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Periodic-Neumann boundary value problem
for nonlinear parabolic equations

and application to an elliptic equation

by Juan J. Nieto (Santiago de Compostela)

Abstract. In this paper we study the periodic-Neumann boundary value problem
for a class of nonlinear parabolic equations. We prove a new uniqueness result and study
the structure of the set of solutions when there exist more than one solution. The ideas
are applied to a Neumann problem for an elliptic equation.

1. Introduction. In this paper we study the existence and uniqueness
of periodic solutions for a parabolic equation. When there exist more than
one solution we study the structure of the set of solutions.

The existence and multiplicity of periodic solutions of nonlinear parabolic
equations is an important question and has been investigated by several
authors (see, for instance, [2, 3, 8, 9, 13, 16] and the references therein).
The present work is motivated by [13] where we study the structure of the
set of solutions. Here, we continue that work and improve some results about
the solution set when the nonlinearity is given by a decreasing function g.
Moreover, we show that the conjecture mentioned in [13] is true provided
that g is Lipschitz continuous and the Lipschitz constant is less that one.

To this purpose we give a new uniqueness result (Theorem 1) and then
prove our main result (Theorem 2): The solution set is nonempty, compact,
connected and acyclic. As a consequence, we find that the set of solutions is
a continuum (Corollary 3), that is, satisfies the classical Hukuhara–Kneser
property for ordinary differential equations. We recall that this property is
satisfied, for instance, by an initial value problem for a system of partial
differential equations of parabolic type [5].

We mention that our method can be adapted, in a direct way, to the
study of other boundary value problems. To illustrate this, we consider a
Neumann problem and improve the result of [11].
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Finally, we present some problems for further research on the topic.

2. Preliminaries. We consider the following periodic boundary value
problem (PBVP):

(1)
ut − uxx + g(u) = h(t, x), (t, x) ∈ Ω = [0, 2π]× [0, π] ,
u(0, x) = u(2π, x), x ∈ J = [0, π] ,
ux(t, 0) = ux(t, π) = 0, t ∈ I = [0, 2π] ,

where g ∈ C(R,R) and h ∈ C[Ω,R] . Set υ = 2π2, Range g = {g(x) : x ∈ R}
and

ω = ω(h) =
1
υ

2π∫
0

π∫
0

h(t, x) dx dt .

We shall denote by S = S(h) the set of solutions to (1). We list the
following assumptions for convenience.

(A1) g is a bounded and decreasing function.

(A2) ω ∈ Int(Range g).

(A3) There exists γ ∈ [0, 1) and C ∈ R such that |g(u)| ≤ γ|u| + C for
every u ∈ R .

(A4) There exists k ∈ [0, 1) such that |g(u) − g(v)| ≤ k|u − v| for every
u, v ∈ R .

Note that (A3) is a more general assumption than (A4). Obviously, any
bounded function satisfies (A3) with γ = 0.

Let E = {u ∈ C1,2[Ω,R] : u(0, x) = u(2π, x), x ∈ J , and ux(t, 0) =
ux(t, π) = 0, t ∈ I} and F = C[Ω,R]. In F we consider the norm ‖u‖ =
sup{|u(t, x)| : (t, x) ∈ Ω}, and in E, ‖u‖E = ‖u‖+ ‖ut‖+ ‖uxx‖. Define the
operator L : E → F by Lu = ut−uxx, and let P : F → F be the projection
defined by

Pu =
1
υ

2π∫
0

π∫
0

u(t, x) dx dt .

Hence, KerL = 〈1〉 and RangeL = {v ∈ F : Pv = 0} = (I − P )F . As
usual, we can write E = E0 ⊕ E1 , F = F0 ⊕ F1 where E0 = PE, F0 = PF ,
and for u ∈ E, u = u0 + u1, u0 ∈ E0, u1 ∈ E1. The partial inverse of L is
H : F1 → E1.

In L2(Ω) we define the usual inner product and norm given by

(u, v) =
∫
Ω

u(t, x)v(t, x) dt dx ‖u‖2 =
√

(u, u) .

We note that if (A1) and (A2) are satisfied, then S(h) is bounded [13].
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3. A uniqueness result. If g is strictly decreasing uniqueness does
not occur in general (see the example on page 97 in [13]). We now give a
uniqueness result that improves [13, Th. 6]. In order to use the alternative
method [6, 7], define the nonlinear operator N : E → F by Nu = h− g(u).
Thus, (1) is equivalent to the abstract equation Lu = Nu. Note that the so-
lutions of this equation are precisely the fixed points of the compact operator
T : E → E, Tu = Pu+H(I − P )Nu+ PNu.

Theorem 1. If (A1), (A2) and (A4) hold , and g is strictly decreasing ,
then any solution of (1) is unique.

P r o o f. The values of λ for which the problem

−Lu+ λu = −ut + uxx + λu = 0, u ∈ E ,

has nontrivial solutions are λn = (n−1)2, n = 1, 2, . . . , and Ker(−L+λnI) =
〈cos(n− 1)x〉 (see [8]).

Take c = (λ1 +λ2)/2 = 1/2. Thus the operator −L+cI is invertible and
‖(−L+ cI)−1‖ ≤ c−1 [6, p. 116]. On the other hand, for every x, y ∈ R we
have |g(x) − g(y) + c(x − y)| ≤ c|x − y|, with strict inequality when x 6= y
since g is strictly decreasing and (A4) holds. Therefore, for every u, v ∈ E,
‖Nv −Nu+ c(u− v)‖ ≤ c‖u− v‖. Moreover, if u 6= v (in a set of positive
measure) then ‖Nv −Nu+ c(u− v)‖ < c‖u− v‖.

Now, if u, v are two solutions of (1), then (−L+ cI)−1[Nv−Nu+ c(u−
v)] = u − v, which implies that ‖u − v‖ ≤ c−1‖Nv − Nu + c(u − v)‖. In
consequence, u = v and (1) has at most one solution.

We note that the estimate k < 1 is optimal since λ2 = 1. However, the
result of Theorem 1 is no longer true if we assume (A3) instead of (A4)
(even with γ = 0).

Example. Take n ∈ N∗ and let g be a strictly decreasing and bounded
function with g(u) = −n2u for |u| < 1, and h = 0. Thus, for a small,
u(t, x) = a cosnx is a solution of (1).

4. Main result

Theorem 2. Assume that (A1), (A2) and (A4) are satisfied. Then the
set of solutions of (1) is nonempty , compact , connected and acyclic.

P r o o f. Consider the sets S0 = {u ∈ KerL : Nu ∈ RangeL}, and
S+ = {u ∈ E : Lu = λNu, for some λ ∈ (0, 1)}. As in [13] one can show that
S0 and S+ are bounded sets in F . Now, define G : R→ E and G1 : F→R by
G(a) = a, G1(u) = Pu respectively. Thus ξ(a) = G1NG(a) = P [h − g(a)].
Using (A2) we see that ξ(a)ξ(−a) < 0 for a > 0 large, which implies [4] that
S(h) is nonempty and compact in E.
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In order to show that the solution set is connected, define, for n ∈ N∗,
the function gn(u) = g(u) − (an)−1 arctanu with a > (1 − k)−1, and the
operator Nn : E → F by Nn(u) = h − gn(u). Thus, ‖Nn(u) − Nu‖ ≤
(an)−1‖ arctanu‖, which shows that Nn converges to N uniformly on E.

For v ∈ S(h), consider the set Sn(v) = {u ∈ E : Lu−Nnu = Lv−Nnv},
and let u ∈ Sn(v). Hence,

(2) ut − uxx + gn(u) = vt − vxx + gn(v), u ∈ E .

Note that gn is strictly increasing and satisfies (A4) since |gn(u) − g(u)| ≤
[k + (an)−1]|u− v|, and k + a−1 < 1. On the other hand,

ω ∈ Int(Range gn) = (g(∞)− π(an)−1, g(−∞) + π(an)−1)
⊂ (g(∞), g(−∞)) .

In view of Theorem 1 we see that (2) has a unique solution and Sn(v) is a
singleton. In consequence, S(h) is connected. Now, noting that for v ∈ E,
the equation Lu−Nnu = v has at most one solution, we can conclude that
S(h) is acyclic. This completes the proof of the theorem.

We note that this result improves [13, Th. 7]. As a consequence we have
proved the conjecture of [13] when (A4) holds. In addition, we obtain the
classical Hukuhara–Kneser property for S(h).

Corollary 3 . Under the hypothesis of Theorem 2, the set of solutions
of (1) is a continuum.

5. An elliptic problem. Using the same method, we can study some
other boundary value problems. To illustrate this, consider the following
Neumann problem [11]:

(3) −∆u+ g(u) = h in Ω, ∂u/∂ν = 0 on ∂Ω ,

where g is continuous and bounded, and Ω a bounded region in Rn with
smooth boundary. The values of λ for which −∆u+λu = 0 in Ω, ∂u/∂ν = 0
on ∂Ω has nontrivial solutions form an increasing sequence λn, n = 1, 2, . . . ,
with λ1 = 0 < λ2. The following result is analogous to Theorem 1 and
improves the result of [11] since our result gives an optimal estimate for the
Lipschitz constant (see the example in [11]).

Theorem 4. Let ω =
∫
Ω
h(x)dx. Suppose that g is strictly decreas-

ing and Lipschitz continuous with Lipschitz constant less than λ2, and ω ∈
Int(Range g). Then (3) has a unique solution.

Theorem 5. Assume that g is decreasing , Lipschitz continuous with
Lipschitz constant less than λ2, and ω ∈ Int(Range g). Then the set of
solutions of (3) is nonempty , compact , connected and acyclic.
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This last result improves [14, Th. 5] and proves the conjecture of [14]
when the Lipschitz constant is less than λ2.

6. Final remarks. If g is increasing, (1) can be written as

(∗) Lu+Nu = h

with L and N monotone operators. Existence and uniqueness results are
known for this equation. When uniqueness does not occur one can show that
the solution set is a convex set by using the direct method of the calculus
of variations combined with the principles of convex analysis [12], or an
Rδ as in [15] by using the alternative method and Aronszajn’s theorem.
However, when g is decreasing the techniques developed in those papers are
not applicable to the PBVP (1). Note that (1) and (3), with g decreasing,
can be written as

(∗∗) Lu−Mu = h

with L and M monotone operators. We hope to give some general results
about the structure of the solution set for equation (∗∗). Finally, we think
(inspired by the work of Ahmad [1]) that the following result holds true.

Conjecture. Let g be continuous such that −∞ ≤ g(−∞) < ω <
g(∞) ≤ ∞, and (A3) holds. Then (1) is solvable.
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