On approximation of analytic functions
and generalized orders

by ADAM JANIK (Kraków)

Abstract. A characterization of a generalized order of analytic functions of several complex variables by means of polynomial approximation and interpolation is established.

We say that a differentiable function α defined on $[0, \infty)$ is slowly growing if it is positive, strictly increases to infinity and for every positive constant c

$$\lim_{x \to \infty} \frac{\alpha(cx)}{\alpha(x)} = 1.$$

In the sequel α and β are two fixed slowly growing functions.

Let K be a compact set in \mathbb{C}^N, $N \geq 1$, such that the Siciak extremal function of K ([6])

$$\Phi_K(z) := \sup \{|p(z)|^{1/\deg p} : p \text{ a polynomial, } \deg p \geq 1, \|p\| \leq 1, z \in \mathbb{C}^N, \|\| \text{ being the supremum norm on } K.$$

given a function g analytic in $K_R := \{z \in \mathbb{C}^N : \Phi_K(z) < R\}$ for some $R > 1$, we put

$$M(r) := \sup \{|g(z)| : \Phi_K(z) = r\}, \quad 1 < r < R.$$

The quantity

$$\varrho := \limsup_{r \to R} \frac{\alpha \left(\log^+ M(r) \right)}{\beta \left(R/(R - r) \right)}$$

is called the (α, β)-order of g in the sense of Sheremeta ([4], [3]). If $\alpha = \beta = \log^+$ (suitably modified near 0) and K is a ball, we obtain the classical definition of the order of an analytic function.

The aim of this paper is to characterize the (α, β)-order of a function g analytic in K_R by means of polynomial approximation and interpolation to

1991 Mathematics Subject Classification: 32A22, 41A25.
A characterization of a similar generalized order of entire functions was established in [2].

Given a function f defined and bounded on K, we put for $n \in \mathbb{N}$

$E_n^{(1)} = E_n^{(1)}(f, K) := \|f - t_n\|,$

$E_n^{(2)} = E_n^{(2)}(f, K) := \|f - l_n\|,$

$E_{n+1}^{(3)} = E_{n+1}^{(3)}(f, K) := \|l_{n+1} - t_n\|,$

where t_n denotes the nth Chebyshev polynomial of the best approximation to f on K and l_n denotes the nth Lagrange interpolation polynomial for f with nodes at extremal points of K ([5]).

Theorem. Let K be a balanced compact set in \mathbb{C}^N such that Φ_K is continuous. For positive x and c write

$$F(x, c) := \beta^{-1}(\alpha(x)).$$

Assume that for every positive c

$$\limsup_{x \to \infty} \frac{d \log F(x, c)}{d \log x} < 1,$$

$$\alpha(x/F(x, c)) = (1 + o(x))\alpha(x) \quad \text{as } x \to \infty.$$

Then a function f defined and bounded on K is the restriction to K of a function g analytic in K_R for some R and of finite (α, β)-order ϱ if and only if

$$g = \limsup_{x \to \infty} \frac{\alpha(n)}{\beta(n/\log^+(E_n^{(j)}(R^n)))}, \quad j = 1, 2, 3$$

(with the obvious conventions $1/0 = \infty$ and $1/\infty = 0$).

We begin by proving the following

Lemma. Let the assumptions of the Theorem hold and let $(p_n)_{n \in \mathbb{N}}$ be a sequence of polynomials in \mathbb{C}^N. Assume that

(i) $\deg p_n \leq n$, $n \in \mathbb{N}$,

(ii) there exist $n_0 \in \mathbb{N}$, $\mu > 0$ and $R > 1$ such that

$$\log^+(\|p_n\|R^n) \leq n/F(n, 1/\mu) \quad \text{provided } n \geq n_0.$$

Then $\sum_{n=0}^{\infty} p_n$ is an analytic function in K_R and its (α, β)-order ϱ does not exceed μ.

Proof. From (ii)

$$\log^+(\|p_n\|R^n) \leq n \log(r/R) + n/F(n, 1/\mu)$$

provided $n \geq n_0$ and $1 < r < R$. By the methods of calculus we find that the maximum of the function

$$\mathbb{R}_+ \ni x \to x \log(r/R) + x/F(x, 1/\mu)$$
is reached for \(x = x_r \), where \(x_r \) is the solution of the equation

\[
x = \alpha^{-1} \left(\frac{1 - d \log F(x, 1/\mu)}{d \log R/r} \right).
\]

From the assumptions of the Theorem and the properties of \(\alpha \) and \(\beta \) we obtain

\[
x_r = (1 + o(1)) \alpha^{-1}(\mu \beta/(R - r)) \quad \text{as } r \to R.
\]

Thus for \(r \) sufficiently close to \(R \)

\[\log^+ (\|p_n\| r^n) \leq \text{const.} \alpha^{-1}(\mu \beta/(R - r)), \quad n \in \mathbb{N}.\]

For every polynomial \(p \) we have ([6])

\[|p(z)| \leq \|p\|_{\Phi} \|p_n\|, \quad z \in \mathbb{C}^N.\]

So for every \(r \in (1, R) \) the series \(\sum_{n=0}^{\infty} p_n \) is convergent in \(K_r \), whence \(\sum_{n=0}^{\infty} p_n \) is analytic in \(K_R \).

Write

\[M^*(r) := \sup\{\|p_n\| r^n : n \in \mathbb{N}\}, \quad r \geq 0,
\]

\[\varrho^* := \limsup_{r \to R} \frac{\alpha(\log^+ M^*(r))}{\beta(R/(R - r))}.
\]

According to inequality (1) we have

\[\log^+ M^*(r) \leq \text{const.} \alpha^{-1}(\mu \beta/(R - r))\]

for \(r \) sufficiently close to \(R \). This immediately yields \(\varrho^* \leq \mu \). Moreover (see [1], 2.3(1)),

\[\log^+ M(r) \leq \log^+ M^*(\sqrt{rR}) - \log(1 - \sqrt{r/R}).\]

Thus

\[
\frac{\alpha(\log^+ M(r))}{\beta \left(\frac{R}{R - r} \right)} \leq \frac{\alpha(\log^+ M^*(\sqrt{rR}) - \log(1 - \sqrt{r/R}))}{\beta \left(\frac{R}{R - \sqrt{rR}} \right)} \cdot \frac{\beta \left(\frac{R}{R - r} \right)}{\beta \left(\frac{R}{R - \sqrt{rR}} \right)},
\]

which gives (after passing to the upper limit) \(\varrho \leq \varrho^* \) and consequently \(\varrho \leq \mu \).

Proof of Theorem. Let \(g \) be a function analytic in \(K_R \), of \((\alpha, \beta) \)-order \(\varrho \). Write

\[\gamma_j := \limsup_{n \to \infty} \frac{\alpha(n)}{\beta(n/\log^+ (E_n^{(j)} R^n))}, \quad j = 1, 2, 3;
\]
here $E^{(j)}_n$ stands for $E^{(j)}_n(g, K)$. We claim that $\gamma_j = \varrho$, $j = 1, 2, 3$. It is known (see e.g. [7]) that

\[(2)\]
\[
E^{(1)}_n \leq E^{(2)}_n \leq (n_* + 2)E^{(1)}_n, \quad n \geq 0,
\]

\[(3)\]
\[
E^{(3)}_n \leq 2(n_* + 2)E^{(1)}_{n-1}, \quad n \geq 1,
\]

where $n_* := \left(\frac{n+N}{n} \right)$. Thus $\gamma_3 \leq \gamma_2 = \gamma_1$ and it suffices to prove that $\gamma_1 \leq \varrho \leq \gamma_3$.

We first prove $\gamma_1 \leq \varrho$. By definition of the (α, β)-order we have for every $\mu > \varrho$

\[
\log^+ M(r) \leq \alpha^{-1}(\mu \beta(R)/(R - r))
\]

provided r is sufficiently close to R. By Lemma 3.4 of [1]

\[
E^{(1)}_n \leq \frac{M(r)}{(r - 1)r^n}, \quad 1 < r < R,
\]

so

\[
\log^+(E^{(1)}_n R^n) \leq -\log(r - 1) - n \log(r/R) + \alpha^{-1}(\mu \beta(R/(R - r)))
\]

for every $n \in \mathbb{N}$ and for r sufficiently close to R. Substituting $r = r_n$, where $r_n := R[1 - 1/F(n/F(n, 1/\mu), 1/\mu)]$, yields

\[
\log^+(E^{(1)}_n R^n) \leq -\log(r_n - 1) - n \log[1 - 1/F(n/F(n, 1/\mu), 1/\mu)] + n/F(n, 1/\mu).
\]

On account of the assumptions and the properties of the logarithm we obtain

\[
\log^+(E^{(1)}_n R^n) \leq 4n/F(n, 1/\mu)
\]

for sufficiently large n. Hence, by the properties of slowly growing functions, for every $\varepsilon > 0$ and for sufficiently large n

\[
\frac{\alpha(n)}{\beta(n/ \log^+(E^{(1)}_n R^n))} \leq \mu + \varepsilon.
\]

Owing to the arbitrariness of $\varepsilon > 0$ and $\mu > \varrho$ we get after passing to the upper limit $\gamma_1 \leq \varrho$.

Next we claim $\varrho \leq \gamma_3$. Suppose $\gamma_3 < \varrho$. Then for every $\mu \in (\gamma_3, \varrho)$

\[
\frac{\alpha(n)}{\beta(n/ \log^+(E^{(3)}_n R^n))} \leq \mu
\]

provided n is sufficiently large. Thus

\[
\log^+(E^{(3)}_n R^n) \leq n/F(n, 1/\mu)
\]

and by the Lemma $\varrho \leq \mu$, which contradicts the assumption $\mu < \varrho$.
Now let f be a function defined and bounded on K. Put
\[\gamma_j := \limsup_{n \to \infty} \frac{\alpha(n)}{\beta(n/\log^+(E_{n}^{(j)}R^n))}, \quad j = 1, 2, 3. \]
We claim that if γ_k is finite for $k = 1, 2$ or 3, then
\[g := l_0 + \sum_{n=0}^{\infty} (l_{n+1} - l_n) \]
is the required analytic continuation of f to K_R and its (α, β)-order ρ is $\gamma_j, j = 1, 2, 3$. Indeed, for every $\mu > \gamma_k$
\[\frac{\alpha(n)}{\beta(n/\log^+(E_{n}^{(k)}R^n))} \leq \mu \]
provided n is sufficiently large. Hence
\[E_{n}^{(k)}R^n \leq \exp(n/F(n, 1/\mu)). \]
By (2), (3) and the Lemma, g is analytic in K_R and its (α, β)-order ρ is finite. So by the first part of the proof $\rho = \gamma_j, j = 1, 2, 3$, as claimed.

References

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4
30-059 KRAKÓW, POLAND

Reçu par la Rédaction le 10.9.1990