A geometric approach to the Jacobian Conjecture in \mathbb{C}^{2}

by Ludwik M. Drużkowski (Kraków)

Abstract

We consider polynomial mappings (f, g) of \mathbb{C}^{2} with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If $g-c$ (resp. $f-c$) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set $g^{-1}(0)\left(\right.$ resp. $\left.f^{-1}(0)\right)$, then (f, g) is bijective.

Introduction. In 1939 O.-H. Keller [11] raised the following question: If $f, g \in \mathbb{Z}[x, y]$ and

$$
\operatorname{Jac}(f, g):=\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}=1
$$

then is it possible to represent x and y as polynomials of f and g with integral coefficients?

It is known ([4], [5], [16]) that the solution of the Keller problem follows from the solution of the two-dimensional case of the Jacobian Conjecture (for short JC):

If $f, g \in \mathbb{C}^{2}[x, y]$ and $\operatorname{Jac}(f, g)=$ const $\neq 0$, then the mapping (f, g) :
$\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is injective.
The above case of the general Jacobian Conjecture is sometimes called Keller's Jacobian Conjecture. If $(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is injective, then it is bijective [5] and its inverse is a polynomial map of the same degree ([4], [19]).

For some history and a brief exposition of the basic facts on the Jacobian Conjecture we refer the reader to [4]. A short review of the results on JC in the twodimensional case and a presentation of the method of weighted gradings is given in [3] and [17].

Another approach to JC was presented in Abhyankar's and Moh's papers. S. S. Abhyankar proved [1] that if f (or g) has always one point at infinity and $\operatorname{Jac}(f, g)=$ const $\neq 0$, then (f, g) is injective (see also [17]). In 1975
S. Abhyankar and T. T. Moh using complicated techniques of characteristic pairs proved [2] that if $\operatorname{Jac}(f, g)=1$ and f or (or g) has exactly one branch at infinity, then (f, g) is injective (see also [8]). In 1983 T. T. Moh checked [14] that JC is true when $\max \{\operatorname{deg} f, \operatorname{deg} g\}<100$.

1. A geometric approach to JC

(i) First we quote a nice theorem on polynomials ([10], Prop. A.1). We say that a polynomial $f=f(x, y)$ is primitive iff there exists a finite set $E \subset \mathbb{C}$ such that the polynomial $h(x, y):=f(x, y)-c$ is irreducible for every $c \in \mathbb{C} \backslash E$. If $c \in \mathbb{C} \backslash E$, then we call c a typical value (for the polynomial f).

Theorem 1 ([10]). Let $f=f(x, y)$ be a polynomial. Then there exists a primitive polynomial $p \in \mathbb{C}[x, y]$ and a polynomial $T \in \mathbb{C}[t]$ such that $f=T \circ p$.

Corollary 1.1. If $f \in \mathbb{C}[x, y]$ and $\operatorname{grad} f(x, y) \neq(0,0)$ for $(x, y) \in \mathbb{C}^{2}$, then f is primitive.

Proof. By Theorem 1 we get $f=T \circ p$, where $T \in \mathbb{C}[t], p \in \mathbb{C}[x, y]$ and p is primitive. Since

$$
\operatorname{grad} f(x, y)=\left(T^{\prime}[p(x, y)] \frac{\partial p}{\partial x}, T^{\prime}[p(x, y)] \frac{\partial p}{\partial y}\right) \neq(0,0)
$$

we have $T^{\prime}[p(x, y)] \neq 0$ for $(x, y) \in \mathbb{C}^{2}$ and $T(t)=a t+b, a, b \in \mathbb{C}, a \neq 0$. But p is primitive iff $a p+b$ is primitive, so the corollary follows.

From Corollary 1.1 we immediately have
Corollary 1.2. If $\operatorname{Jac}(f, g)=1$, then f and g are primitive and for each $c \in \mathbb{C}$ the polynomials $f+c$ and $g+c$ are reduced (i.e. without multiple factors).
(ii) Let $f=f_{0}+\ldots+f_{m}, g=g_{0}+\ldots+g_{n}$, where $m=\operatorname{deg} f, n=\operatorname{deg} g$ and f_{j}, g_{k} are homogeneous polynomials of degree j, k respectively. It can be easily checked that without loss of generality we can assume in JC that
$(*) \quad f(x, y)=x^{m}+f_{m-1}+\ldots+f_{0}, g(x, y)=x^{n}+g_{n-1}+\ldots+g_{0}$.
(If $(*)$ does not hold we take a polyautomorphism $T(x, y)=\left(a x, b y+c x^{2}\right)$, $a b c \neq 0$, and then $f \circ T$ and $g \circ T$ have the form $(*))$.

From now on we assume that the considered polynomials have the form $(*)$. Notice that it is sufficient to consider only the case $\operatorname{deg} f=\operatorname{deg} g$ because (f, g) is injective iff $(f+g, g)$ is injective iff $(f, f+g)$ is injective.
(iii) Let us recall a well-known fact about polynomial dominating mappings.

THEOREM $2([15])$. If $h=\left(h_{1}, \ldots, h_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and $\operatorname{Jac} h(x) \neq 0$ for some $x \in \mathbb{C}^{n}$, then there exists a nontrivial polynomial D_{h} such that if $D_{h}(y) \neq 0$, then $\# h^{-1}(y)=\sup \left\{\# h^{-1}(z): z \in \mathbb{C}^{n}, \# h^{-1}(z)<\infty\right\}<\infty$.

The last number, i.e. the number of points in the general fibre of h, is called the geometrical degree of h (for short g.deg h).

If Jac $h=$ const $\neq 0$, then $\left\{y \in \mathbb{C}^{n}: \# h^{-1}(y)=\infty\right\}=\emptyset$ because for fixed $y \in \mathbb{C}$ the equation $h(x)=y$ has only isolated solutions and by the Bézout inequalities [12] the set $h^{-1}(y)$ is finite. Thus g.deg $h=\# h^{-1}(y)$ when $D_{h}(y) \neq 0$.

Let $h=(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ and Jach $=1$. The algebraic set $Z=$ $\left\{(u, v) \in \mathbb{C}^{2}: h^{-1}(u, v)=\emptyset\right\}$ is finite because if there were a nontrivial polynomial $q \in \mathbb{C}[u, v]$ such that $Z=q^{-1}(0)$, then there would exist a nontrivial polynomial $p(x, y)=q[f(x, y), g(x, y)]$ having $p^{-1}(0)=\emptyset$.
(iv) By definition, the homogenizations of f and g are given by

$$
\begin{aligned}
& F(x, y, z):=z^{m} f_{0}+\ldots+z^{1} f_{m-1}+f_{m}, \quad \text { i.e. } \\
& \qquad F(x, y, z)=z^{m} f\left(\frac{x}{z}, \frac{y}{z}\right) \text { for } z \neq 0, \\
& G(x, y, z):=z^{n} g_{0}+\ldots+z^{1} g_{n-1}+g_{n}, \quad \text { i.e. } \\
& G(x, y, z)=z^{n} g\left(\frac{x}{z}, \frac{y}{z}\right) \text { for } z \neq 0 .
\end{aligned}
$$

By the above formulas, F (resp. G) is irreducible iff f (resp. g) is irreducible. So Corollary 1.2 yields that if $\operatorname{Jac}(f, g)=1$, then F and G are primitive and reduced.
(v) Choose $c \in \mathbb{C}$ such that $g-c$ is irreducible and $\mathbb{C} \times\{c\} \not \subset D_{(f, g)}^{-1}(0)$. Then by Th. 2 there exists $u \in \mathbb{C}$ such that $\#(f, g)^{-1}(u, c)=\operatorname{g} \cdot \operatorname{deg}(f, g)=$: d. Put

$$
M:=\left\{(x, y, z) \in \mathbb{P}^{2}: G(x, y, z)-c z^{n}=0\right\} .
$$

Since $\operatorname{grad} G(x, y, 1)=\operatorname{grad} g(x, y) \neq 0$ for $(x, y) \in \mathbb{C}^{2}$, the affine part of M is smooth. The curve M has exactly one point at infinity, namely $M \cap\{(x, y, z): z=0\}=(0,1,0)=: S$.

We have two possibilities: either

1) M is smooth at S, i.e. $\operatorname{grad} G(S) \neq(0,0,0)$, or
2) M has a singularity at S.

If 2) holds, then we take a normalization (desingularization) of M and we have a smooth algebraic curve \widetilde{M} in \mathbb{P}^{3} and a holomorphic mapping $\pi: \widetilde{M} \rightarrow M$ such that π has finite fibres (i.e. $\# \pi^{-1}(P)<\infty$ for $P \in M$) and $\pi: \widetilde{M} \backslash \pi^{-1}(S) \rightarrow M \backslash S$ is biholomorphic. (In case 1) we put $\widetilde{M}:=M$, $\pi:=\mathrm{id}$.)
(vi) Let M, N be compact Riemann surfaces of genus a and b, respectively, and let h be a nonconstant holomorphic map from M to N. Then, of course, h has to be surjective. Let mult ${ }_{x} h$ denote the multiplicity of h at $x \in M$. Take $y \in N$ and put

$$
d(y):=\sum_{x \in h^{-1}(y)} \operatorname{mult}_{x} h .
$$

Evidently $d(y)=$ const for $y \in N([9])$. Call $d:=d(y)=$ the geometrical degree of h. We recall the following fundamental theorem.

Riemann-Hurwitz Relation ([9]).

$$
\begin{equation*}
2 a=2 d(b-1)+2+B \tag{1}
\end{equation*}
$$

where $B:=\sum_{x \in M}\left(\operatorname{mult}_{x} h-1\right)=$ the total branching number of h.
(vii) Define $h: \widetilde{M} \backslash \pi^{-1}(S) \rightarrow \widehat{\mathbb{C}}$ by

$$
h(P):=f \circ \pi(P), \quad \text { where } \pi(P)=(x, y, z) \in M \backslash S
$$

By (v) there exists $u \in \mathbb{C}$ such that $\#(f, g)^{-1}(u, c)=\mathrm{g} \cdot \operatorname{deg}(f, g)=d$. Let $h^{-1}(u)=\left\{P_{1}, \ldots, P_{d}\right\}$. For sufficiently small neighbourhoods $D\left(P_{1}, \varepsilon\right), \ldots$, $D\left(P_{d}, \varepsilon\right)$ of P_{1}, \ldots, P_{d}, respectively, there exists $\delta>0$ such that

$$
h\left[\widetilde{M} \backslash\left(\bigcup_{j=1}^{d} D\left(P_{j}, \varepsilon\right) \cup \pi^{-1}(S)\right)\right] \subset \mathbb{C} \backslash B(u, \delta)
$$

Then by the Riemann theorem on removable singularities it is possible to holomorphically extend h to each point $P \in \pi^{-1}(S)=:\left\{S_{1}, \ldots, S_{r}\right\}$.

Notice that by the normalization process we have $r:=\# \pi^{-1}(S)=$ number of irreducible holomorphic germs of $G(x, y, z)$ at S, i.e. the number of holomorphically irreducible factors of $G(x, 1, z)$ at $(0,0)$. Remember that $\left.h\right|_{\widetilde{M} \backslash \pi^{-1}(S)}=\left.f\right|_{M \backslash S} \circ \pi$ is a locally biholomorphic map because of the jacobian assumption (if $g(x, y)-c=0$ and $y=y(x)$, then $y^{\prime}=-g_{x} / g_{y}$ when $g_{y} \neq 0$ and $\left.(d / d x) f(x, y(x))=f_{x}+f_{y} y^{\prime}(x)=\operatorname{Jac}(f, g) / g_{y}(x, y(x)) \neq 0\right)$. Therefore

$$
\begin{equation*}
B=\sum_{j=1}^{r}\left(\operatorname{mult}_{S_{j}} h-1\right),\left\{S_{1}, \ldots, S_{r}\right\}=\pi^{-1}(S) \tag{2}
\end{equation*}
$$

Since $b=$ genus of $\widehat{\mathbb{C}}=0$, by the Riemann-Hurwitz Relation we get $0 \leq$ $2 a=-2 d+2+B$, hence

$$
\begin{equation*}
2 d \leq 2+B \tag{3}
\end{equation*}
$$

2. Main theorem. We are now ready to prove the following:

Theorem. Assume that $f, g \in \mathbb{C}[x, y]$ and $\operatorname{Jac}(f, g)=1$. Then:
1° If $g(o r f)$ has one branch at infinity (i.e., e.g., g has one point at infinity and g is holomorphically irreducible at this point), then (f, g) is injective.
2° If $g-v($ or $f-v)$ has at most two branches at infinity for an infinite number of $v \in \mathbb{C}$, then (f, g) is injective.
3° If f is proper on $g^{-1}(c)$ for some $c(i . e . \lim f(x, y)=\infty$ as $|(x, y)| \rightarrow$ $\infty, g(x, y)=c)$, then (f, g) is injective.
4° If $\operatorname{g} \cdot \operatorname{deg}(f, g) \leq 2$, then (f, g) is injective.
Notice that 1° is Abhyankar and Moh's result [2], but our proof is extremely easy and elementary. 4° is well known in JC and holds for every dimension [4]. 2° and 3° seem to be new. 2° generalizes 1°, because of the result of [13] stating that holomorphic irreducibility at infinity of $g-c$ for some $c \in \mathbb{C}$ is equivalent to irreducibility for every $c \in \mathbb{C}$.

Proof of the theorem. Let M, \widetilde{M}, π, h and S be defined as above.
1° Since $r=1$, we derive from (2) that $B=\operatorname{mult}_{S_{1}} h-1=d-1$. By (3) we get $2 d \leq 2+d-1$, that is, $d \leq 1$, so (f, g) is injective.
2° Assume $d \geq 2$. By the assumption we can choose $c \in \mathbb{C}$ such that $g-c$ is irreducible and $\left\{(u, c) \in \mathbb{C}^{2}:(f, g)^{-1}(u, c)=\emptyset\right\}=\emptyset$. If $\pi^{-1}(S)=$ $\left\{S_{1}, S_{2}\right\}$, then we have two possibilities: either
(a) $h^{-1}(\infty)=\left\{S_{1}, S_{2}\right\}$, or
(b) $h^{-1}(\infty)=\left\{S_{1}\right\}$ and $h\left(S_{2}\right)=h(A) \in \mathbb{C}$ for some $A \in \widetilde{M} \backslash \pi^{-1}(S)$.

From (2) we derive that $B \leq d-2$ or $B \leq 2 d-3$. Hence by (3) we obtain a contradiction.
$3^{\circ} 1$) Let c be a typical value for g. Then $g-c$ is an irreducible polynomial and since f is proper we have $h^{-1}(\infty)=\pi^{-1}(S)=\left\{S_{1}, \ldots, S_{r}\right\}$. From (2) we get $B=\sum_{j=1}^{r} \operatorname{mult}_{S_{j}} h-r=d(\infty)-r=d-r$ and by (3) we obtain $2 d \leq 2+d-r$, so $d=r=1$.
2) Assume that c is not a typical value for g and let $g-c=P Q$, where P and Q are nontrivial polynomials, P is irreducible and P does not divide Q. Put $M^{\prime}:=\left\{(x, y, z) \in \mathbb{P}^{2}: z^{p} P(x / z, y / z)=0\right\}, p=\operatorname{deg} P$, and consider $h=f \circ \pi: \widetilde{M} \rightarrow \widehat{\mathbb{C}}$. By 1), the map h is biholomorphic, so $f: M^{\prime}=$ $P^{-1}(0) \rightarrow \mathbb{C}$ is also biholomorphic. Since M^{\prime} is biregularly equivalent to \mathbb{C} (cf. [18]), there exists a bijective polynomial map $T=(R, S): \mathbb{C} \rightarrow M^{\prime}$ such that $T^{\prime}(t) \neq(0,0)$ for each $t \in \mathbb{C}$. Put $x=R(t), y=S(t)$ into the equation $\operatorname{Jac}(f, g)(x, y)=1$. Because $P \circ T(t)=0$ for each $t \in \mathbb{C}$, we get

$$
Q \circ T(t) \cdot \operatorname{Jac}(f, P)(T(t))=1, \quad t \in \mathbb{C}
$$

Thus $Q \circ T(t)=$ const $\neq 0$ for $t \in \mathbb{C}$. From the classical facts [15] and the irreducibility of P we get $Q=W(P)$ for some nontrivial polynomial
$W \in \mathbb{C}[t]$. Hence $g=P W(P)$, which contradicts Corollary 1.2 asserting that g is primitive.
4° Assume $d=2$. By (iii) we can choose a typical value c for g such that $\left\{(u, c) \in \mathbb{C}^{2}:(f, g)^{-1}(u, c)=\emptyset\right\}=\emptyset$, i.e. $\#(f, g)^{-1}(u, c) \geq 1$ for each $u \in \mathbb{C}$. If $h^{-1}(\infty)=\left\{S_{1}, S_{2}\right\}$, then $B=0$. If $h^{-1}(\infty)=S_{1}$, then $B=1$. In both cases we have $B \leq 1$. By (3) we get $2 d \leq 3$, thus $d=1$, a contradiction.
3. Remarks on a geometric approach to the Keller problem.

A geometric way of proving the Jacobian Conjecture in \mathbb{C}^{2} could be the following. Let $\operatorname{Jac}(f, g)=1$ and take a typical value $c \in \mathbb{C}$ for the polynomial g. Consider the Riemann surface $M:=g^{-1}(c) \subset \mathbb{C}^{2}$. If one could prove that $H_{1}(M)=0\left(\operatorname{resp} . \pi_{1}(M)=0\right)$, then M would be biholomorphically equivalent to $\mathbb{P}^{1}, \mathbb{C}$ or $U=\{z \in \mathbb{C}:|z|<1\}([9])$. Since M is a Liouville space, M is biholomorphic to \mathbb{C}. In this case M is biregularly equivalent to \mathbb{C} ([18]), so, in particular, there exists a polynomial map $T=(P, Q) \in(\mathbb{C}[t])^{2}$ such that $T: \mathbb{C} \rightarrow M$ is bijective and $T^{\prime}(t) \neq(0,0)$ for $t \in \mathbb{C}$. If we assume that (f, g) is not injective, then the polynomial map $h:=f \circ T: \mathbb{C} \rightarrow \mathbb{C}$ is not injective. Hence

$$
\begin{equation*}
0=h\left(t^{\prime}\right)=\frac{\partial f}{\partial x}\left[T\left(t^{\prime}\right)\right] P^{\prime}\left(t^{\prime}\right)+\frac{\partial f}{\partial y}\left[T\left(t^{\prime}\right)\right] Q^{\prime}\left(t^{\prime}\right) \quad \text { for some } t^{\prime} \in \mathbb{C} . \tag{4}
\end{equation*}
$$

Since $g \circ T(t)=c=$ const for $t \in \mathbb{C}$, we have

$$
\begin{equation*}
0=\frac{\partial g}{\partial x}\left[T\left(t^{\prime}\right)\right] P^{\prime}\left(t^{\prime}\right)+\frac{\partial g}{\partial y}\left[T\left(t^{\prime}\right)\right] Q^{\prime}\left(t^{\prime}\right) . \tag{5}
\end{equation*}
$$

By (4), (5) and $\operatorname{Jac}(f, g)=1$ we get $T^{\prime}\left(t^{\prime}\right)=\left(P^{\prime}\left(t^{\prime}\right), Q^{\prime}\left(t^{\prime}\right)\right)=(0,0)$, a contradiction.

A nice formula for $H_{1}\left(F^{-1}(c)\right)$, where $F=F\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial, is given in [6], but it is very hard to check that $H_{1}\left(g^{-1}(c)\right)=0$ having "only" the assumption $\operatorname{Jac}(f, g)=1$.

Note. The result 3° of our Theorem has been obtained independently and by quite different methods in [7].

References

[1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977.
[2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166.
[3] H. Appelgate and H. Onishi, The Jacobian Conjecture in two variables, J. Pure Appl. Algebra 37 (1985), 215-227.
[4] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330.
[5] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
[6] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241.
[7] J. Ch Ω dzyński and T. Krasiński, Properness and the Jacobian Conjecture in \mathbb{C}^{2}, to appear.
[8] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Vol. I, Amer. Math. Soc., 1983, 353-360.
[9] H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980.
[10] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1) (1982), 85-105.
[11] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
[12] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear.
[13] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24.
[14] -, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212.
[15] D. Mumfor d, Introduction to Algebraic Geometry, Springer, 1976.
[16] Y. Nakai and K. Baba, A generalization of Magnus theorem, Osaka J. Math. 14 (1977), 403-409.
[17] A Nowicki, On the Jacobian Conjecture in two variables, J. Pure Appl. Algebra 50 (1988), 195-207.
[18] K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. 28 (9-10) (1980), 471-475.
[19] -, —, Polynomial automorphisms of \mathbb{C}^{n}, Univ. Iagel. Acta Math. 24 (1984), 143149.

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4
30-059 KRAKÓW, POLAND

