ANNALES POLONICI MATHEMATICI 55 (1991)

The kaehlerian structures and reproducing kernels

by ANNA KROK and TOMASZ MAZUR (Radom)

Abstract. It is shown that one can define a Hilbert space structure over a kaehlerian manifold with global potential in a natural way.

Introduction. S. Bergman introduced and developed some methods of functional analysis and differential geometry in the theory of several complex variables [2, 3]. In this approach important role is played by the Hilbert space $L^2H(D)$ of all functions which are holomorphic and Lebesgue square integrable on a domain $D \subset \mathbb{C}^N$. The evaluation functional

$$\chi_z^*: L^2 H(D) \to \mathbb{C}, \quad \chi_z^*(f) = f(z),$$

is continuous and can be represented by $\chi_z \in L^2H(D)$ as follows:

$$f(z) = (f, \chi_z)$$

(for details see [2, 10, 12]). The well-known Bergman function [2, 12] (0.1) $K_D(z, w) = (\chi_w, \chi_z)$

generates a geometric structure on D, given by a tensor g of the form

(0.2)
$$g(z) = \sum_{i,j=1}^{N} (g_{i\bar{j}}(z)dz_i \otimes d\bar{z}_j + g_{\bar{i}j}(z)d\bar{z}_i \otimes dz_j)$$

where

$$g_{i\bar{j}}(z) := \partial^2 \log K_D(z,z) / \partial z_i \partial \bar{z}_j$$

The tensor g defines a kaehlerian structure on every bounded domain $D \subset \mathbb{C}^N$ [2, 12].

The situation described above was the starting point of fruitful investigations exhibiting fine connections between different branches of mathematics: spectral theory of operators in Hilbert space [8, 10], ergodic theory

¹⁹⁹¹ Mathematics Subject Classification: Primary 58A46, 58A32.

Key words and phrases: kaehlerian manifold, kaehlerian potential, positive definite function, Bergman function, reproducing kernel.

[5], group representations [7] and mathematical physics [6, 8, 9]. The link between pseudo-riemannian geometry and Hilbert space methods is very interesting from mathematical-physics point of view. Both these subjects are tools of large parts of physics: general relativity and quantum mechanics. In this context, we try to explain that the notions of kaehlerian manifold and of a Hilbert space with a reproducing kernel are very strongly related. In [9], the problem of when a reproducing kernel in a Hilbert space of functions $f: X \to \mathbb{C}$ generates a kaehlerian structure on X is solved. In the present paper we consider a case when a kaehlerian potential produces a reproducing kernel in some Hilbert space.

1. Kaehlerian manifolds, reproducing kernels and positive definite functions. We recall the basic notions which will be used in this paper.

A complex manifold \mathbf{M} with a tensor g is *kaehlerian* if:

1) q is a riemannian metric tensor on **M** as a real manifold,

2) the \mathbb{C} -linear extension of g to the complex tangent bundle **TM** is invariant w.r.t. to the operator J of complex structure,

3) the exterior form

(1.1)
$$\omega(Z,W) := g(JZ,W)$$

is closed i.e. $d\omega = 0$ (Z, W are sections of **TM**).

A complex manifold \mathbf{M} is kaehlerian if and only if there exists a locally defined complex-valued C^{∞} -function F on \mathbf{M} such that

(1.2)
$$\omega = \partial \overline{\partial} (F - \overline{F})$$

(for details see [4], pp. 59–60). The function

(1.3)
$$p(z) := -i(F(z) - \overline{F(z)}), \quad z \in \mathbf{M},$$

is called the *kaehlerian potential* on **M**.

Let **X** be an arbitrary set. A non-zero function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{C}$ is *positive* definite if for any $t_1, \ldots, t_n \in \mathbf{X}$ and any $c_1, \ldots, c_n \in \mathbb{C}$

(a) $\sum_{i,j=1}^{n} c_i \overline{c}_j k(t_i, t_j) \ge 0$,

(b) $\overline{k(t_i, t_j)} = \overline{k(t_j, t_i)}$.

Let (H, (,)) be a Hilbert space of complex functions defined on **X**. A function $K : \mathbf{X} \times \mathbf{X} \to \mathbb{C}$ is called a *reproducing kernel* for $(H, (\cdot, \cdot))$ if:

(a) $K(\cdot, y) \in H$ for each $y \in \mathbf{X}$,

(b) $h(y) = (h, \mathbf{K}(\cdot, y))$ for each $h \in H$ and $y \in \mathbf{X}$.

1.1. Remark. The Bergman function (0.1) is a reproducing kernel in $L^2H(D)$.

1.2. Remark. Every reproducing kernel is positive definite.

1.3. THEOREM (Aronszajn). A Hilbert space $(H, (\cdot, \cdot))$ has a reproducing kernel if and only if for any $y \in \mathbf{X}$ there exists a constant a(y) such that for any $h \in H$

$$|h(y)| \le a(y) ||h||.$$

2. How does a kaehlerian potential produce a reproducing kernel? The main purpose of this paper is to prove the following

2.1. THEOREM. Let \mathbf{M} be a kaehlerian manifold with potential p of the form (1.3). If the function F (and so p) is defined globally on \mathbf{M} , then

(2.1)
$$K(z,w) := e^{-i(F(z) - F(w))}, \quad z, w \in \mathbf{M},$$

is a reproducing kernel in some Hilbert space.

Proof. First we will show that K is positive definite; then we use a method due to N. Aronszajn [1] (see also [11]) to construct the desired space. Indeed,

$$\overline{K(z_j, z_i)} = e^{\overline{-i(F(z_j) - \overline{F(z_i)})}} = e^{-i(F(z_i) - \overline{F(z_j)})} = K(z_i, z_j),$$

$$\sum_{i,j=1}^n c_i \overline{c}_j K(z_i, z_j) = \sum_{i,j=1}^n c_i \overline{c}_j e^{-i(F(z_i) - \overline{F(z_j)})}$$

$$= \left(\sum_{i=1}^n c_i e^{-iF(z_i)}\right) \left(\sum_{j=1}^n \overline{c}_j e^{-iF(z_j)}\right) = \left|\sum_{i=1}^n c_i e^{-iF(z_i)}\right|^2 \ge 0.$$

Set

$$H_0 := \left\{ f : \mathbf{M} \to \mathbb{C}; \ f(z) = \sum_{i=1}^n a_i K(z, t_i), \ a_i \in \mathbb{C}, \ z, t_i \in \mathbf{M}, \ i = 1 \dots n, \right.$$
$$n = 1, 2, \dots \left\}.$$
If $f(\cdot) = \sum_{i=1}^{n_1} a_i K(\cdot, t_i) \text{ and } g(\cdot) = \sum_{j=1}^{n_2} b_j K(\cdot, \tau_j) \text{ set}$

(2.2)
$$(f,g)_0 = \sum_{i,j=1}^n a_i \overline{b}_j \overline{K(\tau_j, t_i)}, \quad n = \min(n_1, n_2).$$

Clearly, $(\cdot, \cdot)_0$ is a scalar product in H_0 . Let $(H(K), (\cdot, \cdot))$ be the completion of $(H_0, (\cdot, \cdot)_0)$. Then $(H(K), (\cdot, \cdot))$ is a Hilbert space for which K is a reproducing kernel.

3. Examples. 1. Let $\mathbf{M} = D$ be a bounded domain in \mathbb{C}^N . In this case the kaehlerian potential (1.2) has the form $p(z) = \log K_D(z, z)$. Then (2.1)

is exactly the Bergman function, and moreover $H(K_D) = L^2 H(D)$, up to isomorphism.

2. Let $\mathbf{M} = \mathbb{C}^1$. Consider the geometry given by the tensor

$$g(z) = 1dz \otimes d\overline{z} + 1d\overline{z} \otimes dz.$$

g describes a kaehlerian geometry on the plane, which is in fact euclidean in the real sense. In this case (see [9]) $K_{\mathbb{C}}(z,w) = e^{z\bar{w}}$ and $H(K_{\mathbb{C}})$ is the well-known Fock space.

References

- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1956), 337–404.
- [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Math. Surveys 5, Amer. Math. Soc., 1970.
- [3] —, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, J. Reine Angew. Math. 169 (1933), 1–42.
- [4] S. Chern, Complex Manifolds without Potential Theory, 2nd ed., Springer, 1978.
- W. Chojnacki, On some holomorphic dynamical systems, Quart. J. Math. Oxford Ser. (2) 39 (1988), 159–172.
- S. Janson, J. Peetre and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), 61-138.
- S. Kobayashi, On the automorphism group of a homogeneous complex manifold, Proc. Amer. Math. Soc. 12 (3) (1961), 359-361.
- [8] T. Mazur, Canonical isometry on weighted Bergman spaces, Pacific J. Math. 136 (2) (1989), 303–310.
- [9] —, On the complex manifolds of Bergman type, preprint.
- [10] T. Mazur and M. Skwarczyński, Spectral properties of holomorphic automorphism with fixed point, Glasgow Math. J. 28 (1986), 25–30.
- [11] W. Mlak, Introduction to Hilbert Space Theory, PWN, Warszawa 1991.
- M. Skwarczyński, Biholomorphic invariants related to the Bergman functions, Dissertationes Math. 173 (1980).

DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY OF RADOM MALCZEWSKIEGO 29 26-600 RADOM, POLAND

Reçu par la Rédaction le 14.9.1990