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On absolute convergence of multiple Fourier series

by J. MUSIELAK (Poznan)

1. Investigations concerning the absolute convergence of multiple
Fourier series may be put under one of the following two headingss double
Fourier series (papers [2], [7], [10]) or multiple Fourier series (papers
[1], [4]). The former introduce the moduli of comtinuity defined as
follows:

w(l’Z)(hli hz) = sup |A(1’2)(f; L1, Bg; 617 62)[7
a<21,%9<h .
1011<<hy; 1821<<hy
w(z)(mﬁhu hy) = sup !A(z)(f; By Ba; Oy, Oa)l;
aszy<h
: 1agl<hy
0D @a; by, hy) = sup |AD(f; @y, #a; 8y, Ga)l,
asT<h
: : 1611<hy !
where ) : )
A(l'z)(fi Ly, Ty 01, Op) = f(21+ 04, wz—’"az)_f(af‘l"{-&l} @) —
—F (@1, Bat-8a) (1, )5 e
A (f5 1, @3 61, 6g) = (@1, @a+8s) —f (@1, @3),
Au)(f; @1y Ba; 01y 8p) = f(@1+ 01, 8a) —F (21, @)
For functions of two variables those moduli make it possible to define
certain generalized Lipschite conditions. Celidze [2] denotes by HZ%
(0<a,p,d,p <1) the class of all continuous functions f(w,,®,) sa-
tisfying the inequalities

(1.1) @D (R, ha) < Koy hihS,
(1.2) O (@15 s ha) < Kpay (20) 1
(1.3) @D (@5 by, by) < Ky (5) R,

the functions Koy (2,) and Ky (z,) being summable. The variations may
be defined analogically (see [3], p.345). With this notation sufficient
conditions for the absolute convergence of double Fourier series may be
formulated. . g. if the function f(x,, «,) belongs to the class H*4 for some
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a, B,d, B > %, then its Fourier series is abgolutely convergent. This
follows immediately from theorem III in the paper by Reves and Szész
([71, p. 697). Moreover, the proof of this fact is the object of a subse-
quent paper by Oelidze [2]. Further it is known that if a function f(x,, ®,)
of bounded variations belongs to the class Hej for some a, 8, a’, ' > 0,
then its Fourier series is absolutely convelgent This is proved by Za,k
[101(*)
[ ]El‘he above theorems may be generalized in various ways. Instead
of agsuming the Lipschitz conditions, we may use the functions w® (hy, ),
@ (g5 by, hy) and o® (@55 hy, hy) to formulate more general conditions.
The moduli @ can be replaced by integral moduli.
Tt is known that the absolute convergence (in a set of positive mea-

sure) of the double Fourier series

floy; ®g) ~ Z gy (G iy COBMy 2y COB My By~ Biy o, I 110y 21 OB Mg -
my,mg=0
+ Cmym, CORM &3 SI0M o @+ i, STD. M 24 SN 25) 5

where
¥ for my=m=0,
Aoy = 2 for my=0,my>0 or m>0,m=0,
1 for my>0,m>0

and the coefficients “mxmz’ brnymg s Oy s mnym, aLE defined by the known
Fuler-Fourier formulas, is equivalent to the convergence of the series
(14) D (mgmg| + By Oy | 4+ |y )
'ml,m2=l)
(see [7], theorem IT). Instead of the convergence of the series (1.4) one
can more generally investigate that of the series
o0
(1.5) D (gl -+ Bgmgl? 4 emyong|” 4+ | oy ")
my My =0
where 0 < y < 2, or of the series

(L6) > (my 115 |agm, | +-

My My=0

Wbmlmzl + |(f'm1m2\ -+ ldmlmz )

(*) This theoremn is already given in paper [7] (corollary on p.705) but its for-
mulation is not adequate. The authors assume only that the function f(wy,w) is
of finite variations and satisfies condition (L.1) for certain a, # > 0. This, however,
is not sufficient for the absolute convergence of the Fourier series of f(wy,®). As
a counter-example we may take the funotion f(y, m3) = g(#1), ¢(x;) being of finite
variation and sueh that the Fourier series of ¢(wy) is mot absolutely convergent
(for such an example, see the function given by the series (1) in [9], p. 136).
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with By, 8s > 0. Sufficient convergence conditions for the series (1.5)
are given by Reves.and Szész in [7], and for the series (1.6) by Zak in
[10] :
In all these papers ([2], [7], [10]) the authors prove the convergence
of the series with lower summation limits m, = m, = 1 using conditions
of the form (1.1). They prove the convergence of the remaining parts
of the series applymg the known theorems on functions of one variable

to the functionsg f f(z, y)dz and f fla, v)dy. v

Bochner [1], a,nd Mlnakshlsundamm and Szész [4] introduce a quite
different method in their considerations. Their proofs are based on the
notion of spherical means introduced by Bochner. Bochner obtains
a theorem (see [1], theorem X), with assumptions about derivatives of
a guitably defined funection f,(¢). Minakshisundaram and Szdsz assume
Lipschitz conditions of the form |f(x)—f(y)] < K|z—y|*, where  and ¥
are two points of the #n-dimensional Euclidean gspace and |z—y| the
distance between x and y. They obtain the convergence of a series of the
form (1.5) for y > 2n/(n-+2a). For » > 1, however, this inequality does
not embrace the exponent y = 1.

In paper [6] lemma 3 and theorem 2 of the present paper are formu-
lated without proof.

2. The object of the present paper(2) is to generalize the investiga-
tions made in [2], [7] and [10] to multiple Fourier series. The method
of the proofs differs from that used in the papers mentioned above in
that it is direct and does not reduce the n-dimensional case to the (n—1)-
-dimensional one. The notion of spherical means is not applied either.
The author conceived the idea of considering this problem and especially
of applying the r-th variations (see § 3) in its investigation at the mathe-
matical seminar directed by Prof. Orlicz. I wish to thank Prof. Orlicz
for his kind help.

We shall consider real- or complex-valued functions f(#,,..., %)
of n real arguments , ..., %,, defined in the whole n-dimensional Eucli-
dean space, periodic with period 2 (3) in each variable and integrable in
the region (0 < w; < 2;¢=1,2,...,n) with the p-th power for a cer-
tain 1 < p < 2. Let 4 be an arbitrary subset of the set ¥ = (1,2, ..., n)
and A the complement of 4 with regard to E. The numbers

2
(2.1) “;gnl__,an,‘<f) = { see
0

2
_{f(ml, vy &) n coxs'm,m:wlIYgmm,ﬂros,dzr1 ... day,
0 .

164 jed

(%) The results of which were presented on June 7t 1956 to the Polish Mathe-
matical Society, Section of Poznan.

(*) We take the period 2 instead of 2r to simplify calculations.
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will be called the Fourier coefficients of the function f(,...,2,). Here

ACE, my,...,my =0,1,2;... and [Ja; denotes the product of all
ied

a; with indices 7eA. The series

(2.2)  fl@,

o
~ Z‘ ml Z a'ml 7"‘11, n COS My o, ” sin MWy T4

My, My =0 jed
where A, m, = 2~ W) = E{m # 0} and p(H) is the number of all

elements of the set H, is the Fo'wrm series of the funetion f(w,, ..., o)

The sign Y indicates that the summation extends over all subsets 4 of
ACE .
the set B, including the empty subset.

Using this notation we give some sufficient cond1t1ons for the con-

vergence of the series

o

ooy )

(@.3) (my+1)P

My, My =0

. (717,“—{—1)’?”97(%)1 (1) ;

where f;,..., B

(2.4)

>0, 0<y<2 and
oy () = D | m, (NI
ACE »
It is clear that the convergence of the series (2.3) with g, = ... =8, = 0
and y = 1 implies the abgolute convergence of the series (2.2). .
We shall need the following inequality of F. Riesz (see [8], p. 118):
If1<p <2 and 1/p+1/q =1, then we have

(2.5) [

.My =0

o, 0] < 30, ) f lf(wl,---,wn)|ﬂ°dm1~.dmn]””

with the constant M, not depending on the function f.

' The above notation is very useful. Tt will be seen in lemma 3 that
certain tmnsforma.tmns of the function f(zi,.. ., @,) lead to functions
whose Fourier coefficients can be obtained from the Fourier coefficients
of the function 7 by 'certaa'n_ operations on the set A.

3. Now we shall introduce some symbols analogical to those given
in § 1. Here H = (k,, k) will denote a non-empty subset of the set I,
where k,,..., ks are the elements of H.

For H = (k) we write
H
(F520, 2y @ns hyy ooy By)
= f(mla sy Ty wk+hk7 Dhg1y vy mn)_‘f(wly voey Bp_1y Dpey Brop1y ~ ey mn)7
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H
F=(f5 @1y ey s by ey By)
z‘f(mly ceey gy, wk+hk’ mlc+13 ~--"y wn)‘“ﬂmli ceey gy, wk‘“hlcy mk—)—l, --"; wn)

and for H = (by, ..., k) (s> 1,7 < ... < k)
AR(fy @y ooy Bys By oy b)) = AP AT (fy s Byyeey ha)l,
B3 @55y i oy ) = PO FEC (0 BB,
These definitions imply, for H = (k,, ...-, ks),
(B1)  FH(f521, ..., @i hyy ey b)) = AZ(f; 3y, ..

Pryt1s oo+ @5 by

-y Bty wkl—hkly

y Bhg—1y w”’s“h’.ﬂs’. Blegp1y ==y ) hlc1~17 2hk1’ hk1+iy seey

RTE7 Y M W
Further we put

) hn) = sup

H .
© (mlla seer W, od hy,
d o<
Idilghi;ieH

‘AHQ{i Day oy Byj Oy, eny G,y

where (1, ..., ;) = H, and

W (hy, ooy hy)

2
= Byyoeny @y Byy. e, 0,) Py ...
[ T [187 005 00, )P

dwnll/i’ " .
for p > 1. The functions w® and wf will be called the modulus of conti-
nuity and the p-th integral modulus of the function f(@y, ..., m,) with re-
gard to the set H, respectively. We obviously have -

W (b ey hy) < 2MOPUNGE Ry for 1 pl S s

Moreover, (3.1) implies

(3.2) [f f\FH (f3 1, -

We shall need the notion of r-th variation (r >1) of the function
f@y, .. ,) with respect to the set Hs£ 0 in the region (a; < @ < by;
7 = 1,2 n)(*). Let H = (ky,..., k)0 and let IT be the following

Boi hyy oy B Py . 40, P < 0 (20, 2h,).

(*) Instead of r-th variations one can’ consider @-ih variations, as introduced
for one variable by L. C. Young. ®@(u) is here a-non- negative and non-dgcreasing
function. In order to obtain the @-th wariation, @ (| 4H|) should be takew in (3.3)
instead of [AZ|" and the exponent 1/r omitted. A variation of this kind was used by
the author in investigations of single Fourier series in [56]. We here give up this
degree of generality to simplify the notation.


GUEST


112 J. Musielak
partition of the n-dimensional parallelepiped (e <w; <by;i=1, 2, n)
into partial n-dimensional parallelepipeds:
o =ad <af) <...<af =0b
We introduce
Ny Vg

(3.3) VE(§) :[ sup sup Z Z [AZ (f32y,. oo @ 1,m( -1 sty enes

<2<y 11 iy =1 Tog=1

teH

i — ol 4y —1) (in) __ min—1) rjir
mks—umgfs )ymk,,+17---’wn7w(11)_m(11 N S 11

4. We now proceed to give three lemmas not directly connected with
the absolute convergence of Fourier series.
LemmA 1. If ¢ >y > 0 and al, ceey Gy > 0 then

~N+1 o < 2Vt ( a,q)
(S Zaeo(y

This known lemma can be proved by induction.

LemmA 2. Let the function f(my, ..., #,) be defined in the whole n-di-
menstonal Buclidean space and periodic in the variable z; with the period
b;—a; for each ieH, We assume that H = (ky, ..., k) = 0 and that the num-
bers hy> 0 satisfy the following conditions: for each icH there ewists an
integer p; such that 2h;p; = b;—a;(*). Then

by, gy
[ - f|F (F5. 0, ey @a By ey Bl . Ay S 2 LVEDT [ [
gy teH
Proof. Putting af?—ali) =28 (5;=1,2,...,N;;jeH) and
;= m&f}'“’ﬂi for &;eH we have
f f lF (f5 @1y oe-y Bnj 1--~yhn.)]rdmlcl---d-'/l"k8
ey g
bgy by
= [ o [ 1472, ooy 0n; 2hy, ., 2Ry . ey
le aks
Ny Ny, mgfl) xi(;k")
=) [ 145 (f5 @15y @032y, 2B iy .
U=l =1 zg;kl_n mg‘zﬂ.‘s—l)

() The author admits the possibility of certain of these assumptions being
superfluous; however, they make the proof simpler.
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. z(lk ) 2keg)
Ny Npg “at ks’
— H/e, « mi® 4y —1
= Z Z f f [A%(f5 1y ...y 5 20 —af=D
igy=1 =1 x;:h—l) m;{z‘k‘g—l)
1 8 . o
2=y i1
oy @) — gfln= 1y day, ... day,
Mgy Ny 2hyy  2hy
. Hog, Oy —
_Z‘ 2 f f (475 (f5 @,y ... o5 Tiyyy Bpey* ‘|‘t1:90k1+1;---:$k8.~17
'ik]=1 iks=1 0 0

(g —1]
(v(k;‘s ) +, Treg41s -

< 2LVENT[ [ 1

1eH

R CaR I U G D LF T

LeMMA 3. For the function F® intr oduaeol in § 3 we have, for arbitrary
ACE,

(4.1) a;flmmn(FH) = (—1)¥ ‘A”H)2”(H)n sin m; h, e AAH ()

i6H

where u(B) denotes the number of all elements of the set B and AAH the
symmetric difference of the sets A and H. Moreover, given H, the operation
AAH defines o one-to-one correspondence from B to B.

Proof. Let H = (k,, ..., k). We prove formula (4.1) by induction
with respect to s. Suppose s =1, 5. e. H = (k). Let ked. Then

f...ff(ml,...

x [ sinm;mhida,. .. da, = Wiy, myy () COSTG TRy @, () sy el
jed .

(4.2) s By T+, Lpayy e--

s @) l Icosminhix

ied

Putting —h;, instead of % in (4.2) and subtracting from (4

.2) the equa-
lity thus obtained, we get

(4.3) aﬁl__ (P = 9(1,,‘,‘11 (’f,)n (f)sinmg why.
However, A~H =0, whence (—1)"“4"E) —1 and A pAH= A— —(k); thus,

(4.3) implies (4.1). Now let ke4. Similarly to (4.3), the following equality
is easily obtained:

a‘il,._mn (FH) =

Sinee 4 ~ H=(k), (—1*@ B = _1 and ApH=A4
Thus, formula (4.1) is proved for s = 1.

‘2514“(70)

.. (f) sinmghy .

v (k), we have (4.1).

Annales Poloniei Mathematici V. . R
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Suppose formula (4.1) is true for s—1 (s < »). We shall now prove

it for s. Putting H = (b, ...y ks), WO have

(4.4) G, m,,,,[FH P = am,.. m,,[F(kS) (FH'(’“*’))]
=(— l)u[A”(ks)lzsmmk Tohi, G AA(’hs) [FH'(kﬂ)(f)]
§—1
= (— 1y N sin gy, ohy (—1)<A40 25 H sinmy hy, Gk, (F)
qe=]
- (__1)/4{1“ (rgl+ i) Qu(H) H smmiﬁhia#&mm”(f),
where ‘ i
Ay = AN () A (byy ooy o), = [AA(k)T A (yy ooy Ksa)-
However, A
(4.5) AN o) A (Bay oy Bin) = A A Ty ooy o)
whence
(4.6) W A ()]s Ay) = p(d ~ B).
Further o
LAA (B ARy, vy boos) = A~ H o A A (),
therefore (4.3) implies
4.7 A, = AAH.
(4.1) follows from (4.4), (4.6) and (4. 7).

The one-to-one correspondence follows from the simple formula
A = (ApH)AH.
5. In order to formulate two auxiliary lemmas we pubt for
i=1,2,...,n:
Ay, = Erm< 2} for w21, dy= E 'imm- =0},
n.

v
T my, Ty e

n
Aul.n"n = ,Ql A’:;“i fOI' e 2 0

Here [ |} denotes the set of all systems of » non-negative integers
(M.,

(M, ..., my) satisfying the condition contained in the brackets {} It
is clear that for two different systems (¥;,...,%,) (that is, for two systems
having different integers in one place at least), the corresponding sets

A are disjoint and the set

Vlesbpy
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is identical with the set of all systems (m,, ..., m,) of non-negative inte-
gers. Further we put for a given system (vl, cess Yn)y

= #0)

and assume that H s 0. It is now possible to formulate lemmas 4 and 5,

denoting b, summati
g %rn . ’"%m“ ,: lon over all systems (my, ..., ma)ed,, , .
Ievma 4. We take 1<r<p<2, 1jp+1ljg=1 (p#1), H=
=(kyy ey ks)y H = (lyy.-.,li_s) and assume the function f(@y, ..., z,) to.

be integrable in the region (0< o< 24=1,2,..
Then

(5.1) D> Dm0

(M,...,My)edv;.. v,

2 2
—au(H) /2 H —_
< MEg-amE! {ff[m @y vy Ty 5277,
0 0

-y m) with the p-th power

~

27 P x

227NN day, . | oy day, YOO

—8

2 2
B ( . =1
f f|F (F5@1y..oy @03 27074,
]

0

Proof. According to lemma 3, the operation 4 A H defines a one-to-
-one correspondence from X to . Hence

(5.2) 6 m () = Y 1wt (P,
ick
For (my,...,my)ed, , and ieH we have 2%~!<m;< 2%, whence

|sinm;n27"~1? > 274, Applying this inequality and formula (5.2) we ob-
tain

offy my () < 279D 37T |( 1)) [T i g2~ b E, (9.

ACE 1i6H
Thus, formula (4.1) yields
(5.3) eﬁwm<rWW2mh%wnm
ice
where h; =27 for i =1,2,...,n.
Applying (5.3) and subsequently the inequality (2.5) to function
F® we obtain the inequality
o ()

My, Mp)edyy oy,

2 2

< MEg—wE: [ff B (f3 0y 0y @3 27078, L, 27 Y P, .. dm,,]“”’,
0 0
1

which implies (5.1).
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LEvya 5. With the same notation and assumptions as in lemma 4,
we have for Piy ..., Bn =0 and 0 <y < 2:

(6.4) 2 (g 1) . (g 1) (08 ()T
ong,..mn)edy
» — H) 2
p-] {ﬂi+q—") v«:—’ﬁ‘(— ~ Dt
<M=t ? U.,.f[a)H(mll,,...,wln_s;Z nL, 2P %
(1] 0

2

2
ey /
X [f...f[FH(f; Lyy oy T g™t .27 I)dek,l e dka]dwll... daqln_a}yp.
] 0
Proof. Applying the Holder inequality Yuv < (Sl Tty with
k=q/(g—7), I=4qlv; = (mri-l)‘g‘---(mu-i"l)ﬁ” and v = [9%’1...wm(f)]”q to
the sum on the left-hand side of inequality (5.4), we obtain

(my 1) . (16 (T
(my,. ..,‘M/n]eA,l“ oy
< T [ (1P

(my,.... ey, |y

4
X 2 955),.,.%" (f)}? .
(ml,._‘,my,,)eA .

(5.5)

—via

V1.
However, it is easy to see that
n .
(Qﬁz, +1) v

Zla-y
(5.6) [(my 1) (1P < 2%

Applying inequality (5.6) and lemma 4 to the right-hand side of inequa-
. lity (5.8) we obtain (5.4).

6. We shall prove three theorems on the absolute convergence of
multiple Fourier series.

TrmorEM 1. Let % be a class of non-empty subsets of the set
B=(1,2,...,0)(%). Let us assume that the function f(@y, ..., &n) defined
in the whole n-dimensional Buclidean space satisfies the following conditions:

19 the function is periodic with period 2 in each variable,

20 it is integrable in the region (0 <o <258 =1,2,..., n) with the
p-th power for a certain 1 <p <2,

3° for every H I there exists a number rg such thet 1 < rygy < p and
Veg(f) < oo.

(%) The class % may be empty.
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We further assume, for certain B, ..., fn =0 and 0 < y < 2, the con-
vergence of the series

(a) }f Z“'

vk1=1 "ks=l

s
S Br, +1-9)r,
. T
9=t Y x

2

x{ Df o [0 (@@, 527 27 P E dm,"_s}”” for HeX,
] _

i &3 1B 1-0-1phle
(b) e e B (@, ..., 27 for HeX, H#O,
uk1=1 v),sul
where H = (Joyy .oy Big)y H = (Ly <oy ly_s). Then the series (2.3) is con-
vergent.

Proof. According to lemma 1, the convergence of the series (2.3)
is equivalent to that of the series

oo
(6.1) ) Zm 0 (M1 (1) [0 (T
Lavees =
with arbitrary ¢ > 2, or to that of the series
(6.2) S 1 (a1, (DT

my,..., n=0
(M,...,Mp)#0

obtained from (6.1) by dropping the term with indices m; = ... = m, = 0.
We denote by > summation extended over all non-empty subgets

0 HCE
H of the set E. Then, putting # = F{» # 0} = (k;, ..., %), and applying

lemma 5 (with rgy = p for He%) we obtain

N 1P a1 [0 (DT

(my,.. mn) 20
o0 (=]
° v
=) M. N 1 (g 1YL (T
0=HCE vy =1 =1 (7111:_,,,1714%)54‘,1_”,,“
8
o © 3 (gt T
<My N o-wEe N7 sﬂ'=1(k‘ “)%‘x
= 2y LUt L T ‘
V£LHCE =t R
2 2

x{f...f[a)H(le, ey 3 27, L, 2T P
0 0

2

R
H /. H—pp—
s [or [ IFR(f @y ooy 203 277070
[ 0

2~ Y day, ... dog) da, ... dwy, -
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This inequality proves that the series (6.2) and therefore also (2.3) are
convergent if the series

'i 1 ﬂk + : ; H -1 Q—in\1P—TH
(6.3) Z Z’ {f ST @y By g3 27 2T
"kl“l Yoy =1 0 [
—y—1 o—tn—1)["H g, am \d P
U f[l’ (f3 1y 0vvy Tn; 2 ey 2 W dwy, ... daoy,| dity, ... Ay,

are convergent for every H #0, HC E. )
Suppose He¢9Y, H # 0. Then inequality (3.2) with rg = p yields

2 2
U...fmﬂ(f; By ooy By 27170 oy 27 M Hy dwn]””
0 0

<ol (27,..., 27

and the convergence of the series (b) implies that of the series (6.3).
Suppos,e He%. Then lemma 2 yields

f f‘F (f3my, - ey n; 2

This, together with the convergence of the series (a) implies that of the
series (6.3).

TaeorEM 1. Let the function f(w®y, ..., @) satisfy for a class 9 of
non-empty subsets of the set B = (1,2, ...,n) the assumptions 1°, 2° and
3° of theorem 1. Further assume, for oertam By s Bnzland 0 <y <2
the convergence of the series

@) .. ) [

rk1=l vks=l ieH
d

by > 3 [t oo,

1k1=1 vks=1 ieH
where H = (ky, ..o ko) H=(l; ..., ln_g)-
vergent.

The proof of this theorem is obtained similarly to that of theorem 1,
after a suitable modification of lemma 5.

THEOREM 2. Let the function f(my, ...,o,) satisfy for a class 9 of
non-emply subsets of the set B=(1,2,...,n)(") the assumptions 1°, 2° and 3°

8

- vk,
- — vy — 1y H i=1""
—aml L T M E ey . day, < [V (DTE2 N

. .
- — — vie
..f[coH(wll, ey B3] ey R )T .dmm_s} for He%,
[

Q%N

SWNY for  HeU, H #0,

Then the series (2.3) s con-

(") See (%).
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of theorem 1. Let us further assume, for certain fy, ..., By
that the following conditions are satisfied:

(29)  for H = (ky, ...

=0and0 <y <2,

5 kg) e we have

. H a,
(6.4) o (@, oy @y Ry ey Ba) < sy Vi o b

In—s? KH(:BII, e

where

2 2
(y ooy lns) = H, ojof (g (@y, .y @y, )P Hday ... doy, < oo
and
P (Br;+1—7)
y(p—rg)

(ba) for H = (ky, ..., ks)¢¥ and H + 0 we have

(6.5) off > for v #£p, fy<y—l for rg=p;

°1H aH
< Kghih ... b

2 !

(6.6) WZ(hy, ..y by
where Ky is a constant and

p T '
(6.7) of > PPatl=y)ty
VP

Then the series (2.3) is conwvergent.
Proof. According to inequality (6.4), the series (a) in theorem 1
is majorized by the series

5 H
& S [Bry+1~y—oy y(1—rH[D)lv)

)

iy Kl 7
‘5211 s
Smad

Y=l k=1

the eonvergence of which is assured by inequality (6.5). Similarly (6.6)
implies that the series (b) in theorem 1 is majorized by the series

s
3 [, F1—(—1p)y—aylsy,

o0 o0 .
=10 P
D o D2 ,

which, according to (6.7), is convergent. Then the assumptions in theorem 1
are satisfied, thus implying the convergence of the series (2.3).

7. It should be noted that the above theorems constitute generali-
zations of results concerning the absolute convergence of double Fourier
series given in papers [2], [7] and [10]. Putting n =p =2, §; =, =0,
&% = 0 in theorem 1’, we obtain theorem IIT in paper [7]. Puttmg n=p=2,
Bi=f =0,y=1 % =0 in theorem 2, we obtain the condition
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off > } (see [2]). Taking for & in theorem 2 the class of all non-empty
subsets of the set # = (1,2), n = p = 2, rg = y = 1, we obtain the con-
dition of Zak, off > 28, (see [10]). The counter-examples given in these
papers and concerning the strength of the results do not exhaust this
problem. The author intends to take up this problem once more together
with investigations concerning conditions of type (6.4) and (6.6).

Theorems 1, 1 and 2 generalize many known theorems holding for
single Fourier series to multiple Fourier series, e. g. all theorems in §§ 6.3,
6.31-6.34 and 6.6.5-6 in [9](%).

The results obtained may be generalized to certain clasges of almost
periodic functions of n variables, by the method used in [5].

References

[11 8. Bochner, Summation of multiple Fourier series by spherical means,
Trans. Amer. Math, Soc. 40 (1936), p. 175-207.

[2] 3.T. Yemupae, 06 abeontomnoi cxodumocmu deotinsiz pados Pypve, JLoKIATE
Axag. Hayx CCCP 54 (1946), p. 117-120.

[31 E. W. Hobson, Theory of functions of a real variable I, Cambridge 1927,

[4] 8. Minakshisundaram and 0. Sz4sz, On absolute convergence of muliiple
Fourier series, Trans. Amer. Math. Soc. 61 (1947), p. 36-53.

[6] J. Musielak, O bezwzglednej chiesnodei szeregéw Fouriera pewnych funlkoji
prawie okresowych, Zeszyty Nauk. Uniw. imn. A. Mickiewicza 1 (1957), p. 9-17.

[6] — Some conditions sufficient for the absolute convergence of multiple Fourier
series, Bull. Acad. Polon. Seci., ClL III, 5(1957), p. 251-254.

[7]1 G. E. Reves and O. Sz4sz, Some theorems on double trigonometric series,
Duke Math. Journ. 9 (1942), p. 693-705.

[8] F. Riesz, Uber eine Verallgemeinerung der Parsevalschen Formel, Math.
Zeitschr. 18 (1923), p. 117-124.

[9] A. Zygmund, Trigonometrical series, Warszawa-Lw6éw 1935.

[10] U. E. ax, K abeomomnoti cxodumocmu Oeoiinniz pados Dypve, Coodim
Ax. Hayx I'pya. CCP 12 (1951), p. 129-133.

INSTYTUT MATEMATYCZNY POLSKIES AKADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regw par la Rédaction le 23. 6. 1956

-(‘) It vis. easily seen that in theorem 6.31 in [97 it is sufficient to assume thab
f@) is of finite r-th variation for a certain » < 2 (see also [5], theorem 5)
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Sur un probléme mixte pour 'équation du type
hyperbolique

par G. MAaJcHER (Krakéw)

1. Cas de la dépendance linaire entre la fonction u (i, y)
et ses dérivées sur la courbe I

§ 1. Enoncé du probléme. Considérons une équation du type hy-
perbolique & deux variables indépendantes, réduite 4 la forme canonique

@ H[u] = gy +a(m, §)us+b(@, y)uy+el@, y)u = f(z,9).

Soit D un domaine limité par la demi-droite caractéristique y = 0,
# > 0 de Péquation (1), par la droite & = z;, @, > 0 et par une courbe I’
issue de l'origine et représentée par P’équation:

c=0@), y>0 (u y=1(a), z>0),

ol 6'(y) > 0, 6(0) = 0. .
Nous nous proposons de irouver une intégrale w (@, y) de Véquation (1.)

qui soit de classe O dans la fermeture D du domaine D, admetie une déri-

vée partielle gy continue dans cet ensemble el satisfasse aux conditions aux

limites

2) A gz, )+ B ) uy(@, N+0@) w(@, y) = 9y),

pour @ = 0(y), y =0 et

(3) u(@, 0) = h(2)

powr =0

Dans la suite le probléme posé sera appelé briévement probléme

() ().

Nous démontrerons dans cette partie du travail Pexistence de la so-
lution du probléme ().

§ 2. Existence de la solution du probléme (M). 1. Supposons
vérifiées les hypotheéses suivantes:

(1) Ce probléme a été posé par M. Krzyzanski.
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