting fine connections between different branches of mathe-
matics: spectral theory of operators in Hilbert space [8, 10], ergodic theory
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[5], group representations [7] and mathematical physics [6, 8, 9]. The link
between pseudo-riemannian geometry and Hilbert space methods is very in-
teresting from mathematical-physics point of view. Both these subjects are
tools of large parts of physics: general relativity and quantum mechanics.
In this context, we try to explain that the notions of kaehlerian manifold
and of a Hilbert space with a reproducing kernel are very strongly related.
In [9], the problem of when a reproducing kernel in a Hilbert space of func-
tions f : X → C generates a kaehlerian structure on X is solved. In the
present paper we consider a case when a kaehlerian potential produces a
reproducing kernel in some Hilbert space.

1. Kaehlerian manifolds, reproducing kernels and positive def-
inite functions. We recall the basic notions which will be used in this
paper.

A complex manifold M with a tensor g is kaehlerian if:

1) g is a riemannian metric tensor on M as a real manifold,
2) the C-linear extension of g to the complex tangent bundle TM is

invariant w.r.t. to the operator J of complex structure,
3) the exterior form

(1.1) ω(Z,W ) := g(JZ,W )

is closed i.e. dω = 0 (Z,W are sections of TM).

A complex manifold M is kaehlerian if and only if there exists a locally
defined complex-valued C∞-function F on M such that

(1.2) ω = ∂∂(F − F )

(for details see [4], pp. 59–60). The function

(1.3) p(z) := −i(F (z)− F (z)) , z ∈M ,

is called the kaehlerian potential on M.
Let X be an arbitrary set. A non-zero function k : X×X→ C is positive

definite if for any t1, . . . , tn ∈ X and any c1, . . . , cn ∈ C

(a)
∑n

i,j=1 cicjk(ti, tj) ≥ 0 ,
(b) k(ti, tj) = k(tj , ti) .

Let (H, ( , )) be a Hilbert space of complex functions defined on X. A
function K : X×X→ C is called a reproducing kernel for (H , (· , ·)) if:

(a) K(· , y) ∈ H for each y ∈ X,
(b) h(y) = (h,K(· , y)) for each h ∈ H and y ∈ X .

1.1. R e m a r k. The Bergman function (0.1) is a reproducing kernel in
L2H(D).
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1.2. R e m a r k. Every reproducing kernel is positive definite.

1.3. Theorem (Aronszajn). A Hilbert space (H, (· , ·)) has a reproducing
kernel if and only if for any y ∈ X there exists a constant a(y) such that for
any h ∈ H

|h(y)| ≤ a(y)‖h‖ .

2. How does a kaehlerian potential produce a reproducing ker-
nel? The main purpose of this paper is to prove the following

2.1. Theorem. Let M be a kaehlerian manifold with potential p of the
form (1.3). If the function F (and so p) is defined globally on M, then

(2.1) K(z, w) := e−i(F (z)−F (w)), z, w ∈M ,

is a reproducing kernel in some Hilbert space.

P r o o f. First we will show that K is positive definite; then we use
a method due to N. Aronszajn [1] (see also [11]) to construct the desired
space. Indeed,

K(zj , zi) = e−i(F (zj)−F (zi)) = e−i(F (zi)−F (zj)) = K(zi, zj) ,
n∑

i,j=1

cicjK(zi, zj) =
n∑

i,j=1

cicje
−i(F (zi)−F (zj))

=
( n∑

i=1

cie
−iF (zi)

)( n∑
j=1

cje
−iF (zj)

)
=
∣∣∣ n∑
i=1

cie
−iF (zi)

∣∣∣2 ≥ 0 .

Set

H0 :=
{
f : M→ C; f(z) =

n∑
i=1

aiK(z, ti) , ai ∈ C, z, ti ∈M, i = 1 . . . n ,

n = 1, 2, . . .
}
.

If f(·) =
∑n1

i=1 aiK(·, ti) and g(·) =
∑n2

j=1 bjK(·, τj) set

(2.2) (f, g)0 =
n∑

i,j=1

aibjK(τj , ti) , n = min(n1, n2) .

Clearly, (· , ·)0 is a scalar product in H0. Let (H(K) , (· , ·)) be the completion
of (H0 , (· , ·)0). Then (H(K) , (· , ·)) is a Hilbert space for which K is a
reproducing kernel.

3. Examples. 1. Let M = D be a bounded domain in CN . In this case
the kaehlerian potential (1.2) has the form p(z) = logKD(z, z). Then (2.1)
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is exactly the Bergman function, and moreover H(KD) = L2H(D), up to
isomorphism.

2. Let M = C1. Consider the geometry given by the tensor

g(z) = 1dz ⊗ dz + 1dz ⊗ dz .
g describes a kaehlerian geometry on the plane, which is in fact euclidean
in the real sense. In this case (see [9]) KC(z, w) = ezw̄ and H(KC) is the
well-known Fock space.
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