A classification of certain submanifolds of an S-manifold

by José L. Cabrerizo, Luis M. Fernández
and Manuel Fernández (Sevilla)

Abstract. A classification theorem is obtained for submanifolds with parallel second fundamental form of an S-manifold whose invariant f-sectional curvature is constant.

0. Introduction. For manifolds with an f-structure, David E. Blair has introduced the analogue of the Kaehler structure in the almost complex case and the quasi-Sasakian structure in the almost contact case, defining the S-manifolds ([1]).

The purpose of this note is to present the following theorem about submanifolds with parallel second fundamental form of an S-manifold of constant invariant f-sectional curvature k:

Theorem 1. Let M^{m+s} be a submanifold of an S-manifold $N^{2n+s}(k)$ ($k \neq s$), tangent to the structure vector fields. If the second fundamental form σ of M^{m+s} is parallel, then M^{m+s} is one of the following submanifolds:

(a) an invariant submanifold of constant invariant f-sectional curvature k, immersed in $N^{2n+s}(k)$ as a totally geodesic submanifold;

(b) an anti-invariant submanifold immersed in $\overline{M}^{2m+s}(k)$, where $\overline{M}^{2m+s}(k)$ is an invariant and totally geodesic submanifold of $N^{2n+s}(k)$ of constant invariant f-sectional curvature $k \neq s$.

1. Preliminaries. Let N^n be an n-dimensional Riemannian manifold and M^m an m-dimensional submanifold of N^n. Let g be the metric tensor field on N^n as well as the induced metric on M^m. We denote by ∇ the covariant differentiation in N^n and by ∇ the covariant differentiation in M^m determined by the induced metric. Let $T(N)$ (resp. $T(M)$) be the Lie
algebra of vector fields on N^n (resp. on M^m) and $T(M)\perp$ the set of all vector fields normal to M^m. The Gauss–Weingarten formulas are given by

\begin{align}
\tilde{\nabla}_X Y &= \nabla_X Y + \sigma(X,Y) \quad \text{and} \quad \tilde{\nabla}_X V = -A_V X + D_X V,
\end{align}

for any $X,Y \in T(M)$ and $V \in T(M)\perp$, where D is the connection in the normal bundle, σ is the second fundamental form of M^m and A_V is the Weingarten endomorphism associated with V. A_V and σ are related by

\[g(A_V X, Y) = g(\sigma(X,Y), V). \]

We denote by \tilde{R} and R the curvature tensors associated with $\tilde{\nabla}$ and ∇, respectively. The Gauss equation is given by

\begin{align}
\tilde{R}(X,Y,Z,W) &= R(X,Y,Z,W) + g(\sigma(X,Z),\sigma(Y,W)) - g(\sigma(X,W),\sigma(Y,Z)), \quad X,Y,Z,W \in T(M).
\end{align}

Moreover, we have the following Codazzi equation:

\begin{align}
(\tilde{R}(X,Y)Z)\perp &= (\nabla'_X \sigma)(Y,Z) - (\nabla'_Y \sigma)(X,Z),
\end{align}

for any $X,Y,Z \in T(M)$, where \perp denotes the normal projection and the covariant derivative of the second fundamental form σ is defined as follows:

\begin{align}
(\nabla'_X \sigma)(Y,Z) &= D_X \sigma(Y,Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z),
\end{align}

for any $X,Y,Z \in T(M)$. The second fundamental form σ is said to be parallel if $\nabla' \sigma = 0$.

Finally, the submanifold M^m is said to be totally geodesic in N^n if $\sigma \equiv 0$.

2. Submanifolds of an S-manifold.

Let (N^{2n+s}, g) be a $(2n+s)$-dimensional Riemannian manifold. N^{2n+s} is said to be an S-manifold if there exist on N^{2n+s} an f-structure f ([8]) of rank $2n$, and s global vector fields ξ_1, \ldots, ξ_s (structure vector fields) such that ([1]):

(i) If η_1, \ldots, η_s are the dual 1-forms of ξ_1, \ldots, ξ_s, then

\begin{align}
\text{If } \eta_1, \ldots, \eta_s \text{ are the dual 1-forms of } \xi_1, \ldots, \xi_s, \text{ then}
\end{align}

\begin{align}
\eta_\alpha \circ f = 0; \quad \eta_\alpha \circ f = 0; \quad f^2 = -I + \sum_\alpha \xi_\alpha \otimes \eta_\alpha;
\end{align}

\[g(X,Y) = g(fX,fY) + \Phi(X,Y), \]

for any $X,Y \in T(N)$, $\alpha = 1, \ldots, s$, where $\Phi(X,Y) = \sum_\alpha \eta_\alpha(X)\eta_\alpha(Y)$.

(ii) The f-structure f is normal, that is,

\[[f,f] + 2 \sum_\alpha \xi_\alpha \otimes d\eta_\alpha = 0, \]

where $[f,f]$ is the Nijenhuis torsion of f.

(iii) $\eta_1 \wedge \ldots \wedge \eta_s \wedge (d\eta_\alpha)^n \neq 0$ and $d\eta_1 = \ldots = d\eta_s = F$, for any α, where F is the fundamental 2-form defined by $F(X,Y) = g(X,fY)$, $X,Y \in T(N)$.

In the case $s = 1$, an S-manifold is a Sasakian manifold. For $s \geq 2$, examples of S-manifolds are given in [1], [2], [3], [5].

For the Riemannian connection ∇ of g on an S-manifold N^{2n+s}, the following were also proved in [1]:

\begin{align}
(2.2) & \quad \nabla_X \xi_\alpha = -f_X, \quad X \in T(N), \quad \alpha = 1, \ldots, s, \\
(2.3) & \quad \nabla_X fY = \sum_\alpha [g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2X], \quad X, Y \in T(Y).
\end{align}

Let \mathcal{L} denote the distribution determined by $-f^2$ and \mathcal{M} the complementary distribution. \mathcal{M} is determined by $f^2 + I$ and spanned by ξ_1, \ldots, ξ_s. If $X \in \mathcal{L}$, then $\eta_\alpha(X) = 0$, for any α, and if $X \in \mathcal{M}$, then $fX = 0$.

A plane section π is called an invariant f-section if it is determined by a vector $X \in \mathcal{L}(p)$, $p \in N^{2n+s}$, such that $\{X, fX\}$ is an orthonormal pair spanning the section. The sectional curvature $K(X, fX)$, denoted by $H(X)$, is called an invariant f-sectional curvature. If N^{2n+s} is an S-manifold of constant invariant f-sectional curvature k, then its curvature tensor has the form ([6])

\begin{align}
(2.4) & \quad \tilde{R}(X, Y, Z, W) = \sum_{\alpha, \beta} \{g(fX, fW)\eta_\alpha(Y)\eta_\beta(Z) \\
& \quad - g(fX, fZ)\eta_\alpha(Y)\eta_\beta(W) + g(fY, fZ)\eta_\alpha(X)\eta_\beta(W) \\
& \quad - g(fY, fW)\eta_\alpha(X)\eta_\beta(Z) + \frac{1}{2}(k + 3s)\{g(X, W)g(fY, fZ) \\
& \quad - g(X, Z)g(fY, fW) + g(fY, fW)\Phi(X, Z) \\
& \quad - g(fY, fZ)\Phi(X, W)\} + \frac{1}{2}(k - s)\{F(X, W)F(Y, Z) \\
& \quad - F(X, Z)F(Y, W) - 2F(X, Y)F(Z, W)\}, \quad X, Y, Z, W \in T(N).
\end{align}

Then the S-manifold will be denoted by $N^{2n+s}(k)$.

Now, let M^m be an m-dimensional submanifold immersed in an S-manifold N^{2n+s}. For any $X \in T(M)$, we write

\begin{align}
(2.5) & \quad fX = TX + NX,
\end{align}

where TX is the tangential component of fX and NX is the normal component of fX. Then T is an endomorphism of the tangent bundle and N is a normal-bundle valued 1-form on the tangent bundle.

The submanifold M^m is said to be invariant if all ξ_α ($\alpha = 1, \ldots, s$) are always tangent to M^m and N is identically zero, i.e., $fX \in T(M)$, for any $X \in T(M)$. It is easy to show that an invariant submanifold of an S-manifold is an S-manifold too and so $m = 2p + s$. On the other hand, M^m is said to be an anti-invariant submanifold if T is identically zero, i.e., $fX \in T(M)^\perp$, for any $X \in T(M)$.

From now on, we suppose that M^m is tangent to the structure vector.
fields (then \(m \geq s \)). From (2.2) and (2.5), we easily get
\[
(2.6) \quad \nabla_X \xi_\alpha = -T X; \quad \sigma(X, \xi_\alpha) = -N X, \quad X \in T(M), \quad \alpha = 1, \ldots, s.
\]

Lemma 2.1. Let \(M^{2p+s} \) be an invariant submanifold of an \(S \)-manifold \(N^{2n+s} \). Then, for any \(X, Y \in T(M) \),
\[
(2.7) \quad \sigma(X, fY) = f\sigma(X, Y) = \sigma(fX,Y).
\]

Proof. By using (2.3) and the Gauss–Weingarten formulas, we obtain
\[
\sigma(X, fY) = \tilde{\nabla}_X fY - \nabla_X fY = (\tilde{\nabla}_X f)Y + f\tilde{\nabla}_X Y - \nabla_X fY
\]
\[
= \sum_\alpha \{g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2x\} + f\nabla_X Y + f\sigma(X, Y) - \nabla_X fY.
\]

Now, since \(M^{2p+s} \) is an invariant submanifold, comparing the normal parts yields (2.7).

Proposition 2.2. Let \(M^{2p+s} \) be an invariant submanifold of an \(S \)-manifold \(N^{2n+s} \). If \(H \) denotes the invariant \(f \)-sectional curvature of \(M^{2p+s} \) and \(\tilde{H} \) denotes the invariant \(f \)-sectional curvature of \(N^{2n+s} \), then \(H \leq \tilde{H} \) and equality holds if and only if \(M^{2p+s} \) is totally geodesic.

Proof. By using the Gauss equation (1.2) and (2.7), we easily prove
\[
(2.8) \quad R(X, fX, fX, X) = \tilde{R}(X, fX, fX, X) - 2\|\sigma(X, X)\|^2,
\]
for any \(X \in T(M) \). Then the first assertion is immediate from (2.8). Now, if \(M^{2p+s} \) is totally geodesic, then \(\sigma(X, X) = 0 \), for any \(X \in T(M) \), and \(H = \tilde{H} \). Conversely, if \(H = \tilde{H} \), then \(\sigma(X, X) = 0 \), for any unit vector field \(X \in T(M) \). Now, since \(\sigma \) is symmetric, the proof is complete.

Proposition 2.3. If the second fundamental form \(\sigma \) on an invariant submanifold \(M^{2p+s} \) of an \(S \)-manifold \(N^{2n+s} \) is parallel, then \(M^{2p+s} \) is totally geodesic.

Proof. From (2.6), we have \(\sigma(X, \xi_\alpha) = 0 \), for any \(X \in T(M) \) and any \(\alpha \), because \(M^{2p+s} \) is an invariant submanifold. Now, since \(M^{2p+s} \) is an \(S \)-manifold too, from (1.4) and (2.2) we get
\[
0 = (\nabla_X \sigma)(Y, \xi_\alpha) = f\sigma(X, Y),
\]
for any \(X, Y \in T(M) \), so that \(\sigma \equiv 0 \) and \(M^{2p+s} \) is totally geodesic.

Proposition 2.4. Let \(M^{m+s} \) be a submanifold tangent to the structure vector fields of an \(S \)-manifold \(N^{2n+s} \) \((k) \quad (k \neq s) \). Then \((\tilde{R}(X, Y)Z)^\perp = 0 \), for any \(X, Y, Z \in T(M) \), if and only if \(M^{m+s} \) is invariant or anti-invariant.

Proof. If \(M^{m+s} \) is invariant or anti-invariant, from (2.4) we easily have \((\tilde{R}(X, Y)Z)^\perp = 0 \), \(X, Y, Z \in T(M) \). Conversely, if \((\tilde{R}(X, Y)Z)^\perp = 0 \), from
Submanifolds of an S-manifold

(2.4) we get

\[0 = \tilde{R}(X, Y, Z, V) = \frac{1}{4}(k - s)\{F(X, V)F(Y, Z) - F(X, Z)F(Y, V) \]

\[- 2F(X, Y)F(Z, V)\}, \quad V \in T(M)^\perp. \]

Putting $X = Z$, we obtain $0 = g(Y, fX)g(X, fV)$, for any $X, Y \in T(M)$ and $V \in T(M)^\perp$. Then M^{m+s} is an invariant or anti-invariant submanifold.

3. Proof of Theorem 1. Let M^{m+s} be a submanifold of $N^{2n+s}(k)$ ($k \neq s$), tangent to the structure vector fields and with parallel second fundamental form. Then the Codazzi equation (1.3) reduces to $(\tilde{R}(X, Y)Z)^\perp = 0$, for any $X, Y, Z \in T(M)$. So, from Proposition 2.4, we find that M^{m+s} is invariant or anti-invariant. If M^{m+s} is invariant, Propositions 2.2 and 2.3 prove (a).

Now, assume that M^{m+s} is anti-invariant. Then the normal space $T_p(M)^\perp$, at any point $p \in M^{m+s}$, can be decomposed as

\[T_p(M)^\perp = fT_p(M) \oplus \nu_p(M), \]

where $\nu_p(M)$ is the orthogonal complement of $fT_p(M)$ in $T_p(M)^\perp$. Now, since σ is parallel, from (2.6) it is easy to prove that

\[D_X fY = f\nabla_X Y, \quad X, Y \in T(M), \]

that is, $fT(M)$ is parallel with respect to the normal connection. Moreover, by using the Gauss–Weingarten formulas and (2.3), we get, for any $X, Y \in T(M)$,

\[A_{fY}X = - \tilde{\nabla}_X fY + D_X fY = - \sum_{\alpha}\{g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2X\} \]

\[- f\nabla_X Y - f\sigma(X, Y) + D_X fY. \]

Therefore, we have

\[fA_{fY}X - \sum_{\alpha}\eta_\alpha(Y)fX - \sigma(X, Y) = 0. \]

So, for any $W \in \nu$, we obtain $g(\sigma(X, Y), W) = 0$, and consequently

\[A_W = 0. \]

Since $fT(M)$ is of constant dimension on M^{m+s} and taking account of (3.1) and (3.2), from the reduction theorem of Erbacher ([4]), there exists a totally geodesic invariant submanifold $\overline{M}^{m+s}(k)$ in $N^{2n+s}(k)$, where M^{m+s} is immersed in $\overline{M}^{m+s}(k)$ as an anti-invariant submanifold. This completes the proof.

4. Examples. Let E^{2n+s} be a euclidean space with cartesian coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_s)$. Then an S-structure on E^{2n+s} is
defined by (cf. [5])
\[\xi_\alpha = 2\partial/\partial z_\alpha \quad (\alpha = 1, \ldots, s); \]
\[\eta_\alpha = \frac{1}{2} \left(dz_\alpha - \sum_{i=1}^{n} y_idx_i \right) \quad (\alpha = 1, \ldots, s); \]
\[f_X = \sum_{i=1}^{n} Y^i\partial/\partial x_i - \sum_{i=1}^{n} X^i\partial/\partial y_i + \left(\sum_{\alpha}^{n} Y^\alpha y_\alpha \right) \left(\sum_{\alpha}^{n} \partial/\partial z_\alpha \right); \]
\[g = \sum_{\alpha} \eta_\alpha \otimes \eta_\alpha + \frac{1}{4} \sum_{i=1}^{n} (dx_i \otimes dx_i + dy_i \otimes dy_i), \]
where \(X = \sum_{i=1}^{n} \left(X^i\partial/\partial x_i + Y^i\partial/\partial y_i \right) + \sum_{\alpha} Z^{\alpha}\partial/\partial z_\alpha. \)

With this structure, \(E^{n+s} \) is an \(S \)-manifold of constant invariant \(f \)-sectional curvature \(k = -3s \) ([5]).

(1) We consider the following natural imbedding of \(E^{n+s} \) into \(E^{2n+s}(-3s) \):
\[
(x_1, \ldots, x_n, z_1, \ldots, z_s) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0, z_1, \ldots, z_s).
\]

A frame field for tangent vector fields in \(E^{n+s} \) is given by \(\{X_1, \ldots, X_n, \xi_1, \ldots, \xi_s\} \), where \(X_i = \partial/\partial x_i \) (\(i = 1, \ldots, n \)). Then it is easy to check that \(E^{n+s} \) is an anti-invariant submanifold of \(E^{2n+s}(-3s) \). Moreover, we have \(\sigma(X_i, X_j) = (s/2)(y_j f X_1 + y_i f X_j) \) and, from (2.6), \(\sigma(X_i, \xi_\alpha) = -f X_i, \sigma(\xi_\alpha, \xi_\beta) = 0, (i, j = 1, \ldots, n, \alpha, \beta = 1, \ldots, s) \). Thus, the second fundamental form of \(E^{n+s} \) in \(E^{2n+s}(-3s) \) is parallel.

On the other hand, \(E^{2n+s}(-3s) \) is a totally geodesic and invariant submanifold of \(E^{2n+s}(-3s) \) \((m < n) \).

(2) Let \(S^1 = \{ z \in \mathbb{C} : |z| = 1 \} \), and put
\[M^{n+s} = S^1 \times E^{n-1} \times E^s. \]

Then consider an imbedding of \(M^{n+s} \) into \(E^{2n+s}(-3s) \) given by
\[(\cos u, x_2, \ldots, x_n, \sin u, 0, \ldots, 0, z_1, \ldots, z_s). \]

A frame field for tangent vector fields in \(M^{n+s} \) is given by \(\{X_1, \ldots, X_n, \xi_1, \ldots, \xi_s\} \), where
\[X_1 = -\sin u \partial/\partial x_1 + \cos u \partial/\partial y_1; \]
\[X_i = \partial/\partial x_i \quad (i = 2, \ldots, n). \]

Thus, \(M^{n+s} \) is an anti-invariant submanifold of \(E^{2n+s}(-3s) \). Moreover, the second fundamental form of \(M^{n+s} \) in \(E^{2n+s}(-3s) \) is given by
\[\sigma(X_1, X_1) = -(1 + sy_1^2)f X_1; \]
\[\sigma(X_1, X_i) = (s/2)(y_i f X_1 - y_1^2 f X_i) \quad (i = 2, \ldots, n). \]
\[\sigma(X_i, X_j) = \frac{s}{2}(y_i fX_j + y_j fX_i) \quad (i, j = 2, \ldots, n); \]
\[\sigma(X_i, \xi_\alpha) = -fX_i \quad (i = 1, \ldots, n, \alpha = 1, \ldots, s); \]
\[\sigma(\xi_\alpha, \xi_\beta) = 0 \quad (\alpha, \beta = 1, \ldots, s). \]

Then the second fundamental form of \(M^{n+s} \) is parallel.

(3) Let \(S^{2n+1} \) be the \((2n+1)\)-dimensional unit sphere with the standard Sasakian structure. Then \(S^{2n+1} \) is of constant invariant \(f \)-sectional curvature \(k = 1 \) (cf. [7]). If we consider the Clifford hypersurface \(M_{p,q} \) defined by

\[
M_{p,q} = S^p(\sqrt{p/2n}) \times S^q(\sqrt{q/2n}), \quad p + q = 2n,
\]

then \(M_{p,q} \) is tangent to the structure vector field \(\xi \), has parallel second fundamental form, but is neither an invariant nor an anti-invariant submanifold of \(S^{2n+1} \).

Therefore, the assumption in Theorem 1 on the invariant \(f \)-sectional curvature \(k \neq s \) of the ambient \(S \)-manifold is essential.

References

[8] K. Yano, On a structure defined by a tensor field \(f \) of type \((1,1)\) satisfying \(f^3 + f = 0 \), Tensor 14 (1963), 99–109.