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On the summability almost everywhere of orthonormal
series by the method of Euler-Knopp

by J. MEDER (Szeczecin)

1. In the present paper we shall consider the Euler-Knopp summa-

- bility-method of orthonormal series

@ | Y 4,00,

n=0 .

which are expansions of functions with an integrable square in {0, 1),
1. e. such, that

(2) j'a,i<oo.

n=0

We are especially interested in investigating the relation between the
summability-method of Euler-Knopp and that of Cesaro.
T wish to express my deep gratitude to Professor W. Orlicz for his
agsistance and valuable suggestions in certain parts of this paper(*).
The g-th Euler-Enopp means of the sequence {s,} are defined as
follows:

1 X [
@~ n—k £ =0,1,...; 0.
KRNPEEID go (k)q e

o0
In place of ) we write 7,. The series Ya, with the n-th partial sums,
0

is called summable by the gq-th Euler-Knopp method (E, q) to s or, more
concisely, (B, q)-summable to s, if lim7® = s. It is known that the method

n—>00

of Buler-Knopp and that of Euler are equivalent. Therefore we shall
write ,,the method of Euler-Knopp”’ for both methods.

(*) This paper originated in 1952 in connection with problems considered at
the mathematical seminar directed by Professor W. Orliez.
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We shall denote by -rg‘)(m) the g-th Fuler-Knopp mean of the series
(1), writing +® (#) = v, (). Moreover, we shall write

n
8, (®) = Z%‘Pk(m)-
k=0

The methods (E,¢q) of Euler-Knopp and (C,r) of Cesdro are not
equivalent (see [10], p. 340). There exist numerical series summable by
one of those methods and not summable by the other. However, as we
shall prove in this paper, every orthonormal series (1) summable almost
everywhere by the method (Z, g) of Euler-Knopp is also, for arbitrary
¢>0 and r> 0, summable almost everywhere by the method (C,r)
of Cesaro.

We have not determined whether there exists an orthonormal series
summable by the method (C, r) in <0, 1> and not summable by the me-
thod (H,q) for any set of positive measure. However, one may suppose
that such series exist, because certain theorems holding for the method
of Cesaro are not true for the method of Euler-Knopp.

To simplify further formulations we now introduce the following
notation: If the sequence |f,(»)}/g,(2)| is bounded or convergent to zero
for n — co almost everywhere in (0, 1>, then we shall write

fo(@) = 0(g (@) or  f,(@) = o(g,(a)),
respectively.

2. TaEOREM 1. The series
oo 1
(3) Efn[rn(m)ﬁrn,l(w)]zdm
n=10

00 -
is convergent if and only if ZaiVn < oo,
n=1

Proof. Applying the formula t) (n?l)

_ ) we can write
-1
1 ”
@) —Tamsl0) = 5 {snlo)+

n—1

R
I = eI

e -1 -1 o ) —
Writing ¢,; = (?z__l)-(n@- ), we have Zcm = (” 1) = k (;:) and.
n

k~—1
T (8) T, 1 (@) =g 2%2 o0 (@ Z“ka(w)ﬁcni-

i=0 k=0 ie=l
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Hence
1 An

@ B0 =talo) = 0 3 [} Jeasouta
This and the orthonormality of the system {g,(x)] imply

1 1 n o

n)\2

5 fa ®)—7,_1 (2)d =——2 aj.
) I R DAL

Let [#] be the integral part of the number . We put [#/2]=m
Then (5) implies

1

s n

1 ~afn\. ., }”(m) 1 ¢\ =,

bf'n[r%(m)~rn (@) dm<4n2(k) Rt < - 5 _2;2 (k)l/kaip.
k=0

If we apply Stirling’s formula or, what is simpler, Knopp’s inequality

(6) 1<

=<10 for n=1,2,...

Thus we have
1

fn[-rn(m)—rn_l( 2)Pdr < 20e zln y (7@) Vidi.

0

- However, as is known for numerical series, the convergence of the series

[s~]
Ya, implies the convergence of the series
0

n=0 k=0
to the same sum (see [7], p. 7). Therefore, if we assume the convergence

< —
of the series Zail/k, then

1 oo
f [t () — T (2) P dw < 406 2 S 2(:) Vial = 40e2a§c1/75 < oo.
0

[\48

=0 k=1

i

Me=1
Thus we have proved that the condition Z'a,i V< oo in theorem 1 is
1

sufficient.
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Now we shall prove this condition to be necessary. Suppose that the

series Z’waﬁl/ﬁ diverges; then we shall prove that the series (3) also di-
1

verges.
Aceording to (5)
P

2 f [ (0)— Ty (0) Pl = 2 4%2(70) ok — 276 “’2(2);}

n=1 0 k=1 n=k

G T By 3 L]

_27; 22 e >’§mﬁc D

r=k—[Vk]
4 we shall now estimate

Let 1 = [Vk]. Applying inequalities (6) for & >
the expression

1 [2k—1\2 [(2]_0 —IP
42k—l k (kl) ( )y] 4276 -1 °
Since % > 4 and " < %,
2k —1\2
b ) B (2% —1)** (2% —1)
42k—l - 10024276—1]62767“(k__l)ﬂc—zl(k_l)
o1 (4k2—4kz+12)2" (1 l )”270—1. 1
71007\ 4KE—4R1 o%k—1] k—1 &

1 o\*2k—1 1 1 1 )21—12(1—1)_270—1‘ 1
2k—1,

>— I >—1- —.
= 100 k—1 k= 100 a—1 2l—1 k—l %k

However, for & > 4,
2(1—1)(2k—1)
(21—1) (k—1)
whence
ok —1\2
( b ) 1 1\ 1
wean W(l"ér:i) %

2 we have

1 1 \—@-1 1 \2-2 1
[ = {14+ — 14—
( 21—1\) ( +2l—2) (H 21—2)’

Since for 7 >
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the following inequality

1 2l-2 .
1
( + 21_2) <e

implies

(1_ 1 )21—1_ 1 1
A1) T A4Lj@ et (i+1)@i—2)) 2

Hence, for 4 <P <%,
(2k—z)2
T 1 1 C, 1
yE > T 20 % %’ where C, = 1005 2"

Thug we have
[p/2] [p2]

., Vel 1 1 —~
an[r,,(m iy ()T dw>012 P %] 1_ 0152 VE]ad
n=1 0 k=4

@21 /2]

< 2 v 1)ak>w2aka

k=4

implying the divergence of the series (3), as the series Z’ail/k is di-
vergent. k=1
3. Let us denote by o,(x) the first Cesdro means of the sequence of
the n-th partial sums of the series (1). We shall prove two lemmas.
LeMMA 1. If the orthonormal series (1) satisfies condition (2), then the

series
(=

1 2
D)= [on@)—w(@)]
n=1 "
converges almost everywhere.
Proof. The following equality holds:

n k—1
1 k
0n (@) —Tn () = Zak%(w) [ybz (’j) - %—_Ic_l—],
whence =0 =
1‘ zd_fwik}?n 1“(%) 2% . 7;2}
oo —sortan = dak{zj(w)[é—g ) -+
[n/3]+1 k-1 n k-1 k-1
NERRION: 2{1 (n)[i o 279]
<) “’°[FZ(¢)]+ P 2“2 i 2"_2 By Ry |
%=1 =0 Fo=nj3] +2 i=0
kzak‘
+Z n+1)
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We shall prove that the expression in square brackets in the second When % = [n/3], then the number % equals one of the three numbers
sum on the right-hand side of this inequality is negative for all % within n[3, (n—1)/3, (n—2)/3 and we have
the summation limits, 4. e. writing ‘ . (3,{) (375 4_1) (3]‘ +9)
k-1 k I k

1 n 2k L
Wnk=2'n2(i)“m> 2 9%k 9

=0 Therefore if we prove that
we have W, < 0 for [n/3]+2 <k < n. Let us consider two cases:

3k) _ ’
k
8) [nf3]+2 <b < [”/)]’ ;7‘ <10 ]/3(2_2) for k=1,2,...
b) (n/2]+1 <k < 2 2132
Since [1/3] = (n—2)/3, we may write in case (a), then inequality (8) will be proved, too. However, applying inequalities
(6), we get .
n2]—1
I’an; <£I;’: y (n) _M%)_ < i —_ 2”—‘_%._ < 0 —1_ 3% 1 (3k) ) 10 (370)3k ﬂsk]/—k
R Y n—+1 2 3(n-1) 5%\ 7 < 2% (2%) k! 2 (21 “Zkl/‘)k e _kl/k

and since [#/2] > (n—1)/2, in case (b) we have - _
[/ /“_1 /: r _10]/3 27k<10]/3 27k
W <i2 n 2((n—1) )/2+1) <1_rn—l+,3z0' = AR 5 \53) -
i n+1 n+1
J . . - thus concluding the proof of inequality (8).
g : i . H
Thus, for [#/3]+2 < & < »n the inequality W,; < 0 holds. Hence Reburning to the estimation of the expression
Te1 k-1
.1 \} (n) [ 1 (n) 2k ]l C ke i
;{ 9"2 1 <0 1 n\ T n
vt o L=J £ \i] o+l J -2712_; i for 1<k< 3 +1,

and we have

1 (8141 k1 n ' . {1 (n\] . X
: . 1 n\? A let ug first note that the sequence (=5 ( )} increases for 0 <14 < [n/2].
M [ ee-u@re< ) ai[AZ()] + AL S
§ re N e B &~ (n+1) Thus for 1 <k < [1/3]--1 we have
Now we shall estimate the expression k-l 2 2
1 n
200 < 2()2 Z( )
1 n\ TP n 2™ 4 4 k—1
7)7,2 N for 1<k =] +1. =0
sm Vv 3 whence ,
First, we shall prove that [1 Sﬁ (%)JZ < kz( n \)‘-’
1 3 [27\0s 2" \i a\[n31/ "
(8) 3%<[n73]) < 10]/3(55) for m=1,2,... =
B o Applying inequality (8), we obtain
Remark. If we assume ;—; in inequality (8) instead of % ‘,, then k1 . .
. 2 27 2[n/3 7
it can be proved that 9) [%2 (j)] < 150K (32) <0, 7%2 for n=1,2,...,
i=0

1( = 27\ (/3]
:‘)T‘([n/S})< (%) for m=1,2,.. C, being a suitable constant.
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Remark: Inequality (9) may also be obtained from an inequality
referred to by G. G. Lorentz in [9](*), p. 180.
The inequalities (7) and (9) imply

(10) f (o0 () — T ()T <02;;1§762az.
Hence
Z f 2 o (@) —ta(@)Fdm < (Ca41) 2 kZ'k @

= <02+1);702a;‘7;ﬂ1?:
Sf% [on (@) —Tn (@) e < o0.

n=1 0

and consequently

Hence and from Levy’s theorem follows lemma 1.

LeMMA 2. If the orthonormal series (1) satisfies the assumption (2)
and is summable almost everywhere by the (B, 1)-method to s(x), then

tim = 3 () —s(@)F =
nsoo M L

Proof. At first let us remark that the series

-]

N tsnto)—ontoll
n

n=1

(11)

(1) We put
2y(t) = (Z)”“—ﬂ“-“ for »=10,1,2,...,n

Then the following inequality holdq

2 Py(t) <—3 ‘»— ~t‘> =R,
[E<F=)

4 being an absolute constant. This inequality yields for ¢ = % and = 6%,

1y 1gn L )
p(3)=w(s) = 5Y ()<
v=0

sinee for 0 <C» << [n/3] we have

> 18,
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is convergent almost everywhere. We have

1 n
) = vnﬁ g kaypr(2),

sn(w)"‘an(“;

whence
1 1 n
Sy () — Py — ——— 2 2
of["( Sl e = Ty zk "
Hence a
m 1 1 m 1 n m m 1 m
2 [ ime—aore < 3L Mvd = Swa 350 ().
N=1 0 =1 k=1 F=1 n=k k=1

which implies the convergence almost everywhere of the series (11).
Lemma 1 and Kronecker’s theorem (see [8], p. 983) imply

‘*Z [ox(z

Applying Kronecker’s theorem to the series (11) we obtain

(12) 2) >0 for m— oo

Zﬂv [sx(z)

(13) % —op(@) >0 for m—> oco.
k=1
From Minkowski’s inequality we have
1\ /°
(14) {;’Z fseo)—s(al] <> 2 [ne)—au@)F] +

+ Zm(m) —n@r] { me)—s(m A",

According to the assumption, 7,(x) - s(x) and so the third expression
on the right-hand side of the last inequality converges to zero almost
everywhere. The first two expressions converge to zero almost everywhere
according to (13) and (12). Thus, the right-hand gide of inequality (14)
converges to zero almost everywhere. '

4. THEOREM 2. If the orthonormal series (1) satisfies condition (2)
and is summable almost everywhere by the (B, 1)-method, then it is summable
almost everywhere by the (C, 1)-method to the same sum.

Proof. Let 7,(x) -> s(x). According to the inequality of Buniakowski-
-Schwarz we have

2 1 - : 1 - 2
o < (g ) Inlo)—s @] =PRI

Hence lemma 2 implies o, () - s(z).

[O'n(w) —S(
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The last theorem may be generalized as follows.

TrporREM 3. If the orthonormal series (1) satisfies condition (2) and
is summable almost everywhere by the (H, q)- -method for a certain q > 0,
then it is summable almost everywhere by the (@, r) -method for every v > 0.

In order to prove this theorem we apply two theorems given in the
book by G. H. Hardy ([1], pp- 183, 210, theorems 128 and 147). These
theorems concern Borel’s method. We say that the series Z% with partial

o=}

gums s, is summable by Borel’s method to s, if the following two condi-

tions are satisfied:
el n

(2) the power series an—~ is convergent for every ,
= !

b) lwi_rie“mfg: s%T =8

The above-mentioned two theorems are:

TasorEM 1. If the series S’an is (B, q)-summable for a certain q > 0,
then it is summable by Borel’:=;@ethod.

o0
— % and the series ) ay s summable
n=0

TEROREM IL. If ay = 0(n%), 0 ==

by Borel’'s method then it is (C, 2¢ ~+1)-summable.

Proof of theorem 3. Since the series (1) is almost everywhere (&, g)-
-summable for a certain ¢ >0, according to theorem I it is almost every-
where summable by Borel’s method. Since

co 1 e
Z f an oy, () dop = Zagt < 00,
=0 0 =0

we have

A on(®) = 0(1) for m— oco.

Therefore condition (2) implies that for the series (1) the assumptions
of theorem II for p = 0 are valid. Hence, according to theorem IT the
series (1) is almost everywhere (U, 1)-summable. Thus, the theorem of
Kaczmarz-Zygmund (see [5], p. 105, theorem 12) allows us to conclude
that the series (1) iy almost everywhere (0, r)-summablé for every » > 0.

Remark. Theorem 2 is a consequence of theorem 3; however, the
proof of theorem 2 given here makes use of lemmas necessary in further
congiderations. On the other hand, in order to prove theorem 3 we use
certain properties of Borel’s method together with theorem II, the
proof of which is based on facts belonging to the theory of analytic func-
tions.
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5. THEOREM 4. If for the orthonormal series (1) the condition

2 ai(loglogn): < oo

=2

holds, then there exists almost everywhere lim ,n(x).
N—»00

Proof. Writing 2" instead of n on both sides of inequality (10) we
obtain

1 -
5 C 1
(18) ( [oan () — T (2) Pdo < _%; Zk2a§
! k=1
However,
m

ml an m 1 2t

Rl R

DY ORLEDIDE I ’“’i<§ f
=2

n=1 k

Y‘ ¥a; [

i=1 p=7. p=2t—141 1—1 i-1 Jo= 21—1+1
m i m 2t o
4 1 Bal ) 2 2
<4 T a, < 4 ak<42ak<oo.
=1 k=2t—141 i=1 pogi—ly3 k=2
Thus
) on )
1 X720 2
2‘4"'".}_/76 ap < 4 > i
=1 k=1 k=1
and according to (15), we have
o 1 o0
D [ lon(@) (@) de < 4(0.+1) D' dk < oo,
n=10 k=1
whence
(16) ogn(®) —Tm(x) > 0  for n— oo.

Applying our assumption and the theorem of Menchoff-Kaczmarz (see
[5], p. 107, theorem 14) we obtain the (C, 1)-summability almost every-
where of the series (1). Hence there exists almost everywhere lim om(®),

N—»00

and (16) implies the existence of hm Izn(m) almost everywhere.

6. We denote by T[a,] the nth transform of the sequence {a,)
by the method 7. T,T, will indicate the method consisting in applying
first the method 7', to the given sequence {d,,} and subsequently the me-
thod T, to the sequence of transforms thus obtained. We shall write ¢
for the (€, 1)-method, B for the (E,1)-method and 0C = H® for the
second iteration of Holder’s method. Further we denote by I-lims,
the generalized limit of the sequence {s,,,} by the method 7.

Annales Polonici Mathematici V. 10
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Tt is known in the theory of numerical series that if O-lims,, exists,
then CF-lims, also exists, and C-lims, = CE-lims,. But the exi-
stence of OB-lims, does not imply that of O-lims,.

7. THEOREM 5. If the orthonormal series (1) satisfies condition (2)
and CB-lims, (x) exists almost everywhere, then C-lims, (x) exists almost
everywhere, and CE-lims, (z) = C-lims, (x).

Proof. Let
tim rl(m)+zz(m1:r...+rn(m) - s).
The formula (12) implies
i @ FR@ @)

B n

whence the series (1) is summable almost everywhere by the second ite-
ration of Holder's method. Thus, it is (€, 2)-summable almost everywhere.
Hence the theorem of Kaczmarz-Zygmund ([3], p.105, theorem 12)
implies the (C, 1)-summability almost everywhere of the series (1) and
we have O-lims, () == s(x).

THEOREM 6. The orthonormal series (1) satisfying the assumption
(2) is (B, 1)-summable almost everywhere if and only if

(a) the serdes (1) is (C, 1)-summable almost ever )/whm e,

(b) BC-imna,qp,(x) = 0.

Proof. Necessity. We suppose that the series (1) is (#,1)-summa-
ble almost everywhere. Then, by theorem 4, it is (C, 1)-summable almost
everywhere, too. The condition (b) follows directly from a known theorem
in the theory of summability of numerical series.

Sufficiency. We have

n

an sale)—onl@) = ) mupule)— g Z T a9,
k=0 |=0
1 .
- chamw) = 01,9, (®)]
and =0
1 n
nlon(@)—ona(2)) = oo gkamw).

Hence

ICZ kazqr () .
(18)  HO®([na,p,(z)] = C’[Tw] = O[n (0w (@) — o1 ()]
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The lemma (_)f Kaczmarz-Zygmund ([5], p. 104) and the assumption imply
the convergénce almost everywhere of the series

2 Telop(z

Then, by Kronecker’s theorem we have

—a (@) T

oI 2 Bloy@)—op @) >0  for n-— co.
However, since
{ S’km () =01 |} < Vki[a (2)—01_ (@) 5 0
n+1 & nt1 L k k=1 ’
we have
1 n
P 2 klog(®)—op_1(2)] > 0 for n-— oo
and (18) yields
HOlimna,p,(z) =0 for 1 — oo.
Since
C-lims, () = 00-lims, (z) = H®-lims, (),
we have
(19) O[3, (@) -HP [s,(2)] = 0(1) for 2 — co.
Howevér, theorem 5 implies
C-lims, (x) = CE-lims,(v) = EC-lims,, (x)
and, with (19) we obtain
(20) BO[s,(2)]—H® [s,()] =0(1) for n— oo.

Applying Euler’s transformation to equality (17) we obtain
EB[s,(x)]—EO[s,(2)] = BEC[nanp.(2)].

Now, adding (20) to the last equality and applying formula (19), we
obtain
Bsn(®)] = EC[nonp.(2)]+Csn(x)]+0(1).

Thus, conditions (a) and (b) in theorem 6 are sufficient.
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A formula similar to Barnes’ lemma

by F. M. RaeAB (Princeton)

The formula to be established is
+ioo

1
o [ POIa—9)TE—s)Tp—a)I(a—p+s)I(f—p+s)(—1)ds

27t

_ T(a)I'(p)[(a—3p)(B—ip) I (ha+4p—ip) (3 +tat+ 36— ip) '(3P)
2P~ (}) I (a+B—4p) exp (—Fimp) ’

‘where

1) Ra>0, RE>0, Rp>0, R(a—p)>0, R(B—p)>0.
The path of integration is of Barnes’ type and is curved, if necessary,
to separate the increasing sequence of poles from the decreasing sequence.

(1) is an extension of Barnes’ lemma (see [1]) namely

1

+ic0
= f T'(a+s)T(B+8)T'(y—s)I(8—s)ds

{ oo

2

_ D(atn) e+ I (B+y) T (B+9)
I'(a+p+y+96) ’

To prove (1), write I for the expression on the left. Let O be the se-
micircle of radius ¢ on the right of the imaginary axis with its centre ab
the origin and suppose that ¢ -» co in such a way that the lower bound
of the distance of ¢ from the poles of I'(a—s)I"(—s)I'(p—s) is definitely
positive. Then the integrand is asymptotically equal to

0 [s***~?=3 exp (—3x|Ims|)],

ag |s| - oo on the imaginary axis or on €. Thus the original integral
converges and the integral round O tends to zero as g — oo when
R{a+p—3p—1) < 0. The integral iy therefore equal to minus 2w times


GUEST




