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Jung’s type theorem for polynomial transformations of C2

by S lawomir Ko lodziej (Kraków)

Abstract. We prove that among counterexamples to the Jacobian Conjecture, if
there are any, we can find one of lowest degree, the coordinates of which have the form
xmyn + terms of degree < m + n.

Introduction. In this note we prove the following

Theorem. Let Φ = (f, g) : C2(x, y)→ C2(z, w) be a polynomial mapping
of degree m > 1 with constant (non-zero) Jacobian and let

f =
m∑
j=0

fj , deg fj = j ,

be the expansion of f into homogeneous polynomials. If the set {fm = 0}
is a complex line then there exists a polynomial automorphism Ψ such that
degΦ ◦ Ψ < m = degΦ.

To give a context for this result we recall the famous Jacobian Conjecture
[5] (see also [2], [7], [8]) saying that any polynomial transformation of Cn
which has constant non-zero Jacobian is an automorphism. The theorem im-
plies that if there exist counterexamples to the conjecture in C2 then those of
the lowest degree among them fail to satisfy our assumption on the set {fm =
0} (it is known [1], [6] that this set contains at most two complex lines).

As long as the Jacobian Conjecture is not proved the present theorem
generalizes Jung’s theorem [3]:

Any polynomial automorphism of C2 can be represented by means of
a finite superposition of linear and triangular transformations defined by
z = x+ cym, w = y, where c is a constant and m is a positive integer.

Indeed, polynomial automorphisms satisfy the assumptions of our the-
orem and Ψ from the statement is in fact a superposition of linear and
triangular mappings.
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The proof of the theorem. After making a linear transformation in
C2(z, w) (resp. C2(x, y)) we may assume that deg g = deg f = m (resp.
f(x, y) = ym +

∑
j+k<m cjkx

jyk). Set

α

β
= max

{
j

m− k
: cjk 6= 0

}
,

α, β coprime positive integers. It is clear that 0 < α/β < 1. Write f in yet
another form:

f = f̂ + f1, where f̂(x, y) = ymW (xα/yβ) ,

W a polynomial of one variable xα/yβ , W (0) 6= 0, and

f1 =
∑

j/(m−k)<α/β

cjkx
jyk .

The Jacobian condition implies that if ĝ is defined in the same way as f̂
then

(1) ĝ = const.f̂ .

Indeed, the Jacobian of (f̂ , ĝ) must be zero since f̂ (resp. ĝ) is the sum of
those monomials in the Taylor expansion of f̂ (resp. ĝ) where j/(m − k)
is maximal, with j being the power of x, and k the power of y. If ĝ =
ymV (xα/yβ) then

Jac(f̂ , ĝ) = αmxα−1y2m−β−1(VW ′ −WV ′)(xα/yβ) .

Thus V = const.W .
For any non-zero polynomial P (z, w) ∈ P(C2(z, w)) (the set of all poly-

nomials in (z, w)) we adopt the following notation:

P̃ (x, y) := P ◦ (f, g)(x, y), P̃ = P̂ + P1, where

P̂ (x, y) = xNyMΦP (xα/yβ), ΦP a polynomial, ΦP (0) 6= 0 ,

P1(x, y) =
∑

(j−N)/(M−k)<α/β

djkx
jyk .

(To get P̂ we sum up those monomials djkxjyk in the Taylor expansion of
P̃ for which j + (α/β)k is maximal. The monomial xNyM is their greatest
common divisor, which is guaranteed by the condition ΦP (0) 6= 0.)

We now define a subfamily A of P(C2(z, w)) by

A = {P ∈ P(C2(z, w)) : P̂ = const.f̂%, % a rational number}

(the coefficient of ym% in f̂% is assumed to be 1). First note that the constants
do belong to A. Next we exhibit a polynomial P0 not in A. The image of
the line {x = 0} under Φ is algebraic and hence it is the zero set of some
polynomial P0(z, w). Since x divides P̂0 but not f̂ , P0 does not belong to A.
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These remarks ensure the existence of a non-constant polynomial Q(z, w)
of the lowest degree among those from P(C2(z, w))−A.

A close look at this polynomial and its partial derivative (∂/∂w)Q = Qw
(which by definition ofQ is a member ofA) will help us to prove the theorem.
By the chain rule we get

(2) Q̃w = (Jac(f, g))−1 Jac(f, Q̃) = c0 Jac(f, Q̃) ,

where Jac(φ, ψ) stands for the Jacobian of the mapping (φ, ψ). Fix c1 ∈ C
and % ∈ Q satisfying Q̂w = c1f̂

% and put V := ΦQ. So

Q̂(x, y) = xNyMV (xα/yβ) .

Considering three possible cases:

(a) N > 1, (b) N = 1, (c) N = 0 ,

we first check that neither (a) nor (b) can really occur, and then we show
how to reduce the degree of Φ for N = 0.

(a) Suppose N > 1. Let us take into account only those monomials
in the expansions of f̂ , Q̂ and Q̂w whose y-degree is maximal. These are
ymW (0), xNyMV (0) and c1y

%mW %(0) respectively. Since Jac(W (0)ym,
V (0)xNyM ) 6= 0 the following equality must hold:

c1y
%mW %(0) = c0 Jac(W (0)ym, V (0)xNyM )

= −W (0)V (0)NmxN−1yM+m−1 .

This is not true for N > 1.
(b) Suppose N = 1. Note that ̂Jac(f, Q̃) = Jac(f̂ , Q̂) unless the right

hand side is 0. Hence with u standing for xα/yβ we may write

(1/c0)Q̂w = ̂Jac(f, Q̃)

= α(ym/x)uW ′(u)(−βxyM−1uV ′(u) +MxyM−1V (u))

− (−βym−1uW ′(u) +mym−1W (u))(yMV (u) + αyMuV ′(u))

= yM+m−1(−mW (u)V (u) + (αM + β)uW ′(u)V (u)− αmuW (u)V ′(u)) .

Hence

(3) −mW (u)V (u) + (αM +β)uW ′(u)V (u)−αmuW (u)V ′(u) = c2W
%(u) ,

with c2 = c1/c0 and % = (M − 1)/m+ 1.
Set A := degW and B := deg V . Since f̂ = ymW (xα/yβ) is a polyno-

mial, obviously

(4) m ≥ βA .
The degree of the polynomial on the left of (3) does not exceed A+B. It is
less than A+B iff m−A(αM + β) + αmB = 0. So either
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(i) A+B = A% = A((M − 1)/m+ 1), or
(ii) m−A(αM + β) + αmB = 0.

It is easy to check that in both cases

(5) B/A ≤M/m .

Indeed, if (i) is true then B/A = M−1/m < M/m, and (ii) may be rewritten
in the form

B/A = (αM + β)/mα− 1/Aα = M/m+ 1/α(β/m− 1/A) ,

where the term in brackets does not exceed zero (see (4)). From (5) we
deduce that there exists a ∈ C such that W (a) = 0 and if W (resp. V ) has
zero of multiplicity µ (resp. ν) at this point then

ν/µ ≤ B/A ≤M/m .

We shall prove that these inequalities lead to a contradiction. Write

W (u) = (u− a)µW1(u), V (u) = (u− a)νV1(u), u− a = λ .

With this notation (3) takes the form

mλµ+νW1(u)V1(u)− (αM + β)uV1(u)(µλµ+ν−1W1(u) + λµ+νW ′1(u))

+ αmuW1(u)(νλµ+ν−1V1(u) + λµ+νW ′1(u))

= c2λ
µ((M−1)/m+1)(W1(u))(M−1)/m+1 .

Hence either ναm− (αM +β)µ = 0 or the polynomial on the left hand side
has zero of multiplicity µ+ν−1 at a and thus µ+ν−1 = µ((M−1)/m+1).
In the former case we have

ν/µ = (αM + β)/αm = M/m+ β/αm > M/m ,

in the latter

ν/µ = (M − 1)/m+ 1/µ = M/m+ (1/µ− 1/m) > M/m

(since µ ≤ A ≤ m/β < m).
The above inequalities contradict the choice of a. Thus we have proved

that
Q̂(x, y) = ymV (xα/yβ) .

Then

Q̂w(x, y) = c0αx
α−1yM+m−β−1(mW (u)V ′(u)−MW ′(u)V (u)) .

Since on the other hand Q̂w(x, y) = c1f̂
%(x, y) = c1y

%mW %(u) it follows
that α = 1.

Now we are ready to define a polynomial automorphism Ψ satisfying
degΦ ◦ Ψ < degΦ. Take a ∈ C such that W (a) = 0 and set

φ(x, y) = x− ayβ , ψ(x, y) = y .
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Then (φ, ψ) : C2(x, y)→ C2(s, t) is clearly an automorphism. To prove that
the degree of F := f ◦ (φ, ψ)−1 is less than that of f we may apply the
Jensen formula, or to be more explicit let us define for any c ∈ C

Ψc(x) :=
∏

φc(x,y)=0

f(x, y) , where φc = φ− cψ .

This function is well defined and holomorphic outside the finite set {x :
(∂/∂y)φc(x, y) = 0}. Since it is locally bounded as well we conclude that Ψc
has a unique extension to an entire function. Let us estimate the growth of
Ψc. Take (x, y) ∈ {φc = 0}; then

|x/yβ − a| = |cy1−β | ≤ C1|x|(1/β)−1 + C2

for some positive constants C1, C2. Setting W (u) = (u − a)W1(u) we have
for (x, y) from the zero set of φc

|f(x, y)| ≤ |ym| |x/yβ − a| |W1(x/yβ)|+ |f1(x, y)|
≤ C3|x/yβ − a||x|m/β + C4|x|(m−1)/β + C5 .

Combine the above two estimates to get

|f(x, y)| ≤ C6|x|(m−1)/β + C7 whenever φc(x, y) = 0 .

Therefore
|Ψc(x)| ≤ C8|x|m−1 + C9 .

It follows that degΨc ≤ m − 1. By definition, the degree of Ψc is equal to
the number of common zeros (counting multiplicities) of f and φc, which is
the same as the degree of F = f ◦ (φ, ψ)−1 restricted to the line {s = ct}.
So for every c ∈ C,degF|s=ct ≤ m − 1 and consequently degF ≤ m − 1.
Since ĝ = cf̂ the same argument works for G := g ◦ (φ, ψ)−1 and thus we
obtain

degΦ ◦ (φ, ψ)−1 < m = degΦ ,
which completes the proof.

Addendum. After submitting this paper the author has learned that
the present result has recently been proved by R. C. Heitmann [3] in a more
general setting and by a different method.
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